2k7w Citations

BAX activation is initiated at a novel interaction site.

Abstract

BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized alpha-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB-BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.

Reviews - 2k7w mentioned but not cited (7)

  1. Direct Activation of Bax Protein for Cancer Therapy. Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Med Res Rev 36 313-341 (2016)
  2. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. Luna-Vargas MP, Chipuk JE. FEBS J 283 2676-2689 (2016)
  3. Progress in targeting the BCL-2 family of proteins. Garner TP, Lopez A, Reyna DE, Spitz AZ, Gavathiotis E. Curr Opin Chem Biol 39 133-142 (2017)
  4. The Mysteries around the BCL-2 Family Member BOK. Shalaby R, Flores-Romero H, García-Sáez AJ. Biomolecules 10 (2020)
  5. Structural Details of BH3 Motifs and BH3-Mediated Interactions: an Updated Perspective. Sora V, Papaleo E. Front Mol Biosci 9 864874 (2022)
  6. Physiological and pharmacological modulation of BAX. Spitz AZ, Gavathiotis E. Trends Pharmacol Sci 43 206-220 (2022)
  7. Targeting protein conformations with small molecules to control protein complexes. Zacharioudakis E, Gavathiotis E. Trends Biochem Sci 47 1023-1037 (2022)

Articles - 2k7w mentioned but not cited (15)

  1. Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Edwards AL, Gavathiotis E, LaBelle JL, Braun CR, Opoku-Nsiah KA, Bird GH, Walensky LD. Chem Biol 20 888-902 (2013)
  2. Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. Benfield CT, Mansur DS, McCoy LE, Ferguson BJ, Bahar MW, Oldring AP, Grimes JM, Stuart DI, Graham SC, Smith GL. J Biol Chem 286 20727-20735 (2011)
  3. An Autoinhibited Dimeric Form of BAX Regulates the BAX Activation Pathway. Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Cheng EH, Gavathiotis E. Mol Cell 63 485-497 (2016)
  4. Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization. Pang YP, Dai H, Smith A, Meng XW, Schneider PA, Kaufmann SH. Sci Rep 2 257 (2012)
  5. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces. Bohnuud T, Kozakov D, Vajda S. PLoS Comput Biol 10 e1003872 (2014)
  6. Synthetic Antibodies Inhibit Bcl-2-associated X Protein (BAX) through Blockade of the N-terminal Activation Site. Uchime O, Dai Z, Biris N, Lee D, Sidhu SS, Li S, Lai JR, Gavathiotis E. J Biol Chem 291 89-102 (2016)
  7. Charge profile analysis reveals that activation of pro-apoptotic regulators Bax and Bak relies on charge transfer mediated allosteric regulation. Ionescu CM, Svobodová Vařeková R, Prehn JH, Huber HJ, Koča J. PLoS Comput Biol 8 e1002565 (2012)
  8. Eltrombopag directly inhibits BAX and prevents cell death. Spitz AZ, Zacharioudakis E, Reyna DE, Garner TP, Gavathiotis E. Nat Commun 12 1134 (2021)
  9. Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges. Raček T, Schindler O, Toušek D, Horský V, Berka K, Koča J, Svobodová R. Nucleic Acids Res 48 W591-W596 (2020)
  10. A kinetic fluorescence polarization ligand assay for monitoring BAX early activation. Gelles JD, Mohammed JN, Chen Y, Sebastian TM, Chipuk JE. Cell Rep Methods 2 100174 (2022)
  11. Ameliorative Effect of Structurally Divergent Oleanane Triterpenoid, 3-Epifriedelinol from Ipomoea batatas against BPA-Induced Gonadotoxicity by Targeting PARP and NF-κB Signaling in Rats. Majid M, Farhan A, Baig MW, Khan MT, Kamal Y, Hassan SSU, Bungau S, Haq IU. Molecules 28 290 (2022)
  12. An Extensive Pharmacological Evaluation of New Anti-Cancer Triterpenoid (Nummularic Acid) from Ipomoea batatas through In Vitro, In Silico, and In Vivo Studies. Majid M, Farhan A, Asad MI, Khan MR, Hassan SSU, Haq IU, Bungau S. Molecules 27 2474 (2022)
  13. Elucidating the Mechanism of Action of the Attributed Immunomodulatory Role of Eltrombopag in Primary Immune Thrombocytopenia: An In Silico Approach. Lozano ML, Segú-Vergés C, Coma M, Álvarez-Roman MT, González-Porras JR, Gutiérrez L, Valcárcel D, Butta N. Int J Mol Sci 22 (2021)
  14. Molecular docking analysis of triterpenoids from Cassia fistula with breast cancer targets. Christopher I, Sounderraajan A, Murugesan V, Sabapathy I, Periyasamy V, Manikkam R. Bioinformation 19 1067-1074 (2023)
  15. Unveiling the anti-cancer mechanisms of calotropin: Insights into cell growth inhibition, cell cycle arrest, and metabolic regulation in human oral squamous carcinoma cells (HSC-3). Jayaraman S, Natarajan SR, Veeraraghavan VP, Jasmine S. J Oral Biol Craniofac Res 13 704-713 (2023)


Reviews citing this publication (143)

  1. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Czabotar PE, Lessene G, Strasser A, Adams JM. Nat Rev Mol Cell Biol 15 49-63 (2014)
  2. Mitochondria and cell death: outer membrane permeabilization and beyond. Tait SW, Green DR. Nat Rev Mol Cell Biol 11 621-632 (2010)
  3. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Cell Death Differ 25 486-541 (2018)
  4. The BCL-2 family reunion. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. Mol Cell 37 299-310 (2010)
  5. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Martinou JC, Youle RJ. Dev Cell 21 92-101 (2011)
  6. Targeting mitochondria for cancer therapy. Fulda S, Galluzzi L, Kroemer G. Nat Rev Drug Discov 9 447-464 (2010)
  7. Mitochondria as multifaceted regulators of cell death. Bock FJ, Tait SWG. Nat Rev Mol Cell Biol 21 85-100 (2020)
  8. Cytoplasmic functions of the tumour suppressor p53. Green DR, Kroemer G. Nature 458 1127-1130 (2009)
  9. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gómez-Lechón MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Arch Toxicol 87 1315-1530 (2013)
