2m2d Citations

Structure and interactions of the human programmed cell death 1 receptor.

Articles - 2m2d mentioned but not cited (9)

  1. Structure and interactions of the human programmed cell death 1 receptor. Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, Huo J, Yu C, Evans EJ, Leslie AJ, Griffiths M, Stubberfield C, Griffin R, Henry AJ, Jansson A, Ladbury JE, Ikemizu S, Carr MD, Davis SJ. J. Biol. Chem. 288 11771-11785 (2013)
  2. Insight into the role of alternative splicing within the RBM10v1 exon 10 tandem donor site. Tessier SJ, Loiselle JJ, McBain A, Pullen C, Koenderink BW, Roy JG, Sutherland LC. BMC Res Notes 8 46 (2015)
  3. Probing protein flexibility reveals a mechanism for selective promiscuity. Pabon NA, Camacho CJ. Elife 6 (2017)
  4. Epitope mapping reveals the binding mechanism of a functional antibody cross-reactive to both human and murine programmed death 1. Li D, Xu J, Wang Z, Gong Z, Liu J, Zheng Y, Li J, Li J. MAbs 9 628-637 (2017)
  5. Development of an Albumin-Masked mutPD-1Ig as a Tumor Lesion-Selective Immune Checkpoint Inhibitor. Chou CY, Li ZQ, Huang HC, Hung CH, Weng SL, Tzou SC. ACS Omega 8 40911-40920 (2023)
  6. Investigating the Role of the N-Terminal Loop of PD-1 in Binding Process Between PD-1 and Nivolumab via Molecular Dynamics Simulation. Liu W, Jin H, Chen T, Zhang G, Lai S, Liu G. Front Mol Biosci 7 574759 (2020)
  7. PD-L1 Nanobody Competitively Inhibits the Formation of the PD-1/PD-L1 Complex: Comparative Molecular Dynamics Simulations. Sun X, Yan X, Zhuo W, Gu J, Zuo K, Liu W, Liang L, Gan Y, He G, Wan H, Gou X, Shi H, Hu J. Int J Mol Sci 19 (2018)
  8. Sym021, a promising anti-PD1 clinical candidate antibody derived from a new chicken antibody discovery platform. Gjetting T, Gad M, Fröhlich C, Lindsted T, Melander MC, Bhatia VK, Grandal MM, Dietrich N, Uhlenbrock F, Galler GR, Strandh M, Lantto J, Bouquin T, Horak ID, Kragh M, Pedersen MW, Koefoed K. MAbs 11 666-680 (2019)
  9. The design of high affinity human PD-1 mutants by using molecular dynamics simulations (MD). Du J, Qin Y, Wu Y, Zhao W, Zhai W, Qi Y, Wang C, Gao Y. Cell Commun. Signal 16 25 (2018)


Reviews citing this publication (39)

  1. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Trends Mol Med 21 24-33 (2015)
  2. Exosomal PD-L1: New Insights Into Tumor Immune Escape Mechanisms and Therapeutic Strategies. Zhou K, Guo S, Li F, Sun Q, Liang G. Front Cell Dev Biol 8 569219 (2020)
  3. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Xu-Monette ZY, Zhang M, Li J, Young KH. Front Immunol 8 1597 (2017)
  4. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Rotte A, Jin JY, Lemaire V. Ann. Oncol. 29 71-83 (2018)
  5. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. Front Neurosci 14 603647 (2020)
  6. Emerging concepts in PD-1 checkpoint biology. Pauken KE, Torchia JA, Chaudhri A, Sharpe AH, Freeman GJ. Semin Immunol 52 101480 (2021)
  7. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2. Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. Structure 25 1163-1174 (2017)
  8. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Tan S, Chen D, Liu K, He M, Song H, Shi Y, Liu J, Zhang CW, Qi J, Yan J, Gao S, Gao GF. Protein Cell 7 866-877 (2016)
  9. Inhibitors of the PD-1/PD-L1 axis for the treatment of head and neck cancer: current status and future perspectives. Ran X, Yang K. Drug Des Devel Ther 11 2007-2014 (2017)
  10. The role of programmed cell death-1 (PD-1) and its ligands in pediatric cancer. van Dam LS, de Zwart VM, Meyer-Wentrup FA. Pediatr Blood Cancer 62 190-197 (2015)
  11. Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Abdou Y, Pandey M, Sarma M, Shah S, Baron J, Ernstoff MS. Br J Clin Pharmacol 86 1690-1702 (2020)
  12. Biomarkers in Immunotherapy-Based Precision Treatments of Digestive System Tumors. Zeng Z, Yang B, Liao Z. Front Oncol 11 650481 (2021)
  13. Immune Checkpoints and Innovative Therapies in Glioblastoma. Romani M, Pistillo MP, Carosio R, Morabito A, Banelli B. Front Oncol 8 464 (2018)
