2n8a Citations

Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1.

Reviews - 2n8a mentioned but not cited (2)

  1. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Langelier MF, Eisemann T, Riccio AA, Pascal JM. Curr. Opin. Struct. Biol. 53 187-198 (2018)
  2. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. Int J Mol Sci 22 5112 (2021)

Articles - 2n8a mentioned but not cited (7)

  1. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schützenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, Brognard J, Nielsen ML, Ahel D, Huet S, Suskiewicz MJ, Ahel I. Nat Commun 12 4055 (2021)
  2. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, Aleksandrov R, Harrell MI, Menon M, Brough R, Campbell J, Frankum J, Ranes M, Pemberton HN, Rafiq R, Fenwick K, Swain A, Guettler S, Lee JM, Swisher EM, Stoynov S, Yusa K, Ashworth A, Lord CJ. Nat Commun 9 1849 (2018)
  3. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Ogden TEH, Yang JC, Schimpl M, Easton LE, Underwood E, Rawlins PB, McCauley MM, Langelier MF, Pascal JM, Embrey KJ, Neuhaus D. Nucleic Acids Res 49 2266-2288 (2021)
  4. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Langelier MF, Billur R, Sverzhinsky A, Black BE, Pascal JM. Nat Commun 12 6675 (2021)
  5. Prediction of the secondary structure of short DNA aptamers. Afanasyeva A, Nagao C, Mizuguchi K. Biophys Physicobiol 16 287-294 (2019)
  6. Comparative Study of Single-stranded Oligonucleotides Secondary Structure Prediction Tools. Binet T, Padiolleau-Lefèvre S, Octave S, Avalle B, Maffucci I. BMC Bioinformatics 24 422 (2023)
  7. Deciphering the functional mechanism of zinc ions of PARP1 binding with single strand breaks and double strand breaks. Sun S, Wang X, Lin R, Wang K. RSC Adv 12 19029-19039 (2022)


Reviews citing this publication (69)

  1. PARP inhibitors: Synthetic lethality in the clinic. Lord CJ, Ashworth A. Science 355 1152-1158 (2017)
  2. PARP Inhibition in Cancer: An Update on Clinical Development. Sachdev E, Tabatabai R, Roy V, Rimel BJ, Mita MM. Target Oncol 14 657-679 (2019)
  3. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev. 31 101-126 (2017)
  4. Targeting DNA repair in cancer: current state and novel approaches. Klinakis A, Karagiannis D, Rampias T. Cell Mol Life Sci 77 677-703 (2020)
  5. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Harrision D, Gravells P, Thompson R, Bryant HE. Front Mol Biosci 7 191 (2020)
  6. PARP and PARG inhibitors in cancer treatment. Slade D. Genes Dev 34 360-394 (2020)
  7. Emerging therapies for breast cancer. Hu X, Huang W, Fan M. J Hematol Oncol 10 98 (2017)
  8. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Crit. Rev. Biochem. Mol. Biol. 53 64-82 (2018)
  9. Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Martin-Hernandez K, Rodriguez-Vargas JM, Schreiber V, Dantzer F. Semin. Cell Dev. Biol. 63 92-101 (2017)
  10. PARP, transcription and chromatin modeling. Posavec Marjanović M, Crawford K, Ahel I. Semin. Cell Dev. Biol. 63 102-113 (2017)
  11. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. Cell Prolif. 49 421-437 (2016)
  12. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Zhu H, Wei M, Xu J, Hua J, Liang C, Meng Q, Zhang Y, Liu J, Zhang B, Yu X, Shi S. Mol Cancer 19 49 (2020)
  13. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. Nucleic Acids Res 49 3634-3650 (2021)
  14. G4-quadruplex-binding proteins: review and insights into selectivity. Meier-Stephenson V. Biophys Rev 14 635-654 (2022)
  15. PARP Inhibitors as Therapeutics: Beyond Modulation of PARylation. Min A, Im SA. Cancers (Basel) 12 (2020)
