2ltx Citations

Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β Pathways.

Structure 20 1726-36 (2012)
Related entries: 2ltv, 2ltw, 2lty, 2ltz

Cited: 63 times
EuropePMC logo PMID: 22921829

Abstract

Transforming growth factor (TGF)-β and BMP signaling is mediated by Smads 1-5 (R-Smads and Co-Smads) and inhibited by Smad7, a major hub of regulation of TGF-β and BMP receptors by negative feedback and antagonistic signals. The transcription coactivator YAP and the E3 ubiquitin ligases Smurf1/2 and Nedd4L target R-Smads for activation or degradation, respectively. Pairs of WW domain in these regulators bind PY motifs and adjacent CDK/MAPK and GSK3 phosphorylation sites in R-Smads in a selective and regulated manner. In contrast, here we show that Smad7 binds YAP, Smurf1, Smurf2, and Nedd4L constitutively, the binding involving a PY motif in Smad7 and no phosphorylation. We also provide a structural basis for how regulators that use WW domain pairs for selective interactions with R-Smads, resort to one single versatile WW domain for binding Smad7 to centralize regulation in the TGF-β and BMP pathways.

Reviews - 2ltx mentioned but not cited (2)

  1. Structural determinants of Smad function in TGF-β signaling. Macias MJ, Martin-Malpartida P, Massagué J. Trends Biochem. Sci. 40 296-308 (2015)
  2. Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response. Mathieu NA, Levin RH, Spratt DE. Front Oncol 11 659049 (2021)

Articles - 2ltx mentioned but not cited (1)

  1. Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-β Pathways. Aragón E, Goerner N, Xi Q, Gomes T, Gao S, Massagué J, Macias MJ. Structure 20 1726-1736 (2012)


Reviews citing this publication (15)

  1. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat. Rev. Mol. Cell Biol. 17 626-642 (2016)
  2. WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Aldaz CM, Ferguson BW, Abba MC. Biochim. Biophys. Acta 1846 188-200 (2014)
  3. The Hippo signal transduction network in skeletal and cardiac muscle. Wackerhage H, Del Re DP, Judson RN, Sudol M, Sadoshima J. Sci Signal 7 re4 (2014)
  4. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases. Vittal V, Stewart MD, Brzovic PS, Klevit RE. J. Biol. Chem. 290 21244-21251 (2015)
  5. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. van Soldt BJ, Cardoso WV. Wiley Interdiscip Rev Dev Biol 9 e371 (2020)
  6. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Chaikuad A, Bullock AN. Cold Spring Harb Perspect Biol 8 (2016)
  7. Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Zhang X, Wang Y, Wang J, Sun F. Oncol. Rep. 35 625-638 (2016)
  8. Structural dissection of Hippo signaling. Shi Z, Jiao S, Zhou Z. Acta Biochim. Biophys. Sin. (Shanghai) 47 29-38 (2015)
  9. Versatile communication strategies among tandem WW domain repeats. Dodson EJ, Fishbain-Yoskovitz V, Rotem-Bamberger S, Schueler-Furman O. Exp. Biol. Med. (Maywood) 240 351-360 (2015)
  10. Regulation of Ubiquitin Enzymes in the TGF-β Pathway. Iyengar PV. Int J Mol Sci 18 (2017)
  11. Regulating the human HECT E3 ligases. Sluimer J, Distel B. Cell. Mol. Life Sci. 75 3121-3141 (2018)
  12. The Hippo signal transduction network for exercise physiologists. Gabriel BM, Hamilton DL, Tremblay AM, Wackerhage H. J. Appl. Physiol. 120 1105-1117 (2016)
  13. YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. Zhu JY, Lin S, Ye J. J Cell Physiol 234 246-258 (2018)
  14. Expression and function of Smad7 in autoimmune and inflammatory diseases. Hu Y, He J, He L, Xu B, Wang Q. J Mol Med (Berl) 99 1209-1220 (2021)
  15. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Kliche J, Ivarsson Y. Biochem J 479 1-22 (2022)

Articles citing this publication (45)