  14. Immune-related strategies driving immunotherapy in breast cancer treatment: a real clinical opportunity. Ravelli A, Reuben JM, Lanza F, Anfossi S, Cappelletti MR, Zanotti L, Gobbi A, Milani M, Spada D, Pedrazzoli P, Martino M, Bottini A, Generali D, Solid Tumor Working Party of the European Blood and Marrow Transplantation Society (EBMT). Expert Rev Anticancer Ther 15 689-702 (2015)
  15. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Liu C, Seeram NP, Ma H. Cancer Cell Int 21 239 (2021)
  16. Chemotherapy and immunotherapy for recurrent and metastatic head and neck cancer: a systematic review. Guidi A, Codecà C, Ferrari D. Med. Oncol. 35 37 (2018)
  17. Structural genomic alterations in primary mediastinal large B-cell lymphoma. Twa DD, Steidl C. Leuk. Lymphoma 56 2239-2250 (2015)
  18. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Maas SL, Soehnlein O, Viola JR. Front Immunol 9 2739 (2018)
  19. Using Gene Editing Approaches to Fine-Tune the Immune System. Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, Carmona MD, Herrera C, Martin F, Benabdellah K. Front Immunol 11 570672 (2020)
  20. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules. Yang J, Hu L. Med Res Rev 39 265-301 (2019)
  21. New insights into the important roles of tumor cell-intrinsic PD-1. Zheng H, Ning Y, Zhan Y, Liu S, Wen Q, Fan S. Int J Biol Sci 17 2537-2547 (2021)
  22. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Korman AJ, Garrett-Thomson SC, Lonberg N. Nat Rev Drug Discov (2021)
  23. Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. Cremolini C, Vitale E, Rastaldo R, Giachino C. Nanomaterials (Basel) 11 661 (2021)
  24. Immune Checkpoint Inhibitors in Pediatric Solid Tumors: Status in 2018. Kabir TF, Chauhan A, Anthony L, Hildebrandt GC. Ochsner J 18 370-376 (2018)
  25. Molecular Interactions of Antibody Drugs Targeting PD-1, PD-L1, and CTLA-4 in Immuno-Oncology. Lee HT, Lee SH, Heo YS. Molecules 24 (2019)
  26. PD-1/PD-L1 and DNA Damage Response in Cancer. Kciuk M, Kołat D, Kałuzińska-Kołat Ż, Gawrysiak M, Drozda R, Celik I, Kontek R. Cells 12 530 (2023)
  27. Revisiting the PD-1 pathway. Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Sci Adv 6 (2020)
  28. Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1. Jiang M, Liu M, Liu G, Ma J, Zhang L, Wang S. MAbs 15 2236740 (2023)
  29. Efficacy and safety of programmed death 1 inhibitors in patients with advanced non-small cell lung cancer: a meta-analysis. Liu Y, Zhou S, Du Y, Sun L, Jiang H, Zhang B, Sun G, Wang R. Cancer Manag Res 11 4619-4630 (2019)
  30. Glioblastoma: Pitfalls and Opportunities of Immunotherapeutic Combinations. Niedbała M, Malarz K, Sharma G, Kramer-Marek G, Kaspera W. Onco Targets Ther 15 437-468 (2022)
  31. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Tondepu C, Karumbaiah L, Karumbaiah L. Adv Healthc Mater 11 e2101956 (2022)
  32. Immune-Related Concepts in Biology and Treatment of Germ-Cell Tumors. Chovanec M, De Giorgi U, Mego M. Adv Urol 2018 3718165 (2018)
  33. Immunotherapy for Glioblastoma: Current State, Challenges, and Future Perspectives. Yang M, Oh IY, Mahanty A, Jin WL, Yoo JS. Cancers (Basel) 12 (2020)
  34. Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Al-Mterin MA, Alsalman A, Elkord E. Front Immunol 13 870283 (2022)
  35. Looking for the Optimal PD-1/PD-L1 Inhibitor in Cancer Treatment: A Comparison in Basic Structure, Function, and Clinical Practice. Chen Y, Pei Y, Luo J, Huang Z, Yu J, Meng X. Front Immunol 11 1088 (2020)
  36. PD-L1/PD-1 Axis in Glioblastoma Multiforme. Litak J, Mazurek M, Grochowski C, Kamieniak P, Roliński J. Int J Mol Sci 20 (2019)
  37. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression. Shen X, Zhang L, Li J, Li Y, Wang Y, Xu ZX. Front Immunol 10 1337 (2019)
  38. Strategies targeting PD-L1 expression and associated opportunities for cancer combination therapy. Yin S, Chen Z, Chen D, Yan D. Theranostics 13 1520-1544 (2023)