  16. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. Mol Cancer 19 107 (2020)
  17. Rapid Detection and Signaling of DNA Damage by PARP-1. Pandey N, Black BE. Trends Biochem Sci 46 744-757 (2021)
  18. The role of dePARylation in DNA damage repair and cancer suppression. Kassab MA, Yu X. DNA Repair (Amst) 76 20-29 (2019)
  19. ADP-ribosylation of DNA and RNA. Groslambert J, Prokhorova E, Ahel I. DNA Repair (Amst) 105 103144 (2021)
  20. NMR solution structure determination of large RNA-protein complexes. Yadav DK, Lukavsky PJ. Prog Nucl Magn Reson Spectrosc 97 57-81 (2016)
  21. PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs. Wang L, Liang C, Li F, Guan D, Wu X, Fu X, Lu A, Zhang G. Int J Mol Sci 18 (2017)
  22. PARP1: Structural insights and pharmacological targets for inhibition. Spiegel JO, Van Houten B, Durrant JD. DNA Repair (Amst) 103 103125 (2021)
  23. Multiple Roles for Mono- and Poly(ADP-Ribose) in Regulating Stress Responses. Qi H, Price BD, Day TA. Trends Genet 35 159-172 (2019)
  24. PARPs in genome stability and signal transduction: implications for cancer therapy. Palazzo L, Ahel I. Biochem. Soc. Trans. 46 1681-1695 (2018)
  25. Targeting PARP1 to Enhance Anticancer Checkpoint Immunotherapy Response: Rationale and Clinical Implications. Wanderley CWS, Correa TS, Scaranti M, Cunha FQ, Barroso-Sousa R. Front Immunol 13 816642 (2022)
  26. The comings and goings of PARP-1 in response to DNA damage. Pascal JM. DNA Repair (Amst.) 71 177-182 (2018)
  27. Chronic fatigue and immune deficiency syndrome (CFIDS), cellular metabolism, and ionizing radiation: a review of contemporary scientific literature and suggested directions for future research. Rusin A, Seymour C, Mothersill C. Int. J. Radiat. Biol. 94 212-228 (2018)
  28. Function and molecular mechanisms of APE2 in genome and epigenome integrity. Lin Y, McMahon A, Driscoll G, Bullock S, Zhao J, Yan S. Mutat Res Rev Mutat Res 787 108347 (2021)
  29. Investigational Drug Treatments for Triple-Negative Breast Cancer. Damaskos C, Garmpis N, Garmpi A, Nikolettos K, Sarantis P, Georgakopoulou VE, Nonni A, Schizas D, Antoniou EA, Karamouzis MV, Nikolettos N, Kontzoglou K, Patsouras A, Voutyritsa E, Syllaios A, Koustas E, Trakas N, Dimitroulis D. J Pers Med 11 652 (2021)
  30. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. Signal Transduct Target Ther 5 227 (2020)
  31. PARP1 promoter links cell cycle progression with adaptation to oxidative environment. Pietrzak J, Spickett CM, Płoszaj T, Virág L, Robaszkiewicz A. Redox Biol 18 1-5 (2018)
  32. TNM staging towards a personalized approach in metastatic urothelial carcinoma: what will the future be like?-a narrative review. Rizzo A, Mollica V, Cimadamore A, Santoni M, Scarpelli M, Schiavina R, Cheng L, Lopez-Beltran A, Brunocilla E, Montironi R, Massari F. Transl Androl Urol 10 1541-1552 (2021)
  33. The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression? Xu S, Tang C. Front Oncol 11 745187 (2021)
  34. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Alemasova EE, Lavrik OI. Nucleic Acids Res 50 10817-10838 (2022)
  35. DNA Damage: From Threat to Treatment. Carusillo A, Mussolino C. Cells 9 (2020)
  36. Exploiting the Prevalence of Homologous Recombination Deficiencies in High-Grade Serous Ovarian Cancer. Bouberhan S, Philp L, Hill S, Al-Alem LF, Rueda B. Cancers (Basel) 12 (2020)
  37. Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Piombino C, Cortesi L. Cancers (Basel) 14 2804 (2022)