  1. Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. Abu-Odeh M, Bar-Mag T, Huang H, Kim T, Salah Z, Abdeen SK, Sudol M, Reichmann D, Sidhu S, Kim PM, Aqeilan RI. J. Biol. Chem. 289 8865-8880 (2014)
  2. Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-β (TGF-β)/Smad Signaling. Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH, Chen YG. J. Biol. Chem. 291 382-392 (2016)
  3. Global analysis of protein folding using massively parallel design, synthesis, and testing. Rocklin GJ, Chidyausiku TM, Goreshnik I, Ford A, Houliston S, Lemak A, Carter L, Ravichandran R, Mulligan VK, Chevalier A, Arrowsmith CH, Baker D. Science 357 168-175 (2017)
  4. Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV, Rainger JK, Anderson CA, Moore AT, Hurles ME, Clarke A, van Heyningen V, Verloes A, Taylor MS, Wilkie AO, UK10K Consortium, Fitzpatrick DR. Am. J. Hum. Genet. 94 295-302 (2014)
  5. Tumor suppressor WWOX binds to ΔNp63α and sensitizes cancer cells to chemotherapy. Salah Z, Bar-mag T, Kohn Y, Pichiorri F, Palumbo T, Melino G, Aqeilan RI. Cell Death Dis 4 e480 (2013)
  6. Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Karystinou A, Roelofs AJ, Neve A, Cantatore FP, Wackerhage H, De Bari C. Arthritis Res. Ther. 17 147 (2015)
  7. Inferring protein 3D structure from deep mutation scans. Rollins NJ, Brock KP, Poelwijk FJ, Stiffler MA, Gauthier NP, Sander C, Marks DS. Nat Genet 51 1170-1176 (2019)
  8. Allosteric auto-inhibition and activation of the Nedd4 family E3 ligase Itch. Zhu K, Shan Z, Chen X, Cai Y, Cui L, Yao W, Wang Z, Shi P, Tian C, Lou J, Xie Y, Wen W. EMBO Rep. 18 1618-1630 (2017)
  9. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system. Huang SS, Hsu LJ, Chang NS. FASEB Bioadv 2 234-253 (2020)
  10. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands. Iglesias-Bexiga M, Castillo F, Cobos ES, Oka T, Sudol M, Luque I. PLoS ONE 10 e0113828 (2015)
  11. Association of colorectal cancer susceptibility variants with esophageal cancer in a Chinese population. Geng TT, Xun XJ, Li S, Feng T, Wang LP, Jin TB, Hou P. World J. Gastroenterol. 21 6898-6904 (2015)
  12. Molecular basis of the binding of YAP transcriptional regulator to the ErbB4 receptor tyrosine kinase. Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A. Biochimie 101 192-202 (2014)
  13. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X. Elife 6 (2017)
  14. AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by Smurf2 and deubiquitinating enzyme USP4. Xiao L, Peng X, Liu F, Tang C, Hu C, Xu X, Wang M, Luo Y, Yang S, Song P, Xiao P, Kanwar YS, Sun L. BMC Cell Biol. 16 7 (2015)
  15. USP15 regulates SMURF2 kinetics through C-lobe mediated deubiquitination. Iyengar PV, Jaynes P, Rodon L, Lama D, Law KP, Lim YP, Verma C, Seoane J, Eichhorn PJ. Sci Rep 5 14733 (2015)
  16. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, Yang B, Seo G, Chuc K, Oh S, El Ali A, Razorenova OV, Chen J, Luo R, Li X, Wang W. EMBO J 39 e102406 (2020)
  17. WW domains in the heart of Smad regulation. Sudol M. Structure 20 1619-1620 (2012)
  18. Wwox suppresses breast cancer cell growth through modulation of the hedgehog-GLI1 signaling pathway. Xiong A, Wei L, Ying M, Wu H, Hua J, Wang Y. Biochem. Biophys. Res. Commun. 443 1200-1205 (2014)
  19. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity. Schuchardt BJ, Mikles DC, Hoang LM, Bhat V, McDonald CB, Sudol M, Farooq A. FEBS J. 281 5532-5551 (2014)
  20. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands. Bowen J, Schneible J, Bacon K, Labar C, Menegatti S, Rao BM. Int J Mol Sci 22 1634 (2021)
  21. The Smad7-Skp2 complex orchestrates Myc stability, impacting on the cytostatic effect of TGF-β. Kim TA, Kang JM, Hyun JS, Lee B, Kim SJ, Yang ES, Hong S, Lee HJ, Fujii M, Niederhuber JE, Kim SJ. J. Cell. Sci. 127 411-421 (2014)
  22. USP26 regulates TGF-β signaling by deubiquitinating and stabilizing SMAD7. Kit Leng Lui S, Iyengar PV, Jaynes P, Isa ZFBA, Pang B, Tan TZ, Eichhorn PJA. EMBO Rep. 18 797-808 (2017)
  23. YAP/TAZ regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Qin Z, Xia W, Fisher GJ, Voorhees JJ, Quan T. Cell Commun. Signal 16 18 (2018)
  24. Crystal structure of the first WW domain of human YAP2 isoform. Martinez-Rodriguez S, Bacarizo J, Luque I, Camara-Artigas A. J. Struct. Biol. 191 381-387 (2015)