  39. Understanding immune checkpoints and PD-1/PD-L1-mediated immune resistance towards tumour immunotherapy. Singh S, Singh N, Baranwal M, Sharma S, Devi SSK, Kumar S. 3 Biotech 13 411 (2023)

Articles citing this publication (112)

  1. Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Dömling A, Dubin G, Holak TA. Structure 23 2341-2348 (2015)
  2. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, Kimura R, Tsai JM, Manglik A, Kruse AC, Gambhir SS, Weissman IL, Ring AM. Proc. Natl. Acad. Sci. U.S.A. 112 E6506-14 (2015)
  3. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Lee JY, Lee HT, Shin W, Chae J, Choi J, Kim SH, Lim H, Won Heo T, Park KY, Lee YJ, Ryu SE, Son JY, Lee JU, Heo YS. Nat Commun 7 13354 (2016)
  4. Prognostic value of programmed-death-1 receptor (PD-1) and its ligand 1 (PD-L1) in testicular germ cell tumors. Cierna Z, Mego M, Miskovska V, Machalekova K, Chovanec M, Svetlovska D, Hainova K, Rejlekova K, Macak D, Spanik S, Ondrus D, Kajo K, Mardiak J, Babal P. Ann. Oncol. 27 300-305 (2016)
  5. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA. Oncotarget 7 30323-30335 (2016)
  6. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. Huang BY, Zhan YP, Zong WJ, Yu CJ, Li JF, Qu YM, Han S. PLoS ONE 10 e0134715 (2015)
  7. Letter Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab. Na Z, Yeo SP, Bharath SR, Bowler MW, Balıkçı E, Wang CI, Song H. Cell Res. 27 147-150 (2017)
  8. Targeting the PD-1/PD-L1 Immune Evasion Axis With DNA Aptamers as a Novel Therapeutic Strategy for the Treatment of Disseminated Cancers. Prodeus A, Abdul-Wahid A, Fischer NW, Huang EH, Cydzik M, Gariépy J. Mol Ther Nucleic Acids 4 e237 (2015)
  9. PD-L1 Binds to B7-1 Only In Cis on the Same Cell Surface. Chaudhri A, Xiao Y, Klee AN, Wang X, Zhu B, Freeman GJ. Cancer Immunol Res 6 921-929 (2018)
  10. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. Xu X, Hou B, Fulzele A, Masubuchi T, Zhao Y, Wu Z, Hu Y, Jiang Y, Ma Y, Wang H, Bennett EJ, Fu G, Hui E. J Cell Biol 219 e201905085 (2020)
  11. High-resolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1. Horita S, Nomura Y, Sato Y, Shimamura T, Iwata S, Nomura N. Sci Rep 6 35297 (2016)
  12. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Zhang F, Wei H, Wang X, Bai Y, Wang P, Wu J, Jiang X, Wang Y, Cai H, Xu T, Zhou A. Cell Discov 3 17004 (2017)
  13. Enhancement of PSMA-Directed CAR Adoptive Immunotherapy by PD-1/PD-L1 Blockade. Serganova I, Moroz E, Cohen I, Moroz M, Mane M, Zurita J, Shenker L, Ponomarev V, Blasberg R. Mol Ther Oncolytics 4 41-54 (2017)
  14. Transient and Local Expression of Chemokine and Immune Checkpoint Traps To Treat Pancreatic Cancer. Miao L, Li J, Liu Q, Feng R, Das M, Lin CM, Goodwin TJ, Dorosheva O, Liu R, Huang L. ACS Nano 11 8690-8706 (2017)
  15. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Lee HT, Lee JY, Lim H, Lee SH, Moon YJ, Pyo HJ, Ryu SE, Shin W, Heo YS. Sci Rep 7 5532 (2017)
  16. Editorial Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Tan S, Zhang CW, Gao GF. Signal Transduct Target Ther 1 16029 (2016)
  17. Structure and Dynamics of PD-L1 and an Ultra-High-Affinity PD-1 Receptor Mutant. Pascolutti R, Sun X, Kao J, Maute RL, Ring AM, Bowman GR, Kruse AC. Structure 24 1719-1728 (2016)
  18. Prognostic role of programmed-death ligand 1 (PD-L1) expressing tumor infiltrating lymphocytes in testicular germ cell tumors. Chovanec M, Cierna Z, Miskovska V, Machalekova K, Svetlovska D, Kalavska K, Rejlekova K, Spanik S, Kajo K, Babal P, Mardiak J, Mego M. Oncotarget 8 21794-21805 (2017)
  19. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy. Lázár-Molnár E, Scandiuzzi L, Basu I, Quinn T, Sylvestre E, Palmieri E, Ramagopal UA, Nathenson SG, Guha C, Almo SC. EBioMedicine 17 30-44 (2017)
  20. Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. Lai X, Friedman A. PLoS ONE 12 e0178479 (2017)
