2okr Citations

Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer.

J Biol Chem 282 9733-9739 (2007)
Cited: 63 times
EuropePMC logo PMID: 17255097

Abstract

The p38 signaling pathway is activated in response to cell stress and induces production of proinflammatory cytokines. P38alpha is phosphorylated and activated in response to cell stress by MKK3 and MKK6 and in turn phosphorylates a number of substrates, including MAPKAP kinase 2 (MK2). We have determined the crystal structure of the unphosphorylated p38alpha-MK2 heterodimer. The C-terminal regulatory domain of MK2 binds in the docking groove of p38alpha, and the ATP-binding sites of both kinases are at the heterodimer interface. The conformation suggests an extra mechanism in addition to the regulation of the p38alpha and MK2 phosphorylation states that prevents phosphorylation of substrates in the absence of cell stress. Addition of constitutively active MKK6-DD results in rapid phosphorylation of the p38alpha-MK2 heterodimer.

Reviews - 2okr mentioned but not cited (3)

Articles - 2okr mentioned but not cited (8)

  1. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Sci Signal 5 ra74 (2012)
  2. Changes in the free-energy landscape of p38α MAP kinase through its canonical activation and binding events as studied by enhanced molecular dynamics simulations. Kuzmanic A, Sutto L, Saladino G, Nebreda AR, Gervasio FL, Orozco M. Elife 6 e22175 (2017)
  3. Selective mitogen activated protein kinase activity sensors through the application of directionally programmable D domain motifs. Peterson LB, Yaffe MB, Imperiali B. Biochemistry 53 5771-5778 (2014)
  4. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. Nguyen T, Ruan Z, Oruganty K, Kannan N. PLoS One 10 e0119636 (2015)
  5. The crystal structure of the active form of the C-terminal kinase domain of mitogen- and stress-activated protein kinase 1. Malakhova M, D'Angelo I, Kim HG, Kurinov I, Bode AM, Dong Z. J Mol Biol 399 41-52 (2010)
  6. A temperature-dependent conformational shift in p38α MAPK substrate-binding region associated with changes in substrate phosphorylation profile. Deredge D, Wintrode PL, Tulapurkar ME, Nagarsekar A, Zhang Y, Weber DJ, Shapiro P, Hasday JD. J Biol Chem 294 12624-12637 (2019)
  7. PepPro: A Nonredundant Structure Data Set for Benchmarking Peptide-Protein Computational Docking. Xu X, Zou X. J Comput Chem 41 362-369 (2020)
  8. Modulating p38 MAPK signaling by proteostasis mechanisms supports tissue integrity during growth and aging. Yuan W, Weaver YM, Earnest S, Taylor CA, Cobb MH, Weaver BP. Nat Commun 14 4543 (2023)


Reviews citing this publication (8)

  1. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Cargnello M, Roux PP. Microbiol Mol Biol Rev 75 50-83 (2011)
  2. Mechanisms and functions of p38 MAPK signalling. Cuadrado A, Nebreda AR. Biochem J 429 403-417 (2010)
  3. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Reinhardt HC, Yaffe MB. Curr Opin Cell Biol 21 245-255 (2009)
  4. p38 pathway kinases as anti-inflammatory drug targets. Schindler JF, Monahan JB, Smith WG. J Dent Res 86 800-811 (2007)
  5. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Clark JE, Sarafraz N, Marber MS. Pharmacol Ther 116 192-206 (2007)
  6. MK2: a novel molecular target for anti-inflammatory therapy. Duraisamy S, Bajpai M, Bughani U, Dastidar SG, Ray A, Chopra P. Expert Opin Ther Targets 12 921-936 (2008)
  7. Revisiting protein kinase-substrate interactions: Toward therapeutic development. de Oliveira PS, Ferraz FA, Pena DA, Pramio DT, Morais FA, Schechtman D. Sci Signal 9 re3 (2016)
  8. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases. Qian F, Deng J, Wang G, Ye RD, Christman JW. Curr Protein Pept Sci 17 332-342 (2016)

Articles citing this publication (44)