  38. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Brady PN, Goel A, Johnson MA. Microbiol. Mol. Biol. Rev. 83 (2019)
  39. Protein-Protein Interactions in DNA Base Excision Repair. Moor NA, Lavrik OI. Biochemistry Mosc. 83 411-422 (2018)
  40. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Cancers (Basel) 14 4621 (2022)
  41. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. Padella A, Ghelli Luserna Di Rorà A, Marconi G, Ghetti M, Martinelli G, Simonetti G. J Hematol Oncol 15 10 (2022)
  42. The Making and Breaking of Serine-ADP-Ribosylation in the DNA Damage Response. Schützenhofer K, Rack JGM, Ahel I. Front Cell Dev Biol 9 745922 (2021)
  43. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Neuhaus D. Prog Nucl Magn Reson Spectrosc 130-131 62-105 (2022)
  44. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. Rouleau-Turcotte É, Pascal JM. J Biol Chem 299 105397 (2023)
  45. ADP-ribosylation from molecular mechanisms to therapeutic implications. Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. Cell 186 4475-4495 (2023)
  46. Allosteric crosstalk in modular proteins: Function fine-tuning and drug design. Abhishek S, Deeksha W, Nethravathi KR, Davari MD, Rajakumara E. Comput Struct Biotechnol J 21 5003-5015 (2023)
  47. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Int J Mol Sci 24 14746 (2023)
  48. Biological function, mediate cell death pathway and their potential regulated mechanisms for post-mortem muscle tenderization of PARP1: A review. Li R, Luo R, Luo Y, Hou Y, Wang J, Zhang Q, Chen X, Hu L, Zhou J. Front Nutr 9 1093939 (2022)
  49. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. Wu Y, Xu S, Cheng S, Yang J, Wang Y. J Ovarian Res 16 6 (2023)
  50. Commonalities in the Features of Cancer and Chronic Fatigue Syndrome (CFS): Evidence for Stress-Induced Phenotype Instability? Rusin A, Seymour C, Cocchetto A, Mothersill C. Int J Mol Sci 23 691 (2022)
  51. Conventional DNA-Damaging Cancer Therapies and Emerging cGAS-STING Activation: A Review and Perspectives Regarding Immunotherapeutic Potential. Lewicky JD, Martel AL, Gupta MR, Roy R, Rodriguez GM, Vanderhyden BC, Le HT. Cancers (Basel) 15 4127 (2023)
  52. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Fahrer J, Christmann M. Int J Mol Sci 24 4684 (2023)
  53. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. O'Sullivan J, Tedim Ferreira M, Gagné JP, Sharma AK, Hendzel MJ, Masson JY, Poirier GG. Nat Commun 10 1182 (2019)
  54. Genome-Protecting Compounds as Potential Geroprotectors. Proshkina E, Shaposhnikov M, Moskalev A. Int J Mol Sci 21 (2020)
  55. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF, Dai HB. Front Pharmacol 14 1137151 (2023)
  56. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. Pathogens 12 964 (2023)
  57. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Rissel D, Peiter E. Int J Mol Sci 20 (2019)
  58. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Alemasova EE, Lavrik OI. Int J Mol Sci 23 14075 (2022)
  59. Prospects for combining immune checkpoint blockade with PARP inhibition. Li A, Yi M, Qin S, Chu Q, Luo S, Wu K. J Hematol Oncol 12 98 (2019)
  60. Recent advancements in PARP inhibitors-based targeted cancer therapy. Zhou P, Wang J, Mishail D, Wang CY. Precis Clin Med 3 187-201 (2020)
  61. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Karakaidos P, Karagiannis D, Rampias T. Molecules 25 (2020)
  62. Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Chen YX, Tan LM, Gong JP, Huang MS, Yin JY, Zhang W, Zhou HH, Liu ZQ. Acta Pharmacol Sin (2021)