  21. Human PD-1 binds differently to its human ligands: a comprehensive modeling study. Viricel C, Ahmed M, Barakat K. J. Mol. Graph. Model. 57 131-142 (2015)
  22. Magneto-nanosensor platform for probing low-affinity protein-protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction. Lee JR, Bechstein DJ, Ooi CC, Patel A, Gaster RS, Ng E, Gonzalez LC, Wang SX. Nat Commun 7 12220 (2016)
  23. A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. D'Arrigo P, Russo M, Rea A, Tufano M, Guadagno E, Del Basso De Caro ML, Pacelli R, Hausch F, Staibano S, Ilardi G, Parisi S, Romano MF, Romano S. Oncotarget 8 68291-68304 (2017)
  24. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Zhao Y, Harrison DL, Song Y, Ji J, Huang J, Hui E. Cell Rep 24 379-390.e6 (2018)
  25. PD-L1 Glycosylation and Its Impact on Binding to Clinical Antibodies. Benicky J, Sanda M, Brnakova Kennedy Z, Grant OC, Woods RJ, Zwart A, Goldman R. J Proteome Res 20 485-497 (2021)
  26. Restoring antitumor immunity via PD-1 blockade after autologous stem-cell transplantation for diffuse large B-cell lymphoma. Jacobsen ED. J. Clin. Oncol. 31 4268-4270 (2013)
  27. Immunomodulatory pathways regulate expression of a spliced FKBP51 isoform in lymphocytes of melanoma patients. Romano S, D'Angelillo A, Staibano S, Simeone E, D'Arrigo P, Ascierto PA, Scalvenzi M, Mascolo M, Ilardi G, Merolla F, Jovarauskaite E, Romano MF. Pigment Cell Melanoma Res 28 442-452 (2015)
  28. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85. Škerlová J, Král V, Kachala M, Fábry M, Bumba L, Svergun DI, Tošner Z, Veverka V, Řezáčová P. J. Struct. Biol. 191 214-223 (2015)
  29. Arming an Oncolytic Herpes Simplex Virus Type 1 with a Single-chain Fragment Variable Antibody against PD-1 for Experimental Glioblastoma Therapy. Passaro C, Alayo Q, De Laura I, McNulty J, Grauwet K, Ito H, Bhaskaran V, Mineo M, Lawler SE, Shah K, Speranza MC, Goins W, McLaughlin E, Fernandez S, Reardon DA, Freeman GJ, Chiocca EA, Nakashima H. Clin. Cancer Res. 25 290-299 (2019)
  30. Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. Lai X, Friedman A. BMC Syst Biol 11 70 (2017)
  31. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis. Yao Q, Fischer KP, Tyrrell DL, Gutfreund KS. Int. J. Immunogenet. 42 111-120 (2015)
  32. Checkpoint inhibitor immunotherapy for glioblastoma: current progress, challenges and future outlook. Gedeon PC, Champion CD, Rhodin KE, Woroniecka K, Kemeny HR, Bramall AN, Bernstock JD, Choi BD, Sampson JH. Expert Rev Clin Pharmacol 13 1147-1158 (2020)
  33. High-affinity human PD-L1 variants attenuate the suppression of T cell activation. Liang Z, Tian Y, Cai W, Weng Z, Li Y, Zhang H, Bao Y, Li Y. Oncotarget 8 88360-88375 (2017)
  34. In situ and in silico kinetic analyses of programmed cell death-1 (PD-1) receptor, programmed cell death ligands, and B7-1 protein interaction network. Li K, Cheng X, Tilevik A, Davis SJ, Zhu C. J. Biol. Chem. 292 6799-6809 (2017)
  35. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Li K, Yuan Z, Lyu J, Ahn E, Davis SJ, Ahmed R, Zhu C. Nat Commun 12 2746 (2021)
  36. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. Ni K, Liu M, Zheng J, Wen L, Chen Q, Xiang Z, Lam KT, Liu Y, Chan GC, Lau YL, Tu W. Am. J. Respir. Cell Mol. Biol. 58 684-695 (2018)
  37. Partial Least-Squares Discriminant Analysis and Ensemble-Based Flexible Docking of PD-1/PD-L1 Inhibitors: A Pilot Study. Kuang Z, Heng Y, Huang S, Shi T, Chen L, Xu L, Mei H. ACS Omega 5 26914-26923 (2020)
  38. An in vivo method for diversifying the functions of therapeutic antibodies. Tian M, Cheng HL, Kimble MT, McGovern K, Waddicor P, Chen Y, Cantor E, Qiu M, Tuchel ME, Dao M, Alt FW. Proc Natl Acad Sci U S A 118 e2025596118 (2021)
  39. Exploiting the Innate Plasticity of the Programmed Cell Death-1 (PD1) Receptor to Design Pembrolizumab H3 Loop Mimics. Richaud AD, Zaghouani M, Zhao G, Wangpaichitr M, Savaraj N, Roche SP. Chembiochem 23 e202200449 (2022)