  25. Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. Rheinemann L, Thompson T, Mercenne G, Paine EL, Peterson FC, Volkman BF, Alam SL, Alian A, Sundquist WI. J Biol Chem 297 100975 (2021)
  26. New gene evolution in the bonus-TIF1-γ/TRIM33 family impacted the architecture of the vertebrate dorsal-ventral patterning network. Wisotzkey RG, Quijano JC, Stinchfield MJ, Newfeld SJ. Mol. Biol. Evol. 31 2309-2321 (2014)
  27. RNA recognition and self-association of CPEB4 is mediated by its tandem RRM domains. Schelhorn C, Gordon JM, Ruiz L, Alguacil J, Pedroso E, Macias MJ. Nucleic Acids Res. 42 10185-10195 (2014)
  28. U24 from Roseolovirus interacts strongly with Nedd4 WW Domains. Sang Y, Zhang R, Scott WR, Creagh AL, Haynes CA, Straus SK. Sci Rep 7 39776 (2017)
  29. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes. Meng G, Dai F, Tong X, Li N, Ding X, Song J, Lu C. Mol. Genet. Genomics 290 807-824 (2015)
  30. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. Han Z, Dash S, Sagum CA, Ruthel G, Jaladanki CK, Berry CT, Schwoerer MP, Harty NM, Freedman BD, Bedford MT, Fan H, Sidhu SS, Sudol M, Shtanko O, Harty RN. PLoS Pathog 16 e1008231 (2020)
  31. The long-noncoding RNA MALAT1 regulates TGF-β/Smad signaling through formation of a lncRNA-protein complex with Smads, SETD2 and PPM1A in hepatic cells. Zhang J, Han C, Song K, Chen W, Ungerleider N, Yao L, Ma W, Wu T. PLoS One 15 e0228160 (2020)
  32. Interactions of U24 from Roseolovirus with WW domains: canonical vs noncanonical. Sang Y, Zhang R, Creagh AL, Haynes CA, Straus SK. Biochem. Cell Biol. 95 350-358 (2017)
  33. Biophysical studies and NMR structure of YAP2 WW domain - LATS1 PPxY motif complexes reveal the basis of their interaction. Verma A, Jing-Song F, Finch-Edmondson ML, Velazquez-Campoy A, Balasegaran S, Sudol M, Sivaraman J. Oncotarget 9 8068-8080 (2018)
  34. Conformational landscape of multidomain SMAD proteins. Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Comput Struct Biotechnol J 19 5210-5224 (2021)
  35. Ginsenoside Rg3 Reduces Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-β1 by Inactivation of AKT in HMrSV5 Peritoneal Mesothelial Cells. Yan X, Zhang W, Kong F, Li Q, Shan W, Zhang C, Han T, Che Y, Zhang Y. Med. Sci. Monit. 25 6972-6979 (2019)
  36. Long non-coding RNA ARHGAP5-AS1 inhibits migration of breast cancer cell via stabilizing SMAD7 protein. Wang CL, Li JC, Zhou CX, Ma CN, Wang DF, Wo LL, He M, Yin Q, He JR, Zhao Q. Breast Cancer Res Treat 189 607-619 (2021)
  37. OTUD4 enhances TGFβ signalling through regulation of the TGFβ receptor complex. Jaynes PW, Iyengar PV, Lui SKL, Tan TZ, Vasilevski N, Wright SCE, Verdile G, Jeyasekharan AD, Eichhorn PJA. Sci Rep 10 15725 (2020)
  38. Predicting PY motif-mediated protein-protein interactions in the Nedd4 family of ubiquitin ligases. Hatstat AK, Pupi MD, McCafferty DG. PLoS One 16 e0258315 (2021)
  39. SHP2 inhibitors maintain TGFβ signalling through SMURF2 inhibition. Lai X, Lui SKL, Lam HY, Adachi Y, Sim WJ, Vasilevski N, Armstrong NJ, Bridgeman SC, Main NM, Tan TZ, Tirnitz-Parker JEE, Thiery JP, Ebi H, Kumar AP, Eichhorn PJA. NPJ Precis Oncol 7 136 (2023)
  40. Smad7 Binds Differently to Individual and Tandem WW3 and WW4 Domains of WWP2 Ubiquitin Ligase Isoforms. Wahl LC, Watt JE, Yim HTT, De Bourcier D, Tolchard J, Soond SM, Blumenschein TMA, Chantry A. Int J Mol Sci 20 (2019)
  41. Structural Basis for the Enzymatic Activity of the HACE1 HECT-Type E3 Ligase Through N-Terminal Helix Dimerization. Singh S, Machida S, Tulsian NK, Choong YK, Ng J, Shankar S, Liu Y, Chandiramani KV, Shi J, Sivaraman J. Adv Sci (Weinh) 10 e2207672 (2023)
  42. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman D, Bardwell L. Biochem J BCJ20220493 (2023)
  43. The effects of WW2/WW3 domains of Smurf2 molecule on TGF-β signaling and arginase I gene expression. Ganji A, Roshan HM, Varasteh A, Moghadam M, Sankian M. Cell Biol. Int. 39 690-695 (2015)
  44. Unveiling the dimer/monomer propensities of Smad MH1-DNA complexes. Ruiz L, Kaczmarska Z, Gomes T, Aragon E, Torner C, Freier R, Baginski B, Martin-Malpartida P, de Martin Garrido N, Marquez JA, Cordeiro TN, Pluta R, Macias MJ. Comput Struct Biotechnol J 19 632-646 (2021)
  45. c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Sim WJ, Iyengar PV, Lama D, Lui SKL, Ng HC, Haviv-Shapira L, Domany E, Kappei D, Tan TZ, Saie A, Jaynes PW, Verma CS, Kumar AP, Rouanne M, Ha HK, Radulescu C, Ten Dijke P, Eichhorn PJA, Thiery JP. Nat Commun 10 4349 (2019)