  10. Control of mitochondrial apoptosis by the Bcl-2 family. Brunelle JK, Letai A. J Cell Sci 122 437-441 (2009)
  11. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Ola MS, Nawaz M, Ahsan H. Mol Cell Biochem 351 41-58 (2011)
  12. Cell death in the pathogenesis of heart disease: mechanisms and significance. Whelan RS, Kaplinskiy V, Kitsis RN. Annu Rev Physiol 72 19-44 (2010)
  13. BCL-2 family proteins: changing partners in the dance towards death. Kale J, Osterlund EJ, Andrews DW. Cell Death Differ 25 65-80 (2018)
  14. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. Strasser A, Cory S, Adams JM. EMBO J 30 3667-3683 (2011)
  15. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Aging (Albany NY) 8 603-619 (2016)
  16. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Delbridge AR, Grabow S, Strasser A, Vaux DL. Nat Rev Cancer 16 99-109 (2016)
  17. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Singh R, Letai A, Sarosiek K. Nat Rev Mol Cell Biol 20 175-193 (2019)
  18. Hydrocarbon-stapled peptides: principles, practice, and progress. Walensky LD, Bird GH. J Med Chem 57 6275-6288 (2014)
  19. Mechanisms of action of Bcl-2 family proteins. Shamas-Din A, Kale J, Leber B, Andrews DW. Cold Spring Harb Perspect Biol 5 a008714 (2013)
  20. The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Hata AN, Engelman JA, Faber AC. Cancer Discov 5 475-487 (2015)
  21. Mitochondrial cell death effectors. Brenner D, Mak TW. Curr Opin Cell Biol 21 871-877 (2009)
  22. BH3-only proteins in apoptosis and beyond: an overview. Lomonosova E, Chinnadurai G. Oncogene 27 Suppl 1 S2-19 (2008)
  23. Molecular biology of Bax and Bak activation and action. Westphal D, Dewson G, Czabotar PE, Kluck RM. Biochim Biophys Acta 1813 521-531 (2011)
  24. The BCL-2 protein family, BH3-mimetics and cancer therapy. Delbridge AR, Strasser A. Cell Death Differ 22 1071-1080 (2015)
  25. Translating p53 into the clinic. Cheok CF, Verma CS, Baselga J, Lane DP. Nat Rev Clin Oncol 8 25-37 (2011)
  26. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Siddiqui WA, Ahad A, Ahsan H. Arch Toxicol 89 289-317 (2015)
  27. Neuronal Cell Death. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Physiol Rev 98 813-880 (2018)
  28. Many players in BCL-2 family affairs. Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Trends Biochem Sci 39 101-111 (2014)
  29. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Angew Chem Int Ed Engl 54 8896-8927 (2015)
  30. BH3-only proteins: Orchestrators of apoptosis. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. Biochim Biophys Acta 1813 508-520 (2011)
  31. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Westphal D, Kluck RM, Dewson G. Cell Death Differ 21 196-205 (2014)
  32. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Adams JM, Cory S. Cell Death Differ 25 27-36 (2018)
  33. Bcl-2 proteins and mitochondria--specificity in membrane targeting for death. Lindsay J, Esposti MD, Gilmore AP. Biochim Biophys Acta 1813 532-539 (2011)
  34. Bax, Bak and beyond - mitochondrial performance in apoptosis. Peña-Blanco A, García-Sáez AJ. FEBS J 285 416-431 (2018)
  35. Mitochondrial regulation of cell death. Tait SW, Green DR. Cold Spring Harb Perspect Biol 5 (2013)
  36. Apoptosis and oncogenesis: give and take in the BCL-2 family. Llambi F, Green DR. Curr Opin Genet Dev 21 12-20 (2011)
  37. BAD: undertaker by night, candyman by day. Danial NN. Oncogene 27 Suppl 1 S53-70 (2008)
  38. Mitochondrial channels: ion fluxes and more. Szabo I, Zoratti M. Physiol Rev 94 519-608 (2014)
  39. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ, American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Circ Res 118 1960-1991 (2016)
  40. Mitochondrial control of caspase-dependent and -independent cell death. Pradelli LA, Bénéteau M, Ricci JE. Cell Mol Life Sci 67 1589-1597 (2010)
  41. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Kastritis PL, Bonvin AM. J R Soc Interface 10 20120835 (2013)
  42. Decoding and unlocking the BCL-2 dependency of cancer cells. Juin P, Geneste O, Gautier F, Depil S, Campone M. Nat Rev Cancer 13 455-465 (2013)
  43. BCL-2 proteins and apoptosis: Recent insights and unknowns. Edlich F. Biochem Biophys Res Commun 500 26-34 (2018)
  44. BH3-only proteins and their roles in programmed cell death. Giam M, Huang DC, Bouillet P. Oncogene 27 Suppl 1 S128-36 (2008)
  45. Mitochondria-Judges and Executioners of Cell Death Sentences. Bhola PD, Letai A. Mol Cell 61 695-704 (2016)
  46. Mitochondrial gateways to cancer. Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G. Mol Aspects Med 31 1-20 (2010)
  47. Apoptotic cell signaling in cancer progression and therapy. Plati J, Bucur O, Khosravi-Far R. Integr Biol (Camb) 3 279-296 (2011)
  48. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Physiol Rev 99 1765-1817 (2019)
  49. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ, Kamarul T. Cell Death Dis 7 e2058 (2016)
  50. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Walensky LD, Gavathiotis E. Trends Biochem Sci 36 642-652 (2011)
  51. The rheostat in the membrane: BCL-2 family proteins and apoptosis. Volkmann N, Marassi FM, Newmeyer DD, Hanein D. Cell Death Differ 21 206-215 (2014)
  52. Apoptosis regulation at the mitochondrial outer membrane. Gillies LA, Kuwana T. J Cell Biochem 115 632-640 (2014)
  53. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Leber B, Lin J, Andrews DW. Oncogene 29 5221-5230 (2010)