  40. Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Lai X, Stiff A, Duggan M, Wesolowski R, Carson WE, Friedman A. Proc. Natl. Acad. Sci. U.S.A. 115 5534-5539 (2018)
  41. PD-1/PD-L1 binding studies using microscale thermophoresis. Magnez R, Thiroux B, Taront S, Segaoula Z, Quesnel B, Thuru X. Sci Rep 7 17623 (2017)
  42. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, Dai Z, Wu W, Cao H, Feng S, Zhang L, Cheng Q, Liu Z. CNS Neurosci Ther 28 1748-1766 (2022)
  43. Prognostic and clinical impact of PD-L2 and PD-L1 expression in a cohort of 437 oesophageal cancers. Okadome K, Baba Y, Nomoto D, Yagi T, Kalikawe R, Harada K, Hiyoshi Y, Nagai Y, Ishimoto T, Iwatsuki M, Iwagami S, Miyamoto Y, Yoshida N, Watanabe M, Komohara Y, Shono T, Sasaki Y, Baba H. Br J Cancer 122 1535-1543 (2020)
  44. QSP-IO: A Quantitative Systems Pharmacology Toolbox for Mechanistic Multiscale Modeling for Immuno-Oncology Applications. Sové RJ, Jafarnejad M, Zhao C, Wang H, Ma H, Popel AS. CPT Pharmacometrics Syst Pharmacol 9 484-497 (2020)
  45. The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. Philips EA, Garcia-España A, Tocheva AS, Ahearn IM, Adam KR, Pan R, Mor A, Kong XP. J Biol Chem 295 4372-4380 (2020)
  46. Therapeutic Targeting of Follicular T Cells with Chimeric Antigen Receptor-Expressing Natural Killer Cells. Reighard SD, Cranert SA, Rangel KM, Ali A, Gyurova IE, de la Cruz-Lynch AT, Tuazon JA, Khodoun MV, Kottyan LC, Smith DF, Brunner HI, Waggoner SN. Cell Rep Med 1 (2020)
  47. A 76 year old male with an unusual presentation of merkel cell carcinoma. Acab JC, Kvatum W, Ebo C. Int J Surg Case Rep 23 177-181 (2016)
  48. A Platform for Extracellular Interactome Discovery Identifies Novel Functional Binding Partners for the Immune Receptors B7-H3/CD276 and PVR/CD155. Husain B, Ramani SR, Chiang E, Lehoux I, Paduchuri S, Arena TA, Patel A, Wilson B, Chan P, Franke Y, Wong AW, Lill JR, Turley SJ, Gonzalez LC, Grogan JL, Martinez-Martin N. Mol. Cell Proteomics 18 2310-2323 (2019)
  49. Bifunctional PD-1 × αCD3 × αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Herrmann M, Krupka C, Deiser K, Brauchle B, Marcinek A, Ogrinc Wagner A, Rataj F, Mocikat R, Metzeler KH, Spiekermann K, Kobold S, Fenn NC, Hopfner KP, Subklewe M. Blood 132 2484-2494 (2018)
  50. Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model. Friedman A, Lai X. PLoS ONE 13 e0192449 (2018)
  51. Competition NMR for Detection of Hit/Lead Inhibitors of Protein-Protein Interactions. Musielak B, Janczyk W, Rodriguez I, Plewka J, Sala D, Magiera-Mularz K, Holak T. Molecules 25 (2020)
  52. Construction of high level prokaryotic expression and purification system of PD-L1 extracellular domain by using Escherichia coli host cell machinery. Kalim M, Chen J, Wang S, Lin C, Ullah S, Liang K, Ding Q, Chen S, Zhan J. Immunol. Lett. 190 34-41 (2017)
  53. Depression Promotes Hepatocellular Carcinoma Progression through a Glucocorticoids Mediated Up-Regulation of PD-1 Expression in Tumor infiltrating NK Cells. Zhao Y, Jia Y, Shi T, Wang W, Shao D, Zheng X, Sun M, He K, Chen L. Carcinogenesis (2019)
  54. Eliciting the antitumor immune response with a conditionally activated PD-L1 targeting antibody analyzed with a quantitative systems pharmacology model. Ippolito A, Wang H, Zhang Y, Vakil V, Bazzazi H, Popel AS. CPT Pharmacometrics Syst Pharmacol 13 93-105 (2024)
  55. Harnessing the PD-L1 interface peptide for positron emission tomography imaging of the PD-1 immune checkpoint. Hu K, Xie L, Hanyu M, Zhang Y, Li L, Ma X, Nagatsu K, Suzuki H, Wang W, Zhang MR. RSC Chem Biol 1 214-224 (2020)
  56. Identification, binding, and structural characterization of single domain anti-PD-L1 antibodies inhibitory of immune regulatory proteins PD-1 and CD80. Kang-Pettinger T, Walker K, Brown R, Cowan R, Wright H, Baravalle R, Waters LC, Muskett FW, Bowler MW, Sawmynaden K, Coombs PJ, Carr MD, Hall G. J Biol Chem 299 102769 (2023)