  63. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. Wang M, Chen S, Ao D. MedComm (2020) 2 654-691 (2021)
  64. Targeting NAD+ Metabolism to Enhance Radiation Therapy Responses. Lewis JE, Singh N, Holmila RJ, Sumer BD, Williams NS, Furdui CM, Kemp ML, Boothman DA. Semin Radiat Oncol 29 6-15 (2019)
  65. The Promise of Poly(ADP-Ribose) Polymerase (PARP) Inhibitors in Gliomas. Majd N, Yap TA, Yung WKA, de Groot J. J Immunother Precis Oncol 3 157-164 (2020)
  66. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair. Herrmann GK, Yin YW. Biomolecules 13 1195 (2023)
  67. The multifaceted role of PARP1 in RNA biogenesis. Eleazer R, Fondufe-Mittendorf YN. Wiley Interdiscip Rev RNA 12 e1617 (2021)
  68. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. Front Mol Biosci 9 1073797 (2022)
  69. The role of patient-derived ovarian cancer organoids in the study of PARP inhibitors sensitivity and resistance: from genomic analysis to functional testing. Tao M, Wu X. J Exp Clin Cancer Res 40 338 (2021)

Articles citing this publication (89)

  1. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM. Mol Cell 60 755-768 (2015)
  2. Structural basis for allosteric PARP-1 retention on DNA breaks. Zandarashvili L, Langelier MF, Velagapudi UK, Hancock MA, Steffen JD, Billur R, Hannan ZM, Wicks AJ, Krastev DB, Pettitt SJ, Lord CJ, Talele TT, Pascal JM, Black BE. Science 368 eaax6367 (2020)
  3. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro. Talhaoui I, Lebedeva NA, Zarkovic G, Saint-Pierre C, Kutuzov MM, Sukhanova MV, Matkarimov BT, Gasparutto D, Saparbaev MK, Lavrik OI, Ishchenko AA. Nucleic Acids Res. 44 9279-9295 (2016)
  4. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, Moche M, Cohen MS, Schüler H. J. Med. Chem. 60 1262-1271 (2017)
  5. Reversible mono-ADP-ribosylation of DNA breaks. Munnur D, Ahel I. FEBS J. 284 4002-4016 (2017)
  6. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. Gaullier G, Roberts G, Muthurajan UM, Bowerman S, Rudolph J, Mahadevan J, Jha A, Rae PS, Luger K. PLoS One 15 e0240932 (2020)
  7. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Sun FH, Zhao P, Zhang N, Kong LL, Wong CCL, Yun CH. Nat Commun 12 1028 (2021)
  8. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA. Nucleic Acids Res. 46 2417-2431 (2018)
  9. NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Langelier MF, Zandarashvili L, Aguiar PM, Black BE, Pascal JM. Nat Commun 9 844 (2018)
  10. Suppressing PARylation by 2',5'-oligoadenylate synthetase 1 inhibits DNA damage-induced cell death. Kondratova AA, Cheon H, Dong B, Holvey-Bates EG, Hasipek M, Taran I, Gaughan C, Jha BK, Silverman RH, Stark GR. EMBO J 39 e101573 (2020)
  11. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Steffen JD, McCauley MM, Pascal JM. Nucleic Acids Res. 44 9771-9783 (2016)
  12. Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics. Dasovich M, Beckett MQ, Bailey S, Ong SE, Greenberg MM, Leung AKL. J Am Chem Soc 143 3037-3042 (2021)
  13. Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells. Rank L, Veith S, Gwosch EC, Demgenski J, Ganz M, Jongmans MC, Vogel C, Fischbach A, Buerger S, Fischer JM, Zubel T, Stier A, Renner C, Schmalz M, Beneke S, Groettrup M, Kuiper RP, Bürkle A, Ferrando-May E, Mangerich A. Nucleic Acids Res. 44 10386-10405 (2016)
  14. PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. Liu L, Kong M, Gassman NR, Freudenthal BD, Prasad R, Zhen S, Watkins SC, Wilson SH, Van Houten B. Nucleic Acids Res. 45 12834-12847 (2017)
  15. The C terminus of Pcf11 forms a novel zinc-finger structure that plays an essential role in mRNA 3'-end processing. Yang F, Hsu P, Lee SD, Yang W, Hoskinson D, Xu W, Moore C, Varani G. RNA 23 98-107 (2017)