  54. BH3 profiling--measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Del Gaizo Moore V, Letai A. Cancer Lett 332 202-205 (2013)
  55. Regulation of Bim in Health and Disease. Sionov RV, Vlahopoulos SA, Granot Z. Oncotarget 6 23058-23134 (2015)
  56. Mitochondria: gatekeepers of response to chemotherapy. Sarosiek KA, Ni Chonghaile T, Letai A. Trends Cell Biol 23 612-619 (2013)
  57. Photoreceptor cell death and rescue in retinal detachment and degenerations. Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG. Prog Retin Eye Res 37 114-140 (2013)
  58. Discoveries and controversies in BCL-2 protein-mediated apoptosis. Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T. FEBS J 283 2690-2700 (2016)
  59. The Bcl-2 family: structures, interactions and targets for drug discovery. Kvansakul M, Hinds MG. Apoptosis 20 136-150 (2015)
  60. Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Landes T, Martinou JC. Biochim Biophys Acta 1813 540-545 (2011)
  61. Structural biology of the Bcl-2 family and its mimicry by viral proteins. Kvansakul M, Hinds MG. Cell Death Dis 4 e909 (2013)
  62. Bim and Bmf in tissue homeostasis and malignant disease. Piñon JD, Labi V, Egle A, Villunger A. Oncogene 27 Suppl 1 S41-52 (2008)
  63. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Chem Rev 116 6424-6462 (2016)
  64. New Modalities for Challenging Targets in Drug Discovery. Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Angew Chem Int Ed Engl 56 10294-10323 (2017)
  65. Mitochondria as decision-makers in cell death. Borutaite V. Environ Mol Mutagen 51 406-416 (2010)
  66. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Jourdain A, Martinou JC. Int J Biochem Cell Biol 41 1884-1889 (2009)
  67. PUMA, a critical mediator of cell death--one decade on from its discovery. Hikisz P, Kiliańska ZM. Cell Mol Biol Lett 17 646-669 (2012)
  68. Protein-protein interactions as druggable targets: recent technological advances. Higueruelo AP, Jubb H, Blundell TL. Curr Opin Pharmacol 13 791-796 (2013)
  69. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Biochim Biophys Acta 1853 1658-1671 (2015)
  70. Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-x(L): keep your friends close but your enemies closer. Renault TT, Teijido O, Antonsson B, Dejean LM, Manon S. Int J Biochem Cell Biol 45 64-67 (2013)
  71. New dimension in therapeutic targeting of BCL-2 family proteins. Besbes S, Mirshahi M, Pocard M, Billard C. Oncotarget 6 12862-12871 (2015)
  72. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Maes ME, Schlamp CL, Nickells RW. Prog Retin Eye Res 57 1-25 (2017)
  73. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Chipuk JE, Green DR. Cell Cycle 8 2692-2696 (2009)
  74. Control of adult neurogenesis by programmed cell death in the mammalian brain. Ryu JR, Hong CJ, Kim JY, Kim EK, Sun W, Yu SW. Mol Brain 9 43 (2016)
  75. Bax activation by Bim? Czabotar PE, Colman PM, Huang DC. Cell Death Differ 16 1187-1191 (2009)
  76. Death upon a kiss: mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis. Renault TT, Chipuk JE. Chem Biol 21 114-123 (2014)
  77. Unraveling structural mechanisms of allosteric drug action. Nussinov R, Tsai CJ. Trends Pharmacol Sci 35 256-264 (2014)
  78. How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt's lymphoma? Allday MJ. Semin Cancer Biol 19 366-376 (2009)
  79. Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Leber B, Geng F, Kale J, Andrews DW. Expert Rev Mol Med 12 e28 (2010)
  80. Bax and Bak Pores: Are We Closing the Circle? Cosentino K, García-Sáez AJ. Trends Cell Biol 27 266-275 (2017)
  81. Targeting mitochondria for cancer therapy. Hockenbery DM. Environ Mol Mutagen 51 476-489 (2010)
  82. Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. Bender T, Martinou JC. Cold Spring Harb Perspect Biol 5 a011106 (2013)
  83. Regulating cell death at, on, and in membranes. Chi X, Kale J, Leber B, Andrews DW. Biochim Biophys Acta 1843 2100-2113 (2014)
  84. Shedding light on apoptosis at subcellular membranes. Kale J, Liu Q, Leber B, Andrews DW. Cell 151 1179-1184 (2012)
  85. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Rautureau GJ, Day CL, Hinds MG. Int J Mol Sci 11 1808-1824 (2010)
  86. Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins. Giménez-Cassina A, Danial NN. Trends Endocrinol Metab 26 165-175 (2015)
  87. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Leuk Lymphoma 51 1968-2005 (2010)
  88. Apoptosis: embedded in membranes. Bogner C, Leber B, Andrews DW. Curr Opin Cell Biol 22 845-851 (2010)
  89. Mitochondria and apoptosis: emerging concepts. Li MX, Dewson G. F1000Prime Rep 7 42 (2015)
  90. Emerging roles of lipids in BCL-2 family-regulated apoptosis. Zhang T, Saghatelian A. Biochim Biophys Acta 1831 1542-1554 (2013)
  91. How do viruses control mitochondria-mediated apoptosis? Neumann S, El Maadidi S, Faletti L, Haun F, Labib S, Schejtman A, Maurer U, Borner C. Virus Res 209 45-55 (2015)
  92. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Elkholi R, Renault TT, Serasinghe MN, Chipuk JE. Cancer Metab 2 16 (2014)
  93. Stapled peptide design: principles and roles of computation. Tan YS, Lane DP, Verma CS. Drug Discov Today 21 1642-1653 (2016)
  94. BH3-only proteins: the death-puppeteer's wires. Ghiotto F, Fais F, Bruno S. Cytometry A 77 11-21 (2010)
  95. The Bcl-2 Family in Host-Virus Interactions. Kvansakul M, Caria S, Hinds MG. Viruses 9 (2017)
  96. Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Tuzlak S, Kaufmann T, Villunger A. Genes Dev 30 2133-2151 (2016)