  57. Immunobiochemical Reconstruction of Influenza Lung Infection-Melanoma Skin Cancer Interactions. Nikolaev EV, Zloza A, Sontag ED. Front Immunol 10 4 (2019)
  58. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. Sci Rep 8 1840 (2018)
  59. Innate immunity cell activation in virologically suppressed HIV-infected maraviroc-treated patients. Dentone C, Di Biagio A, Parodi A, Bozzano F, Fraccaro P, Signori A, Cenderello G, Mantia E, Orofino G, De Maria A, Filaci G, Fenoglio D. AIDS 28 1071-1074 (2014)
  60. Mapping CAR T-Cell Design Space Using Agent-Based Models. Prybutok AN, Yu JS, Leonard JN, Bagheri N. Front Mol Biosci 9 849363 (2022)
  61. Novel Peptide-Based PD1 Immunomodulators Demonstrate Efficacy in Infectious Disease Vaccines and Therapeutics. Kotraiah V, Phares TW, Browne CD, Pannucci J, Mansour M, Noe AR, Tucker KD, Christen JM, Reed C, MacKay A, Weir GM, Rajagopalan R, Stanford MM, Chung CS, Ayala A, Huang J, Tsuji M, Gutierrez GM. Front Immunol 11 264 (2020)
  62. Selection of a PD-1 blocking antibody from a novel fully human phage display library. Peissert F, Plüss L, Giudice AM, Ongaro T, Villa A, Elsayed A, Nadal L, Dakhel Plaza S, Scietti L, Puca E, De Luca R, Forneris F, Neri D. Protein Sci 31 e4486 (2022)
  63. The CTLA-4 immune checkpoint protein regulates PD-L1:PD-1 interaction via transendocytosis of its ligand CD80. Kennedy A, Robinson MA, Hinze C, Waters E, Williams C, Halliday N, Dovedi S, Sansom DM. EMBO J 42 e111556 (2023)
  64. When theory meets experiment: the PD-1 challenge. Ahmed M, Barakat K. J Mol Model 23 308 (2017)
  65. A Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer. Jafarnejad M, Gong C, Gabrielson E, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Popel AS. AAPS J 21 79 (2019)
  66. A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions. Wojtowicz WM, Vielmetter J, Fernandes RA, Siepe DH, Eastman CL, Chisholm GB, Cox S, Klock H, Anderson PW, Rue SM, Miller JJ, Glaser SM, Bragstad ML, Vance J, Lam AW, Lesley SA, Zinn K, Garcia KC. Cell 182 1027-1043.e17 (2020)
  67. A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade. Milberg O, Gong C, Jafarnejad M, Bartelink IH, Wang B, Vicini P, Narwal R, Roskos L, Popel AS. Sci Rep 9 11286 (2019)
  68. A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Tang S, Kim PS. Proc. Natl. Acad. Sci. U.S.A. 116 24500-24506 (2019)
  69. A mathematical modelling tool for unravelling the antibody-mediated effects on CTLA-4 interactions. Ganesan A, Arulraj T, Choulli T, Barakat KH. BMC Med Inform Decis Mak 18 37 (2018)
  70. Adaptive NK Cell Therapy Modulated by Anti-PD-1 Antibody in Gastric Cancer Model. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Ahmadvand M, Aghdaei HA, Ebrahimi-Barough S, Ai J, Zali MR, Verdi J, Baghaei K. Front Pharmacol 12 733075 (2021)
  71. Antibodies to Modulate Surface Receptor Systems Are Often Bivalent and Must Compete in a Two-Dimensional Cell Contact Region. Schmidt BJ, Bee C, Han M, Jing Y, Cheng Y, Tenney DJ, Leil TA. CPT Pharmacometrics Syst Pharmacol 8 873-877 (2019)
  72. CD279 mediates the homeostasis and survival of regulatory T cells by enhancing T cell and macrophage interactions. Liu Y, Gao Y, Hao H, Hou T. FEBS Open Bio 10 1162-1170 (2020)
  73. CTLA-4 Immunohistochemistry and Quantitative Image Analysis for Profiling of Human Cancers. Brown C, Sekhavati F, Cardenes R, Windmueller C, Dacosta K, Rodriguez-Canales J, Steele KE. J. Histochem. Cytochem. 67 901-918 (2019)
  74. Cell-based receptor discovery identifies host factors specifically targeted by the SARS CoV-2 spike. Husain B, Yuen K, Sun D, Cao S, Payandeh J, Martinez-Martin N. Commun Biol 5 788 (2022)
  75. Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors. Curnock AP, Bossi G, Kumaran J, Bawden LJ, Figueiredo R, Tawar R, Wiseman K, Henderson E, Hoong SJ, Gonzalez V, Ghadbane H, Knight DE, O'Dwyer R, Overton DX, Lucato CM, Smith NM, Reis CR, Page K, Whaley LM, McCully ML, Hearty S, Mahon TM, Weber P. JCI Insight 6 e152468 (2021)