  1. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Smart OS, Womack TO, Flensburg C, Keller P, Paciorek W, Sharff A, Vonrhein C, Bricogne G. Acta Crystallogr D Biol Crystallogr 68 368-380 (2012)
  2. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X, Linding R, Ong SE, Weaver D, Carr SA, Yaffe MB. Mol Cell 40 34-49 (2010)
  3. Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Bakan A, Nevins N, Lakdawala AS, Bahar I. J Chem Theory Comput 8 2435-2447 (2012)
  4. VEGF autoregulates its proliferative and migratory ERK1/2 and p38 cascades by enhancing the expression of DUSP1 and DUSP5 phosphatases in endothelial cells. Bellou S, Hink MA, Bagli E, Panopoulou E, Bastiaens PI, Murphy C, Fotsis T. Am J Physiol Cell Physiol 297 C1477-89 (2009)
  5. A distinct interaction mode revealed by the crystal structure of the kinase p38α with the MAPK binding domain of the phosphatase MKP5. Zhang YY, Wu JW, Wang ZX. Sci Signal 4 ra88 (2011)
  6. MK2-dependent p38b signalling protects Drosophila hindgut enterocytes against JNK-induced apoptosis under chronic stress. Seisenbacher G, Hafen E, Stocker H. PLoS Genet 7 e1002168 (2011)
  7. Selective inhibition of the p38α MAPK-MK2 axis inhibits inflammatory cues including inflammasome priming signals. Wang C, Hockerman S, Jacobsen EJ, Alippe Y, Selness SR, Hope HR, Hirsch JL, Mnich SJ, Saabye MJ, Hood WF, Bonar SL, Abu-Amer Y, Haimovich A, Hoffman HM, Monahan JB, Mbalaviele G. J Exp Med 215 1315-1325 (2018)
  8. Hydrogen-exchange mass spectrometry reveals activation-induced changes in the conformational mobility of p38alpha MAP kinase. Sours KM, Kwok SC, Rachidi T, Lee T, Ring A, Hoofnagle AN, Resing KA, Ahn NG. J Mol Biol 379 1075-1093 (2008)
  9. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. Yoshizawa T, Hammaker D, Boyle DL, Corr M, Flavell R, Davis R, Schett G, Firestein GS. J Immunol 183 1360-1367 (2009)
  10. Posttranscriptional regulation of gene expression-adding another layer of complexity to the DNA damage response. Boucas J, Riabinska A, Jokic M, Herter-Sprie GS, Chen S, Höpker K, Reinhardt HC. Front Genet 3 159 (2012)
  11. p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Ou XH, Li S, Xu BZ, Wang ZB, Quan S, Li M, Zhang QH, Ouyang YC, Schatten H, Xing FQ, Sun QY. Cell Cycle 9 4130-4143 (2010)
  12. Allosteric enhancement of MAP kinase p38α's activity and substrate selectivity by docking interactions. Tokunaga Y, Takeuchi K, Takahashi H, Shimada I. Nat Struct Mol Biol 21 704-711 (2014)
  13. Understanding the molecular basis of MK2-p38α signaling complex assembly: insights into protein-protein interaction by molecular dynamics and free energy studies. Yang Y, Liu H, Yao X. Mol Biosyst 8 2106-2118 (2012)
  14. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Alexa A, Gógl G, Glatz G, Garai Á, Zeke A, Varga J, Dudás E, Jeszenői N, Bodor A, Hetényi C, Reményi A. Proc Natl Acad Sci U S A 112 2711-2716 (2015)
  15. A Role for MK2 in Enhancing Neutrophil-Derived ROS Production and Aggravating Liver Ischemia/Reperfusion Injury. Sun L, Wu Q, Nie Y, Cheng N, Wang R, Wang G, Zhang D, He H, Ye RD, Qian F. Front Immunol 9 2610 (2018)
  16. Mitogen-activated protein kinase signaling and its association with oxidative stress and apoptosis in lead-exposed hepatocytes. Mujaibel LM, Kilarkaje N. Environ Toxicol 30 513-529 (2015)
  17. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress. El Khattabi I, Sharma A. Mol Endocrinol 27 1078-1090 (2013)
  18. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach. Lee S, Warthaka M, Yan C, Kaoud TS, Piserchio A, Ghose R, Ren P, Dalby KN. PLoS One 6 e18594 (2011)
  19. High-resolution crystal structure of human Mapkap kinase 3 in complex with a high affinity ligand. Cheng R, Felicetti B, Palan S, Toogood-Johnson I, Scheich C, Barker J, Whittaker M, Hesterkamp T. Protein Sci 19 168-173 (2010)
  20. Targeting diverse signaling interaction sites allows the rapid generation of bivalent kinase inhibitors. Hill ZB, Perera BG, Andrews SS, Maly DJ. ACS Chem Biol 7 487-495 (2012)
  21. Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38α. Piserchio A, Francis DM, Koveal D, Dalby KN, Page R, Peti W, Ghose R. Biochemistry 51 8047-8049 (2012)
  22. MK2 Is Required for Neutrophil-Derived ROS Production and Inflammatory Bowel Disease. Zhang T, Jiang J, Liu J, Xu L, Duan S, Sun L, Zhao W, Qian F. Front Med (Lausanne) 7 207 (2020)
  23. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. Front Oncol 9 1294 (2019)