  97. Peptide scanning for studying structure-activity relationships in drug discovery. Jamieson AG, Boutard N, Sabatino D, Lubell WD. Chem Biol Drug Des 81 148-165 (2013)
  98. Apoptotic processes in megakaryocytes and platelets. White MJ, Kile BT. Semin Hematol 47 227-234 (2010)
  99. BCL-2: Long and winding path from discovery to therapeutic target. Schenk RL, Strasser A, Dewson G. Biochem Biophys Res Commun 482 459-469 (2017)
  100. Getting away with murder: how does the BCL-2 family of proteins kill with immunity? Renault TT, Chipuk JE. Ann N Y Acad Sci 1285 59-79 (2013)
  101. Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Suhaili SH, Karimian H, Stellato M, Lee TH, Aguilar MI. Biophys Rev 9 443-457 (2017)
  102. BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Moldoveanu T, Czabotar PE. Cold Spring Harb Perspect Biol 12 a036319 (2020)
  103. Contracting the 'mus cells'--does down-sizing suit us for diving into the memory pool? Kurtulus S, Tripathi P, Opferman JT, Hildeman DA. Immunol Rev 236 54-67 (2010)
  104. EBV finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection. Allday MJ. Front Genet 4 212 (2013)
  105. The role of BH3-only proteins in apoptosis within the ovary. Hutt KJ. Reproduction 149 R81-9 (2015)
  106. How adhesion signals reach a mitochondrial conclusion--ECM regulation of apoptosis. Gilmore AP, Owens TW, Foster FM, Lindsay J. Curr Opin Cell Biol 21 654-661 (2009)
  107. Apoptotic foci at mitochondria: in and around Bax pores. Ugarte-Uribe B, García-Sáez AJ. Philos Trans R Soc Lond B Biol Sci 372 (2017)
  108. The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Banjara S, Suraweera CD, Hinds MG, Kvansakul M. Biomolecules 10 (2020)
  109. The Structural Biology of Bcl-xL. Lee EF, Fairlie WD. Int J Mol Sci 20 (2019)
  110. Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Gómez-Fernández JC. Chem Phys Lipids 183 77-90 (2014)
  111. Prevention of cellular suicide by cytomegaloviruses. Fliss PM, Brune W. Viruses 4 1928-1949 (2012)
  112. Small-Molecule and Peptide Inhibitors of the Pro-Survival Protein Mcl-1. Beekman AM, Howell LA. ChemMedChem 11 802-813 (2016)
  113. Mcl-1 is vital for neutrophil survival. Murphy MP, Caraher E. Immunol Res 62 225-233 (2015)
  114. Autophagy contributes to modulating the cytotoxicities of Bcl-2 homology domain-3 mimetics. Yu L, Liu S. Semin Cancer Biol 23 553-560 (2013)
  115. BH3-only proteins and their effects on cancer. Vo TT, Letai A. Adv Exp Med Biol 687 49-63 (2010)
  116. Extending the horizon for cell-based immunotherapy by understanding the mechanisms of action of photopheresis. Voss CY, Fry TJ, Coppes MJ, Blajchman MA. Transfus Med Rev 24 22-32 (2010)
  117. Pathophysiological Roles of Intracellular Proteases in Neuronal Development and Neurological Diseases. Yagami T, Yamamoto Y, Koma H. Mol Neurobiol 56 3090-3112 (2019)
  118. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Timucin AC, Basaga H, Kutuk O. Med Res Rev 39 146-175 (2019)
  119. The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved? Luo X, O'Neill KL, Huang K. F1000Res 9 (2020)
  120. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? de Sousa Moraes LF, Sun X, Peluzio MDCG, Zhu MJ. Crit Rev Food Sci Nutr 59 59-71 (2019)
  121. Mitochondria in human pluripotent stem cell apoptosis. TeSlaa T, Setoguchi K, Teitell MA. Semin Cell Dev Biol 52 76-83 (2016)
  122. Stabilized helical peptides: overview of the technologies and its impact on drug discovery. Klein M. Expert Opin Drug Discov 12 1117-1125 (2017)
  123. Predisposition to Apoptosis in Hepatocellular Carcinoma: From Mechanistic Insights to Therapeutic Strategies. Marquardt JU, Edlich F. Front Oncol 9 1421 (2019)
  124. Molecular Chaperone HSP70 and Key Regulators of Apoptosis - A Review. Roufayel R, Kadry S. Curr Mol Med 19 315-325 (2019)
  125. Genomic profiles in B cell lymphoma. Seto M. Int J Hematol 92 238-245 (2010)
  126. Small-molecule inhibitors reveal a new function for Bcl-2 as a proangiogenic signaling molecule. Zeitlin BD, Nör JE. Curr Top Microbiol Immunol 348 115-137 (2011)
  127. The Incomplete Puzzle of the BCL2 Proteins. Flores-Romero H, García-Sáez AJ. Cells 8 (2019)
  128. Therapeutic development in targeting protein-protein interactions with synthetic topological mimetics. Tsou LK, Cheng Y, Cheng YC. Curr Opin Pharmacol 12 403-407 (2012)
  129. A connection in life and death: The BCL-2 family coordinates mitochondrial network dynamics and stem cell fate. Rasmussen ML, Gama V. Int Rev Cell Mol Biol 353 255-284 (2020)
  130. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide 'stapling' technology. He Y, Chen D, Zheng W. Oncogene 34 5685-5698 (2015)
  131. Protein-protein and protein-lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Sekar G, Ojoawo A, Moldoveanu T. Biochem Soc Trans 50 1091-1103 (2022)
  132. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Montero J, Haq R. Cancer Discov 12 1217-1232 (2022)
  133. The influence of selected gastrointestinal parasites on apoptosis in intestinal epithelial cells. Kapczuk P, Kosik-Bogacka D, Kupnicka P, Metryka E, Simińska D, Rogulska K, Skórka M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biomolecules 10 (2020)
  134. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. Li K, van Delft MF, Dewson G. EMBO J 40 e107341 (2021)
  135. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. Dou Z, Zhao D, Chen X, Xu C, Jin X, Zhang X, Wang Y, Xie X, Li Q, Di C, Zhang H. J Exp Clin Cancer Res 40 194 (2021)