  16. APE1 senses DNA single-strand breaks for repair and signaling. Lin Y, Raj J, Li J, Ha A, Hossain MA, Richardson C, Mukherjee P, Yan S. Nucleic Acids Res 48 1925-1940 (2020)
  17. The HSF1-PARP13-PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis. Fujimoto M, Takii R, Takaki E, Katiyar A, Nakato R, Shirahige K, Nakai A. Nat Commun 8 1638 (2017)
  18. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Obaji E, Maksimainen MM, Galera-Prat A, Lehtiö L. Nat Commun 12 3479 (2021)
  19. Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models. Mehibel M, Xu Y, Li CG, Moon EJ, Thakkar KN, Diep AN, Kim RK, Bloomstein JD, Xiao Y, Bacal J, Saldivar JC, Le QT, Cimprich KA, Rankin EB, Giaccia AJ. J Clin Invest 131 146256 (2021)
  20. Nonspecific Binding of RNA to PARP1 and PARP2 Does Not Lead to Catalytic Activation. Nakamoto MY, Rudolph J, Wuttke DS, Luger K. Biochemistry 58 5107-5111 (2019)
  21. Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. Komulainen E, Badman J, Rey S, Rulten S, Ju L, Fennell K, Kalasova I, Ilievova K, McKinnon PJ, Hanzlikova H, Staras K, Caldecott KW. EMBO Rep 22 e51851 (2021)
  22. Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy. Krüger A, Bürkle A, Hauser K, Mangerich A. Nat Commun 11 2174 (2020)
  23. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Prasad R, Poltoratsky V, Hou EW, Wilson SH. Nucleic Acids Res. 44 10824-10833 (2016)
  24. Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery. Rouleau-Turcotte É, Krastev DB, Pettitt SJ, Lord CJ, Pascal JM. Mol Cell 82 2939-2951.e5 (2022)
  25. Increased PARP1-DNA binding due to autoPARylation inhibition of PARP1 on DNA rather than PARP1-DNA trapping is correlated with PARP1 inhibitor's cytotoxicity. Chen HD, Chen CH, Wang YT, Guo N, Tian YN, Huan XJ, Song SS, He JX, Miao ZH. Int J Cancer 145 714-727 (2019)
  26. MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1. Hau AC, Grebbin BM, Agoston Z, Anders-Maurer M, Müller T, Groß A, Kolb J, Langer JD, Döring C, Schulte D. J. Cell Biol. 216 2715-2729 (2017)
  27. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage. Karch KR, Langelier MF, Pascal JM, Garcia BA. Mol Biosyst 13 2660-2671 (2017)
  28. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription. Gerasimova NS, Pestov NA, Kulaeva OI, Clark DJ, Studitsky VM. Transcription 7 91-95 (2016)
  29. ADP-ribosylation: from molecular mechanisms to human disease. Hoch NC, Polo LM. Genet Mol Biol 43 e20190075 (2019)
  30. APE2 promotes DNA damage response pathway from a single-strand break. Lin Y, Bai L, Cupello S, Hossain MA, Deem B, McLeod M, Raj J, Yan S. Nucleic Acids Res. 46 2479-2494 (2018)
  31. Characterization of the catalytic signature of Scabin toxin, a DNA-targeting ADP-ribosyltransferase. Lyons B, Lugo MR, Carlin S, Lidster T, Merrill AR. Biochem. J. 475 225-245 (2018)
  32. PARP Inhibitor Upregulates PD-L1 Expression and Provides a New Combination Therapy in Pancreatic Cancer. Wang Y, Zheng K, Xiong H, Huang Y, Chen X, Zhou Y, Qin W, Su J, Chen R, Qiu H, Yuan X, Wang Y, Zou Y. Front Immunol 12 762989 (2021)
  33. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Alemasova EE, Lavrik OI. Nucleic Acids Res. 47 3811-3827 (2019)
  34. Quercetin Suppresses CYR61-Mediated Multidrug Resistance in Human Gastric Adenocarcinoma AGS Cells. Hyun HB, Moon JY, Cho SK. Molecules 23 (2018)