  76. Combination CD200R/PD-1 blockade in a humanised mouse model. Fellermeyer M, Anzilotti C, Paluch C, Cornall RJ, Davis SJ, Gileadi U. Immunother Adv 3 ltad006 (2023)
  77. Combination therapy for mCRPC with immune checkpoint inhibitors, ADT and vaccine: A mathematical model. Siewe N, Friedman A. PLoS One 17 e0262453 (2022)
  78. Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. Ma H, Wang H, Sové RJ, Wang J, Giragossian C, Popel AS. J Immunother Cancer 8 (2020)
  79. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Ganesan A, Ahmed M, Okoye I, Arutyunova E, Babu D, Turnbull WL, Kundu JK, Shields J, Agopsowicz KC, Xu L, Tabana Y, Srivastava N, Zhang G, Moon TC, Belovodskiy A, Hena M, Kandadai AS, Hosseini SN, Hitt M, Walker J, Smylie M, West FG, Siraki AG, Lemieux MJ, Elahi S, Nieman JA, Tyrrell DL, Houghton M, Barakat K. Sci Rep 9 12392 (2019)
  80. Construction of stable membranal CMTM6-PD-L1 full-length complex to evaluate the PD-1/PD-L1-CMTM6 interaction and develop anti-tumor anti-CMTM6 nanobody. Jia XM, Long YR, Yu XL, Chen RQ, Gong LK, Geng Y. Acta Pharmacol Sin (2022)
  81. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, Zhu Y, Han J, Bing Z, Ji S, Liu H, Yao X. Neoplasia 23 281-293 (2021)
  82. Dual and Opposite Costimulatory Targeting with a Novel Human Fusion Recombinant Protein Effectively Prevents Renal Warm Ischemia Reperfusion Injury and Allograft Rejection in Murine Models. Guiteras J, De Ramon L, Crespo E, Bolaños N, Barcelo-Batllori S, Martinez-Valenzuela L, Fontova P, Jarque M, Torija A, Bestard O, Resina D, Grinyó JM, Torras J. Int J Mol Sci 22 (2021)
  83. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. Wang H, Zhao C, Santa-Maria CA, Emens LA, Popel AS. iScience 25 104702 (2022)
  84. Engineering a High-Affinity PD-1 Peptide for Optimized Immune Cell-Mediated Tumor Therapy. Chen Y, Huang H, Liu Y, Wang Z, Wang L, Wang Q, Zhang Y, Wang H. Cancer Res Treat 54 362-374 (2022)
  85. Functionally Competent, PD-1+ CD8+ Trm Cells Populate the Brain Following Local Antigen Encounter. Schøller AS, Nazerai L, Christensen JP, Thomsen AR. Front Immunol 11 595707 (2020)
  86. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. Wang H, Arulraj T, Kimko H, Popel AS. NPJ Precis Oncol 7 55 (2023)
  87. Human and mouse PD-L1: similar molecular structure, but different druggability profiles. Magiera-Mularz K, Kocik J, Musielak B, Plewka J, Sala D, Machula M, Grudnik P, Hajduk M, Czepiel M, Siedlar M, Holak TA, Skalniak L. iScience 24 101960 (2021)
  88. IFNγ, and to a Lesser Extent TNFα, Provokes a Sustained Endothelial Costimulatory Phenotype. Valenzuela NM. Front Immunol 12 648946 (2021)
  89. Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study. Kugler M, Hadzima M, Dzijak R, Rampmaier R, Srb P, Vrzal L, Voburka Z, Majer P, Řezáčová P, Vrabel M. RSC Med Chem 14 144-153 (2023)
  90. Identification of the functional PD-L1 interface region responsible for PD-1 binding and initiation of PD-1 signaling. Carter R, Alanazi F, Sharp A, Roman J, Luchini A, Liotta L, Paige M, Brown AM, Haymond A. J Biol Chem 299 105353 (2023)
  91. Immune checkpoint inhibitor (ICI) combination therapy compared to monotherapy in advanced solid cancer: A systematic review. Ma X, Zhang Y, Wang S, Wei H, Yu J. J Cancer 12 1318-1333 (2021)
  92. Immune checkpoint molecule herpes virus entry mediator is overexpressed and associated with poor prognosis in human glioblastoma. Han MZ, Wang S, Zhao WB, Ni SL, Yang N, Kong Y, Huang B, Chen AJ, Li XG, Wang J, Wang DH. EBioMedicine 43 159-170 (2019)
  93. Immunohistochemical expression of programmed death-ligand 1 and CD8 in glioblastomas. Samman DME, Mahdy MME, Cousha HS, Kamar ZAER, Mohamed KAK, Gabal HHA. J Pathol Transl Med 55 388-397 (2021)
  94. Local immune checkpoint blockade therapy by an adenovirus encoding a novel PD-L1 inhibitory peptide inhibits the growth of colon carcinoma in immunocompetent mice. Ishiguro S, Upreti D, Bassette M, Singam ERA, Thakkar R, Loyd M, Inui M, Comer J, Tamura M. Transl Oncol 16 101337 (2022)