  136. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Int J Mol Sci 23 3795 (2022)
  137. Reconstituting the Mammalian Apoptotic Switch in Yeast. Polčic P, Mentel M. Genes (Basel) 11 (2020)
  138. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Lee EF, Fairlie WD. Comput Struct Biotechnol J 1 e201204007 (2012)
  139. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FK, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Cell Death Differ 30 1097-1154 (2023)
  140. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Roufayel R, Younes K, Al-Sabi A, Murshid N. Life (Basel) 12 (2022)
  141. Contribution of Yeast Studies to the Understanding of BCL-2 Family Intracellular Trafficking. Rouchidane Eyitayo A, Gonin M, Arokium H, Manon S. Int J Mol Sci 22 (2021)
  142. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Czabotar PE, Garcia-Saez AJ. Nat Rev Mol Cell Biol (2023)
  143. VDAC2 and the BCL-2 family of proteins. Yuan Z, Dewson G, Czabotar PE, Birkinshaw RW. Biochem Soc Trans 49 2787-2795 (2021)

Articles citing this publication (277)

  1. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH. Mol Cell 36 487-499 (2009)
  2. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. EMBO J 35 1766-1778 (2016)
  3. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH. Science 330 1390-1393 (2010)
  4. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM. Cell 152 519-531 (2013)
  5. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basañez G, Meda P, Martinou JC. Cell 142 889-901 (2010)
  6. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR. Cell 148 988-1000 (2012)
  7. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Stewart ML, Fire E, Keating AE, Walensky LD. Nat Chem Biol 6 595-601 (2010)
  8. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Vo TT, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM, Deangelo DJ, Frattini MG, Letai A. Cell 151 344-355 (2012)
  9. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Faber AC, Corcoran RB, Ebi H, Sequist LV, Waltman BA, Chung E, Incio J, Digumarthy SR, Pollack SF, Song Y, Muzikansky A, Lifshits E, Roberge S, Coffman EJ, Benes CH, Gómez HL, Baselga J, Arteaga CL, Rivera MN, Dias-Santagata D, Jain RK, Engelman JA. Cancer Discov 1 352-365 (2011)
  10. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. Mol Cell 40 481-492 (2010)
  11. Bax regulates primary necrosis through mitochondrial dynamics. Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW, O'Rourke B, Kitsis RN. Proc Natl Acad Sci U S A 109 6566-6571 (2012)
  12. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, Kung AL, Wahl GM, Walensky LD. Cancer Cell 18 411-422 (2010)
  13. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Kim YW, Grossmann TN, Verdine GL. Nat Protoc 6 761-771 (2011)
  14. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L, Flanagan A, Andrews DW, Sorger P, Letai A. Mol Cell 51 751-765 (2013)
  15. The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. Mérino D, Giam M, Hughes PD, Siggs OM, Heger K, O'Reilly LA, Adams JM, Strasser A, Lee EF, Fairlie WD, Bouillet P. J Cell Biol 186 355-362 (2009)
  16. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Ku B, Liang C, Jung JU, Oh BH. Cell Res 21 627-641 (2011)
  17. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. O'Neill KL, Huang K, Zhang J, Chen Y, Luo X. Genes Dev 30 973-988 (2016)
  18. Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM. Mol Cell 36 696-703 (2009)
  19. An interconnected hierarchical model of cell death regulation by the BCL-2 family. Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Liao CP, Gavathiotis E, Hsieh JJ, Cheng EH. Nat Cell Biol 17 1270-1281 (2015)
  20. BID-induced structural changes in BAK promote apoptosis. Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR. Nat Struct Mol Biol 20 589-597 (2013)
  21. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. Gallenne T, Gautier F, Oliver L, Hervouet E, Noël B, Hickman JA, Geneste O, Cartron PF, Vallette FM, Manon S, Juin P. J Cell Biol 185 279-290 (2009)
  22. Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin. Grossmann TN, Yeh JT, Bowman BR, Chu Q, Moellering RE, Verdine GL. Proc Natl Acad Sci U S A 109 17942-17947 (2012)
  23. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, Loh ML, Hunger SP, Wood B, DeAngelo DJ, Stone R, Harris M, Gutierrez A, Kelliher MA, Letai A. Cancer Discov 4 1074-1087 (2014)
  24. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. LaBelle JL, Katz SG, Bird GH, Gavathiotis E, Stewart ML, Lawrence C, Fisher JK, Godes M, Pitter K, Kung AL, Walensky LD. J Clin Invest 122 2018-2031 (2012)
  25. Epstein-barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ. PLoS Pathog 5 e1000492 (2009)
  26. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Dewson G, Ma S, Frederick P, Hockings C, Tan I, Kratina T, Kluck RM. Cell Death Differ 19 661-670 (2012)
  27. Molecular details of Bax activation, oligomerization, and membrane insertion. Bleicken S, Classen M, Padmavathi PV, Ishikawa T, Zeth K, Steinhoff HJ, Bordignon E. J Biol Chem 285 6636-6647 (2010)
  28. Structural model of active Bax at the membrane. Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, García-Sáez AJ, Bordignon E. Mol Cell 56 496-505 (2014)
  29. BH3 domains other than Bim and Bid can directly activate Bax/Bak. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T. J Biol Chem 286 491-501 (2011)
  30. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. Ryan JA, Brunelle JK, Letai A. Proc Natl Acad Sci U S A 107 12895-12900 (2010)