  35. The Arabidopsis thaliana Poly(ADP-Ribose) Polymerases 1 and 2 Modify DNA by ADP-Ribosylating Terminal Phosphate Residues. Taipakova S, Kuanbay A, Saint-Pierre C, Gasparutto D, Baiken Y, Groisman R, Ishchenko AA, Saparbaev M, Bissenbaev AK. Front Cell Dev Biol 8 606596 (2020)
  36. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton LE, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins JM, Ahel D, Sanyal S, Neuhaus D, Ahel I. Nucleic Acids Res 51 8217-8236 (2023)
  37. A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models. Sun K, Mikule K, Wang Z, Poon G, Vaidyanathan A, Smith G, Zhang ZY, Hanke J, Ramaswamy S, Wang J. Oncotarget 9 37080-37096 (2018)
  38. Bcl-2 protects TK6 cells against hydroquinone-induced apoptosis through PARP-1 cytoplasm translocation and stabilizing mitochondrial membrane potential. Chen Y, Chen S, Liang H, Yang H, Liu L, Zhou K, Xu L, Liu J, Yun L, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Environ. Mol. Mutagen. 59 49-59 (2018)
  39. Dissecting Tissue Compartment-Specific Protein Signatures in Primary and Metastatic Oropharyngeal Squamous Cell Carcinomas. Sadeghirad H, Monkman J, Mehdi AM, Ladwa R, O'Byrne K, Hughes BGM, Kulasinghe A. Front Immunol 13 895513 (2022)
  40. Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes. Wigle TJ, Church WD, Majer CR, Swinger KK, Aybar D, Schenkel LB, Vasbinder MM, Brendes A, Beck C, Prahm M, Wegener D, Chang P, Kuntz KW. SLAS Discov 25 241-252 (2020)
  41. Human PARP1 Facilitates Transcription through a Nucleosome and Histone Displacement by Pol II In Vitro. Kotova EY, Hsieh FK, Chang HW, Maluchenko NV, Langelier MF, Pascal JM, Luse DS, Feofanov AV, Studitsky VM. Int J Mol Sci 23 7107 (2022)
  42. Insight into DNA substrate specificity of PARP1-catalysed DNA poly(ADP-ribosyl)ation. Matta E, Kiribayeva A, Khassenov B, Matkarimov BT, Ishchenko AA. Sci Rep 10 3699 (2020)
  43. MET inhibition enhances PARP inhibitor efficacy in castration-resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways. Zhou S, Dai Z, Wang L, Gao X, Yang L, Wang Z, Wang Q, Liu Z. J Cell Mol Med 25 11157-11169 (2021)
  44. Multiple roles for PARP1 in ALC1-dependent nucleosome remodeling. Ooi SK, Sato S, Tomomori-Sato C, Zhang Y, Wen Z, Banks CAS, Washburn MP, Unruh JR, Florens L, Conaway RC, Conaway JW. Proc Natl Acad Sci U S A 118 e2107277118 (2021)
  45. PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Aberle L, Krüger A, Reber JM, Lippmann M, Hufnagel M, Schmalz M, Trussina IREA, Schlesiger S, Zubel T, Schütz K, Marx A, Hartwig A, Ferrando-May E, Bürkle A, Mangerich A. Nucleic Acids Res 48 10015-10033 (2020)
  46. Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1. Naumenko KN, Sukhanova MV, Hamon L, Kurgina TA, Alemasova EE, Kutuzov MM, Pastré D, Lavrik OI. Biomolecules 10 (2020)
  47. Role of Poly [ADP-ribose] Polymerase 1 in Activating the Kirsten ras (KRAS) Gene in Response to Oxidative Stress. Cinque G, Ferino A, Pedersen EB, Xodo LE. Int J Mol Sci 21 (2020)
  48. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. Bell NAW, Haynes PJ, Brunner K, de Oliveira TM, Flocco MM, Hoogenboom BW, Molloy JE. Sci Adv 7 eabf3641 (2021)
  49. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Nat Commun 13 6569 (2022)
  50. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. Meng F, Qian M, Peng B, Peng L, Wang X, Zheng K, Liu Z, Tang X, Zhang S, Sun S, Cao X, Pang Q, Zhao B, Ma W, Songyang Z, Xu B, Zhu WG, Xu X, Liu B. Elife 9 (2020)
  51. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Rudolph J, Muthurajan UM, Palacio M, Mahadevan J, Roberts G, Erbse AH, Dyer PN, Luger K. Mol Cell 81 4994-5006.e5 (2021)