  95. Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. Arulraj T, Barik D. PLoS ONE 13 e0206232 (2018)
  96. Measurement of Protein-Protein Interactions through Microscale Thermophoresis (MST). Romain M, Thiroux B, Tardy M, Quesnel B, Thuru X. Bio Protoc 10 e3574 (2020)
  97. Modeling Oncolytic Viral Therapy, Immune Checkpoint Inhibition, and the Complex Dynamics of Innate and Adaptive Immunity in Glioblastoma Treatment. Storey KM, Lawler SE, Jackson TL. Front Physiol 11 151 (2020)
  98. Nivolumab to pembrolizumab switch induced a durable melanoma response: A case report. Lepir T, Zaghouani M, Roche SP, Li YY, Suarez M, Irias MJ, Savaraj N. Medicine (Baltimore) 98 e13804 (2019)
  99. Optimal timing of steroid initiation in response to CTLA-4 antibody in metastatic cancer: A mathematical model. Siewe N, Friedman A. PLoS One 17 e0277248 (2022)
  100. PD-L1 is required for human endometrial regenerative cells-associated attenuation of experimental colitis in mice. Shi G, Wang G, Lu S, Li X, Zhang B, Xu X, Lan X, Zhao Y, Wang H. Am J Transl Res 11 4696-4712 (2019)
  101. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Zhao Y, Lee CK, Lin CH, Gassen RB, Xu X, Huang Z, Xiao C, Bonorino C, Lu LF, Bui JD, Hui E. Immunity 51 1059-1073.e9 (2019)
  102. Placental exosomes isolated from urine of patients with gestational diabetes exhibit a differential profile expression of microRNAs across gestation. Herrera-Van Oostdam AS, Toro-Ortíz JC, López JA, Noyola DE, García-López DA, Durán-Figueroa NV, Martínez-Martínez E, Portales-Pérez DP, Salgado-Bustamante M, López-Hernández Y. Int J Mol Med 46 546-560 (2020)
  103. Probing the origins of programmed death ligand-1 inhibition by implementing machine learning-assisted sequential virtual screening techniques. Kuttappan S, Bhowmik R, Gopi Mohan C. Mol Divers (2023)
  104. Rational development of molecularly imprinted nanoparticles for blocking PD-1/PD-L1 axis. Gu Z, Xu S, Guo Z, Liu Z. Chem Sci 13 10897-10903 (2022)
  105. Selection of optimal quantile protein biomarkers based on cell-level immunohistochemistry data. Yi M, Zhan T, Peck AR, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Sun Y, Rui H, Chervoneva I. BMC Bioinformatics 24 298 (2023)
  106. Soluble PD-1 but Not PD-L1 Levels Predict Poor Outcome in Patients with High-Risk Diffuse Large B-Cell Lymphoma. Vajavaara H, Mortensen JB, Leivonen SK, Hansen IM, Ludvigsen M, Holte H, Jørgensen J, Bjerre M, d'Amore F, Leppä S. Cancers (Basel) 13 (2021)
  107. Soluble monomeric human programmed cell death-ligand 1 inhibits the functions of activated T cells. Liang Z, Chen W, Guo Y, Ren Y, Tian Y, Cai W, Bao Y, Liu Q, Ding P, Li Y. Front Immunol 14 1133883 (2023)
  108. Target-templated de novo design of macrocyclic d-/l-peptides: discovery of drug-like inhibitors of PD-1. Guardiola S, Varese M, Roig X, Sánchez-Navarro M, García J, Giralt E. Chem Sci 12 5164-5170 (2021)
  109. Temporal and spatial dynamics of immune cells in spontaneous liver transplant tolerance. Que W, Ueta H, Hu X, Morita-Nakagawa M, Fujino M, Ueda D, Tokuda N, Huang W, Guo WZ, Zhong L, Li XK. iScience 26 107691 (2023)
  110. The CC' loop of IgV domains of the immune checkpoint receptors, plays a key role in receptor:ligand affinity modulation. Kundapura SV, Ramagopal UA. Sci Rep 9 19191 (2019)
  111. The RESP AI model accelerates the identification of tight-binding antibodies. Parkinson J, Hard R, Wang W. Nat Commun 14 454 (2023)
  112. Theoretical and experimental studies on the interaction of biphenyl ligands with human and murine PD-L1: Up-to-date clues for drug design. Donati G, D'Amore VM, Russomanno P, Cerofolini L, Amato J, Marzano S, Salobehaj M, Rizzo D, Assoni G, Carotenuto A, La Pietra V, Arosio D, Seneci P, Fragai M, Brancaccio D, Di Leva FS, Marinelli L. Comput Struct Biotechnol J 21 3355-3368 (2023)