  31. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. J Cell Biol 194 39-48 (2011)
  32. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice. Wang J, Cheng X, Xiang MX, Alanne-Kinnunen M, Wang JA, Chen H, He A, Sun X, Lin Y, Tang TT, Tu X, Sjöberg S, Sukhova GK, Liao YH, Conrad DH, Yu L, Kawakami T, Kovanen PT, Libby P, Shi GP. J Clin Invest 121 3564-3577 (2011)
  33. Direct activation of full-length proapoptotic BAK. Leshchiner ES, Braun CR, Bird GH, Walensky LD. Proc Natl Acad Sci U S A 110 E986-95 (2013)
  34. Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Chen S, Dai Y, Pei XY, Grant S. Mol Cell Biol 29 6149-6169 (2009)
  35. Direct and selective small-molecule activation of proapoptotic BAX. Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD. Nat Chem Biol 8 639-645 (2012)
  36. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Cohen NA, Stewart ML, Gavathiotis E, Tepper JL, Bruekner SR, Koss B, Opferman JT, Walensky LD. Chem Biol 19 1175-1186 (2012)
  37. PUMA and BIM are required for oncogene inactivation-induced apoptosis. Bean GR, Ganesan YT, Dong Y, Takeda S, Liu H, Chan PM, Huang Y, Chodosh LA, Zambetti GP, Hsieh JJ, Cheng EH. Sci Signal 6 ra20 (2013)
  38. APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Wan L, Tan M, Yang J, Inuzuka H, Dai X, Wu T, Liu J, Shaik S, Chen G, Deng J, Malumbres M, Letai A, Kirschner MW, Sun Y, Wei W. Dev Cell 29 377-391 (2014)
  39. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Del Re DP, Matsuda T, Zhai P, Maejima Y, Jain MR, Liu T, Li H, Hsu CP, Sadoshima J. Mol Cell 54 639-650 (2014)
  40. Inhibition of Pro-apoptotic BAX by a noncanonical interaction mechanism. Barclay LA, Wales TE, Garner TP, Wachter F, Lee S, Guerra RM, Stewart ML, Braun CR, Bird GH, Gavathiotis E, Engen JR, Walensky LD. Mol Cell 57 873-886 (2015)
  41. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, Rodriguez JM, Becerril J, Berndt N, Hamilton AD, Wang HG, Sebti SM. J Biol Chem 286 9382-9392 (2011)
  42. Mitochondria in cell death. Parsons MJ, Green DR. Essays Biochem 47 99-114 (2010)
  43. Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices. Bird GH, Mazzola E, Opoku-Nsiah K, Lammert MA, Godes M, Neuberg DS, Walensky LD. Nat Chem Biol 12 845-852 (2016)
  44. Differential retrotranslocation of mitochondrial Bax and Bak. Todt F, Cakir Z, Reichenbach F, Emschermann F, Lauterwasser J, Kaiser A, Ichim G, Tait SW, Frank S, Langer HF, Edlich F. EMBO J 34 67-80 (2015)
  45. The retinoblastoma protein induces apoptosis directly at the mitochondria. Hilgendorf KI, Leshchiner ES, Nedelcu S, Maynard MA, Calo E, Ianari A, Walensky LD, Lees JA. Genes Dev 27 1003-1015 (2013)
  46. The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. Desbien AL, Kappler JW, Marrack P. Proc Natl Acad Sci U S A 106 5663-5668 (2009)
  47. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. J Biol Chem 286 7123-7131 (2011)
  48. BH3-only activator proteins Bid and Bim are dispensable for Bak/Bax-dependent thrombocyte apoptosis induced by Bcl-xL deficiency: molecular requisites for the mitochondrial pathway to apoptosis in platelets. Kodama T, Takehara T, Hikita H, Shimizu S, Shigekawa M, Li W, Miyagi T, Hosui A, Tatsumi T, Ishida H, Kanto T, Hiramatsu N, Yin XM, Hayashi N. J Biol Chem 286 13905-13913 (2011)
  49. Bax forms an oligomer via separate, yet interdependent, surfaces. Zhang Z, Zhu W, Lapolla SM, Miao Y, Shao Y, Falcone M, Boreham D, McFarlane N, Ding J, Johnson AE, Zhang XC, Andrews DW, Lin J. J Biol Chem 285 17614-17627 (2010)
  50. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms. Uo T, Veenstra TD, Morrison RS. J Neurosci 29 2824-2832 (2009)
  51. Inhibition of Bax protects neuronal cells from oligomeric Aβ neurotoxicity. Kudo W, Lee HP, Smith MA, Zhu X, Matsuyama S, Lee HG. Cell Death Dis 3 e309 (2012)
  52. Comparative α-helicity of cyclic pentapeptides in water. de Araujo AD, Hoang HN, Kok WM, Diness F, Gupta P, Hill TA, Driver RW, Price DA, Liras S, Fairlie DP. Angew Chem Int Ed Engl 53 6965-6969 (2014)
  53. Letter Distinct BimBH3 (BimSAHB) stapled peptides for structural and cellular studies. Bird GH, Gavathiotis E, LaBelle JL, Katz SG, Walensky LD. ACS Chem Biol 9 831-837 (2014)
  54. Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Tang Y, Li X, Liu Z, Simoneau AR, Xie J, Zi X. Int J Cancer 127 1758-1768 (2010)
  55. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q. Bioorg Med Chem Lett 21 1472-1475 (2011)
  56. Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. Vela L, Gonzalo O, Naval J, Marzo I. J Biol Chem 288 4935-4946 (2013)
  57. Assembly of the Bak apoptotic pore: a critical role for the Bak protein α6 helix in the multimerization of homodimers during apoptosis. Ma S, Hockings C, Anwari K, Kratina T, Fennell S, Lazarou M, Ryan MT, Kluck RM, Dewson G. J Biol Chem 288 26027-26038 (2013)
  58. Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. Maluquer de Motes C, Cooray S, Ren H, Almeida GM, McGourty K, Bahar MW, Stuart DI, Grimes JM, Graham SC, Smith GL. PLoS Pathog 7 e1002430 (2011)
  59. Upregulation of Bcl2 inhibits apoptosis-driven BAX insertion but favors BAX relocalization in mitochondria. Teijido O, Dejean L. FEBS Lett 584 3305-3310 (2010)
  60. Displacement of Bim by Bmf and Puma rather than increase in Bim level mediates paclitaxel-induced apoptosis in breast cancer cells. Kutuk O, Letai A. Cell Death Differ 17 1624-1635 (2010)
  61. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. Roy MJ, Vom A, Czabotar PE, Lessene G. Br J Pharmacol 171 1973-1987 (2014)