  52. The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. Cell Rep 32 107985 (2020)
  53. Unchecked nick ligation can promote localized genome re-replication. Johansson E, Diffley JFX. Curr Biol 31 R710-R711 (2021)
  54. A Novel CDK4/6 and PARP Dual Inhibitor ZC-22 Effectively Suppresses Tumor Growth and Improves the Response to Cisplatin Treatment in Breast and Ovarian Cancer. Tian C, Wei Y, Li J, Huang Z, Wang Q, Lin Y, Lv X, Chen Y, Fan Y, Sun P, Xiang R, Chang A, Yang S. Int J Mol Sci 23 2892 (2022)
  55. Active Components of Fungus Shiraia bambusiscola Can Specifically Induce BGC823 Gastric Cancer Cell Apoptosis. Zhang S, Qiu D, Liu J, Li Z. Cell J 18 149-158 (2016)
  56. BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. He DD, Shang XY, Wang N, Wang GX, He KY, Wang L, Han ZG. Oncogene 41 1397-1409 (2022)
  57. Cas9 is mostly orthogonal to human systems of DNA break sensing and repair. Maltseva EA, Vasil'eva IA, Moor NA, Kim DV, Dyrkheeva NS, Kutuzov MM, Vokhtantsev IP, Kulishova LM, Zharkov DO, Lavrik OI. PLoS One 18 e0294683 (2023)
  58. Caspase-7 uses RNA to enhance proteolysis of poly(ADP-ribose) polymerase 1 and other RNA-binding proteins. Desroches A, Denault JB. Proc. Natl. Acad. Sci. U.S.A. 116 21521-21528 (2019)
  59. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Langelier MF, Lin X, Zha S, Pascal JM. Sci Adv 9 eadf7175 (2023)
  60. Combination of ligand and structure based virtual screening approaches for the discovery of potential PARP1 inhibitors. Al-Sanea MM, Chilingaryan G, Abelyan N, Mamikonyan M, Gasparyan H, Hovhannisyan S, Hamdi A, Ali AR, Selim S, Mohamed AAB. PLoS One 17 e0272065 (2022)
  61. Enhanced efficacy of combined fluzoparib and chidamide targeting in natural killer/T-cell lymphoma. Gong C, Wu J, Song W, Li H, Shi C, Gao Y, Shi Z, Li Z, Zhang M. Ann Hematol (2023)
  62. Genes Involved in DNA Repair and Mitophagy Protect Embryoid Bodies from the Toxic Effect of Methylmercury Chloride under Physioxia Conditions. Augustyniak J, Kozlowska H, Buzanska L. Cells 12 390 (2023)
  63. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Smith R, Zentout S, Rother M, Bigot N, Chapuis C, Mihuț A, Zobel FF, Ahel I, van Attikum H, Timinszky G, Huet S. Nat Struct Mol Biol (2023)
  64. High PARP-1 expression predicts poor survival in acute myeloid leukemia and PARP-1 inhibitor and SAHA-bendamustine hybrid inhibitor combination treatment synergistically enhances anti-tumor effects. Li X, Li C, Jin J, Wang J, Huang J, Ma Z, Huang X, He X, Zhou Y, Xu Y, Yu M, Huang S, Yan X, Li F, Pan J, Wang Y, Yu Y, Jin J. EBioMedicine 38 47-56 (2018)
  65. How ligands regulate the binding of PARP1 with DNA: Deciphering the mechanism at the molecular level. Wang K, Wu Y, Lai L, Wang X, Sun S. PLoS One 18 e0290176 (2023)
  66. Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Dong Y, Yan J, Yang M, Xu W, Hu Z, Paquet-Durand F, Jiao K. Biomolecules 13 581 (2023)
  67. Inhibited, trapped or adducted: the optimal selective synthetic lethal mix for BRCAness. Tutt A. Ann. Oncol. 29 18-21 (2018)
  68. Inhibitors of PARP: Number crunching and structure gazing. Rudolph J, Jung K, Luger K. Proc Natl Acad Sci U S A 119 e2121979119 (2022)
  69. Kinetic aspects of enzyme-mediated repair of DNA single-strand breaks. Zhdanov VP. BioSystems 150 194-199 (2016)
  70. Mapping the DNA-Binding Motif of Scabin Toxin, a Guanine Modifying Enzyme from Streptomyces scabies. Vatta M, Lyons B, Heney KA, Lidster T, Merrill AR. Toxins (Basel) 13 (2021)