  24. MAPKAP Kinase-2 Drives Expression of Angiogenic Factors by Tumor-Associated Macrophages in a Model of Inflammation-Induced Colon Cancer. Suarez-Lopez L, Kong YW, Sriram G, Patterson JC, Rosenberg S, Morandell S, Haigis KM, Yaffe MB. Front Immunol 11 607891 (2020)
  25. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) in skeletal muscle atrophy and hypertrophy. Norrby M, Tågerud S. J Cell Physiol 223 194-201 (2010)
  26. Novel Noncatalytic Substrate-Selective p38α-Specific MAPK Inhibitors with Endothelial-Stabilizing and Anti-Inflammatory Activity. Shah NG, Tulapurkar ME, Ramarathnam A, Brophy A, Martinez R, Hom K, Hodges T, Samadani R, Singh IS, MacKerell AD, Shapiro P, Hasday JD. J Immunol 198 3296-3306 (2017)
  27. Rational mutagenesis to support structure-based drug design: MAPKAP kinase 2 as a case study. Argiriadi MA, Sousa S, Banach D, Marcotte D, Xiang T, Tomlinson MJ, Demers M, Harris C, Kwak S, Hardman J, Pietras M, Quinn L, DiMauro J, Ni B, Mankovich J, Borhani DW, Talanian RV, Sadhukhan R. BMC Struct Biol 9 16 (2009)
  28. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. Kumar GS, Zettl H, Page R, Peti W. J Biol Chem 288 28347-28356 (2013)
  29. The diterpenoid alkaloid noroxoaconitine is a Mapkap kinase 5 (MK5/PRAK) inhibitor. Kostenko S, Khan MT, Sylte I, Moens U. Cell Mol Life Sci 68 289-301 (2011)
  30. MAP Kinase-Mediated Activation of RSK1 and MK2 Substrate Kinases. Sok P, Gógl G, Kumar GS, Alexa A, Singh N, Kirsch K, Sebő A, Drahos L, Gáspári Z, Peti W, Reményi A. Structure 28 1101-1113.e5 (2020)
  31. p38α MAPK inhibits stretch-induced JNK activation in cardiac myocytes through MKP-1. Feng H, Gerilechaogetu F, Golden HB, Nizamutdinov D, Foster DM, Glaser SS, Dostal DE. Int J Cardiol 203 145-155 (2016)
  32. Identification of a Novel Inhibitory Allosteric Site in p38α. Gomez-Gutierrez P, Campos PM, Vega M, Perez JJ. PLoS One 11 e0167379 (2016)
  33. Label transfer reagents to probe p38 MAPK binding partners. Andrews SS, Hill ZB, Perera BG, Maly DJ. Chembiochem 14 209-216 (2013)
  34. Phosphorylation- and nucleotide-binding-induced changes to the stability and hydrogen exchange patterns of JNK1β1 provide insight into its mechanisms of activation. Owen GR, Stoychev S, Achilonu I, Dirr HW. J Mol Biol 426 3569-3589 (2014)
  35. The interaction of p38 with its upstream kinase MKK6. Kumar GS, Page R, Peti W. Protein Sci 30 908-913 (2021)
  36. A novel small molecule inhibitor of p38⍺ MAP kinase augments cardiomyocyte cell cycle entry in response to direct cell cycle stimulation. Abouleisa RRE, Miller JM, Gebreil A, Salama ABM, Dwenger M, Abdelhafez H, Wahid RM, Adewumi AT, Soliman MES, Abo-Dya NE, Mohamed TMA. Br J Pharmacol 180 3271-3289 (2023)
  37. Anti-inflammatory effects of extracellular vesicles from Morchella on LPS-stimulated RAW264.7 cells via the ROS-mediated p38 MAPK signaling pathway. Chen Q, Che C, Yang S, Ding P, Si M, Yang G. Mol Cell Biochem 478 317-327 (2023)
  38. Architecture of the MKK6-p38α complex defines the basis of MAPK specificity and activation. Juyoux P, Galdadas I, Gobbo D, von Velsen J, Pelosse M, Tully M, Vadas O, Gervasio FL, Pellegrini E, Bowler MW. Science 381 1217-1225 (2023)
  39. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mol Carcinog 61 173-199 (2022)
  40. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Sci Signal 16 eabm5518 (2023)
  41. The heat shock protein Hsp27 controls mitochondrial function by modulating ceramide generation. Boyd RA, Majumder S, Stiban J, Mavodza G, Straus AJ, Kempelingaiah SK, Reddy V, Hannun YA, Obeid LM, Senkal CE. Cell Rep 42 113081 (2023)
  42. Cross-species transcriptomic signatures predict response to MK2 inhibition in mouse models of chronic inflammation. Suarez-Lopez L, Shui B, Brubaker DK, Hill M, Bergendorf A, Changelian PS, Laguna A, Starchenko A, Lauffenburger DA, Haigis KM. iScience 24 103406 (2021)
  43. MK2 nonenzymatically promotes nuclear translocation of caspase-3 and resultant apoptosis. Del Rosario O, Suresh K, Kallem M, Singh G, Shah A, Zheng L, Yun X, Philip NM, Putcha N, McClure MB, Jiang H, D'Alessio F, Srivastava M, Bera A, Shimoda LA, Merchant M, Rane MJ, Machamer CE, Mock J, Hagan R, Koch AL, Punjabi NM, Kolb TM, Damarla M. Am J Physiol Lung Cell Mol Physiol 324 L700-L711 (2023)
  44. Prevention of Melanoma Extravasation as a New Treatment Option Exemplified by p38/MK2 Inhibition. Petzelbauer P. Int J Mol Sci 21 E8344 (2020)