  62. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Follis AV, Llambi F, Merritt P, Chipuk JE, Green DR, Kriwacki RW. Mol Cell 59 677-684 (2015)
  63. After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. Ding J, Mooers BHM, Zhang Z, Kale J, Falcone D, McNichol J, Huang B, Zhang XC, Xing C, Andrews DW, Lin J. J Biol Chem 289 11873-11896 (2014)
  64. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. Landeta O, Landajuela A, Gil D, Taneva S, DiPrimo C, Sot B, Valle M, Frolov VA, Basañez G. J Biol Chem 286 8213-8230 (2011)
  65. Perturbation of the Bcl-2 network and an induced Noxa/Bcl-xL interaction trigger mitochondrial dysfunction after DNA damage. Lopez H, Zhang L, George NM, Liu X, Pang X, Evans JJD, Targy NM, Luo X. J Biol Chem 285 15016-15026 (2010)
  66. Functional cooperation of the proapoptotic Bcl2 family proteins Bmf and Bim in vivo. Hübner A, Cavanagh-Kyros J, Rincon M, Flavell RA, Davis RJ. Mol Cell Biol 30 98-105 (2010)
  67. The anti-apoptotic function of human αA-crystallin is directly related to its chaperone activity. Pasupuleti N, Matsuyama S, Voss O, Doseff AI, Song K, Danielpour D, Nagaraj RH. Cell Death Dis 1 e31 (2010)
  68. Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration. Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, Barclay LA, Bird GH, Walensky LD, Segal RA. Neuron 96 373-386.e6 (2017)
  69. Asymmetric triplex metallohelices with high and selective activity against cancer cells. Faulkner AD, Kaner RA, Abdallah QM, Clarkson G, Fox DJ, Gurnani P, Howson SE, Phillips RM, Roper DI, Simpson DH, Scott P. Nat Chem 6 797-803 (2014)
  70. Chemical synthesis of hydrocarbon-stapled peptides for protein interaction research and therapeutic targeting. Bird GH, Crannell WC, Walensky LD. Curr Protoc Chem Biol 3 99-117 (2011)
  71. Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. Dai H, Meng XW, Lee SH, Schneider PA, Kaufmann SH. J Biol Chem 284 18311-18322 (2009)
  72. Direct Activation of BAX by BTSA1 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia. Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, Walensky LD, Verma A, Steidl U, Gavathiotis E. Cancer Cell 32 490-505.e10 (2017)
  73. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance. Colli ML, Nogueira TC, Allagnat F, Cunha DA, Gurzov EN, Cardozo AK, Roivainen M, Op de Beeck A, Eizirik DL. PLoS Pathog 7 e1002267 (2011)
  74. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax. Wilfling F, Weber A, Potthoff S, Vögtle FN, Meisinger C, Paschen SA, Häcker G. Cell Death Differ 19 1328-1336 (2012)
  75. Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. Ding J, Zhang Z, Roberts GJ, Falcone M, Miao Y, Shao Y, Zhang XC, Andrews DW, Lin J. J Biol Chem 285 28749-28763 (2010)
  76. Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. Sánchez-Gómez MV, Alberdi E, Pérez-Navarro E, Alberch J, Matute C. J Neurosci 31 2996-3006 (2011)
  77. Regulation of mitochondrial apoptotic events by p53-mediated disruption of complexes between antiapoptotic Bcl-2 members and Bim. Han J, Goldstein LA, Hou W, Gastman BR, Rabinowich H. J Biol Chem 285 22473-22483 (2010)
  78. The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG. Cell Death Dis 3 e443 (2012)
  79. BH3 response profiles from neuroblastoma mitochondria predict activity of small molecule Bcl-2 family antagonists. Goldsmith KC, Lestini BJ, Gross M, Ip L, Bhumbla A, Zhang X, Zhao H, Liu X, Hogarty MD. Cell Death Differ 17 872-882 (2010)
  80. article-commentary Apoptosis: Stabbed in the BAX. Green DR, Chipuk JE. Nature 455 1047-1049 (2008)
  81. Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis. Szabò I, Soddemann M, Leanza L, Zoratti M, Gulbins E. Cell Death Differ 18 427-438 (2011)
  82. Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Guo Z, Hu X, Xing Z, Xing R, Lv R, Cheng X, Su J, Zhou Z, Xu Z, Nilsson S, Liu Z. Mol Cell Biochem 406 111-119 (2015)
  83. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53. Zhang J, Huang K, O'Neill KL, Pang X, Luo X. Cell Death Dis 7 e2266 (2016)
  84. Evaluation of the BH3-only protein Puma as a direct Bak activator. Dai H, Pang YP, Ramirez-Alvarado M, Kaufmann SH. J Biol Chem 289 89-99 (2014)
  85. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia. Reynolds C, Roderick JE, LaBelle JL, Bird G, Mathieu R, Bodaar K, Colon D, Pyati U, Stevenson KE, Qi J, Harris M, Silverman LB, Sallan SE, Bradner JE, Neuberg DS, Look AT, Walensky LD, Kelliher MA, Gutierrez A. Leukemia 28 1819-1827 (2014)
  86. The MUC1-C oncoprotein binds to the BH3 domain of the pro-apoptotic BAX protein and blocks BAX function. Ahmad R, Alam M, Rajabi H, Kufe D. J Biol Chem 287 20866-20875 (2012)
  87. Tyrosine dephosphorylation is required for Bak activation in apoptosis. Fox JL, Ismail F, Azad A, Ternette N, Leverrier S, Edelmann MJ, Kessler BM, Leigh IM, Jackson S, Storey A. EMBO J 29 3853-3868 (2010)
  88. Genetically defining the mechanism of Puma- and Bim-induced apoptosis. Garrison SP, Phillips DC, Jeffers JR, Chipuk JE, Parsons MJ, Rehg JE, Opferman JT, Green DR, Zambetti GP. Cell Death Differ 19 642-649 (2012)
  89. Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. Wang Y, Tjandra N. J Biol Chem 288 35840-35851 (2013)
  90. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. PLoS One 7 e31510 (2012)
  91. Bim-Bcl-2 homology 3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosis. Scatizzi JC, Hutcheson J, Pope RM, Firestein GS, Koch AE, Mavers M, Smason A, Agrawal H, Haines GK, Chandel NS, Hotchkiss RS, Perlman H. Arthritis Rheum 62 441-451 (2010)