  71. Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Crawley-Snowdon H, Yang JC, Zaccai NR, Davis LJ, Wartosch L, Herman EK, Bright NA, Swarbrick JS, Collins BM, Jackson LP, Seaman MNJ, Luzio JP, Dacks JB, Neuhaus D, Owen DJ. Nat Commun 11 5031 (2020)
  72. Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Zhu Q, Dai Q, Zhao L, Zheng C, Li Q, Yuan Z, Li L, Xie Z, Qiu Z, Huang W, Liu G, Zu X, Chu B, Jiang Y. Cell Death Dis 15 10 (2024)
  73. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Lin X, Jiang W, Rudolph J, Lee BJ, Luger K, Zha S. Nucleic Acids Res 50 3958-3973 (2022)
  74. PARP1 associates with R-loops to promote their resolution and genome stability. Laspata N, Kaur P, Mersaoui SY, Muoio D, Liu ZS, Bannister MH, Nguyen HD, Curry C, Pascal JM, Poirier GG, Wang H, Masson JY, Fouquerel E. Nucleic Acids Res 51 2215-2237 (2023)
  75. Poly(ADP-ribose) polymerase 1 searches DNA via a 'monkey bar' mechanism. Rudolph J, Mahadevan J, Dyer P, Luger K. Elife 7 (2018)
  76. RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients. Tessari A, Parbhoo K, Pawlikowski M, Fassan M, Rulli E, Foray C, Fabbri A, Embrione V, Ganzinelli M, Capece M, Campbell MJ, Broggini M, La Perle K, Farina G, Cole S, Marabese M, Hernandez M, Amann JM, Pruneri G, Carbone DP, Garassino MC, Croce CM, Palmieri D, Coppola V. Oncogene 37 6463-6476 (2018)
  77. Regulation of tankyrase activity by a catalytic domain dimer interface. Fan C, Yarravarapu N, Chen H, Kulak O, Dasari P, Herbert J, Yamaguchi K, Lum L, Zhang X. Biochem. Biophys. Res. Commun. 503 1780-1785 (2018)
  78. Single-molecule force spectroscopy reveals binding and bridging dynamics of PARP1 and PARP2 at DNA double-strand breaks. Bell NAW, Molloy JE. Proc Natl Acad Sci U S A 120 e2214209120 (2023)
  79. Single-particle analysis of full-length human poly(ADP-ribose) polymerase 1. Kouyama K, Mayanagi K, Nakae S, Nishi Y, Miwa M, Shirai T. Biophys Physicobiol 16 59-67 (2019)
  80. Structural and biochemical analysis of the PARP1-homology region of PARP4/vault PARP. Frigon L, Pascal JM. Nucleic Acids Res 51 12492-12507 (2023)
  81. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. Pal A, Levy Y. PLoS Comput. Biol. 15 e1006768 (2019)
  82. Synergism of PARP inhibitor fluzoparib (HS10160) and MET inhibitor HS10241 in breast and ovarian cancer cells. Han Y, Chen MK, Wang HL, Hsu JL, Li CW, Chu YY, Liu CX, Nie L, Chan LC, Yam C, Wang SC, He GJ, Hortobagyi GN, Tan XD, Hung MC. Am J Cancer Res 9 608-618 (2019)
  83. The function and regulation of ADP-ribosylation in the DNA damage response. Duma L, Ahel I. Biochem Soc Trans 51 995-1008 (2023)
  84. Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Chen Q, Ma K, Liu X, Chen SH, Li P, Yu Y, Leung AKL, Yu X. Cell Discov 8 3 (2022)
  85. Tuning drug binding. Slade D, Eustermann S. Science 368 30-31 (2020)
  86. Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. Keuss MJ, Hjerpe R, Hsia O, Gourlay R, Burchmore R, Trost M, Kurz T. EMBO J. 38 (2019)
  87. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy. Sultanov DC, Gerasimova NS, Kudryashova KS, Maluchenko NV, Kotova EY, Langelier MF, Pascal JM, Kirpichnikov MP, Feofanov AV, Studitsky VM. AIMS Genet 4 21-31 (2017)
  88. Uranium directly interacts with the DNA repair protein poly (ADP-ribose) polymerase 1. Zhou X, Xue B, Medina S, Burchiel SW, Liu KJ. Toxicol Appl Pharmacol 410 115360 (2021)
  89. [Poly(ADP-ribose) polymerase (PARP-)inhibitors as genetically based precision therapy in metastatic castration-resistent prostate cancer (mCRPC)]. Heidegger I, Becker C, Tsaur I, Todenhöfer T, Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie. Urologe A 61 187-192 (2022)