  92. Selective Covalent Targeting of Anti-Apoptotic BFL-1 by Cysteine-Reactive Stapled Peptide Inhibitors. Huhn AJ, Guerra RM, Harvey EP, Bird GH, Walensky LD. Cell Chem Biol 23 1123-1134 (2016)
  93. A Bax-mediated mechanism for obatoclax-induced apoptosis of cholangiocarcinoma cells. Smoot RL, Blechacz BR, Werneburg NW, Bronk SF, Sinicrope FA, Sirica AE, Gores GJ. Cancer Res 70 1960-1969 (2010)
  94. Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis. Zhao G, Zhu Y, Eno CO, Liu Y, Deleeuw L, Burlison JA, Chaires JB, Trent JO, Li C. Mol Cell Biol 34 1198-1207 (2014)
  95. Bcl-2 proteins and apoptosis: choose your partner. Shore GC, Nguyen M. Cell 135 1004-1006 (2008)
  96. Direct targeting of Rab-GTPase-effector interactions. Spiegel J, Cromm PM, Itzen A, Goody RS, Grossmann TN, Waldmann H. Angew Chem Int Ed Engl 53 2498-2503 (2014)
  97. Mcl-1 degradation during hepatocyte lipoapoptosis. Masuoka HC, Mott J, Bronk SF, Werneburg NW, Akazawa Y, Kaufmann SH, Gores GJ. J Biol Chem 284 30039-30048 (2009)
  98. The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE(2) signalling in colorectal adenoma cells. Greenhough A, Wallam CA, Hicks DJ, Moorghen M, Williams AC, Paraskeva C. Oncogene 29 3398-3410 (2010)
  99. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2). Werneburg NW, Bronk SF, Guicciardi ME, Thomas L, Dikeakos JD, Thomas G, Gores GJ. J Biol Chem 287 24427-24437 (2012)
  100. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Dai H, Ding H, Meng XW, Peterson KL, Schneider PA, Karp JE, Kaufmann SH. Genes Dev 29 2140-2152 (2015)
  101. Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells. Rezaei Araghi R, Bird GH, Ryan JA, Jenson JM, Godes M, Pritz JR, Grant RA, Letai A, Walensky LD, Keating AE. Proc Natl Acad Sci U S A 115 E886-E895 (2018)
  102. Prostaglandins antagonistically control Bax activation during apoptosis. Lalier L, Cartron PF, Olivier C, Logé C, Bougras G, Robert JM, Oliver L, Vallette FM. Cell Death Differ 18 528-537 (2011)
  103. Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Ma J, Edlich F, Bermejo GA, Norris KL, Youle RJ, Tjandra N. Proc Natl Acad Sci U S A 109 20901-20906 (2012)
  104. Bax contains two functional mitochondrial targeting sequences and translocates to mitochondria in a conformational change- and homo-oligomerization-driven process. George NM, Targy N, Evans JJ, Zhang L, Luo X. J Biol Chem 285 1384-1392 (2010)
  105. The fowlpox virus BCL-2 homologue, FPV039, interacts with activated Bax and a discrete subset of BH3-only proteins to inhibit apoptosis. Banadyga L, Veugelers K, Campbell S, Barry M. J Virol 83 7085-7098 (2009)
  106. VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Samuel S, Tumilasci VF, Oliere S, Nguyên TL, Shamy A, Bell J, Hiscott J. Mol Ther 18 2094-2103 (2010)
  107. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes. Gillies LA, Du H, Peters B, Knudson CM, Newmeyer DD, Kuwana T. Mol Biol Cell 26 339-349 (2015)
  108. Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Iyer S, Bell F, Westphal D, Anwari K, Gulbis J, Smith BJ, Dewson G, Kluck RM. Cell Death Differ 22 1665-1675 (2015)
  109. BIM-mediated membrane insertion of the BAK pore domain is an essential requirement for apoptosis. Weber K, Harper N, Schwabe J, Cohen GM. Cell Rep 5 409-420 (2013)
  110. BimL directly neutralizes Bcl-xL to promote Bax activation during UV-induced apoptosis. Wang X, Xing D, Liu L, Chen WR. FEBS Lett 583 1873-1879 (2009)
  111. Pro-apoptotic Bax molecules densely populate the edges of membrane pores. Kuwana T, Olson NH, Kiosses WB, Peters B, Newmeyer DD. Sci Rep 6 27299 (2016)
  112. Small-molecule allosteric inhibitors of BAX. Garner TP, Amgalan D, Reyna DE, Li S, Kitsis RN, Gavathiotis E. Nat Chem Biol 15 322-330 (2019)
  113. Stabilized helical peptides: overview of the technologies and therapeutic promises. Estieu-Gionnet K, Guichard G. Expert Opin Drug Discov 6 937-963 (2011)
  114. Photoreactive stapled BH3 peptides to dissect the BCL-2 family interactome. Braun CR, Mintseris J, Gavathiotis E, Bird GH, Gygi SP, Walensky LD. Chem Biol 17 1325-1333 (2010)
  115. Puma strikes Bax. Letai A. J Cell Biol 185 189-191 (2009)
  116. Tight Sequestration of BH3 Proteins by BCL-xL at Subcellular Membranes Contributes to Apoptotic Resistance. Pécot J, Maillet L, Le Pen J, Vuillier C, Trécesson SC, Fétiveau A, Sarosiek KA, Bock FJ, Braun F, Letai A, Tait SWG, Gautier F, Juin PP. Cell Rep 17 3347-3358 (2016)
  117. A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Szlyk B, Braun CR, Ljubicic S, Patton E, Bird GH, Osundiji MA, Matschinsky FM, Walensky LD, Danial NN. Nat Struct Mol Biol 21 36-42 (2014)
  118. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Huang K, O'Neill KL, Li J, Zhou W, Han N, Pang X, Wu W, Struble L, Borgstahl G, Liu Z, Zhang L, Luo X. Cell Res 29 942-952 (2019)
  119. Ethanol influences on Bax translocation, mitochondrial membrane potential, and reactive oxygen species generation are modulated by vitamin E and brain-derived neurotrophic factor. Heaton MB, Paiva M, Siler-Marsiglio K. Alcohol Clin Exp Res 35 1122-1133 (2011)
  120. Expression and prognostic significance of bcl-2 and bax in the progression and clinical outcome of transitional bladder cell carcinoma. Golestani Eimani B, Sanati MH, Houshmand M, Ataei M, Akbarian F, Shakhssalim N. Cell J 15 356-363 (2014)
  121. Flavokawain B, a kava chalcone, induces apoptosis in synovial sarcoma cell lines. Sakai T, Eskander RN, Guo Y, Kim KJ, Mefford J, Hopkins J, Bhatia NN, Zi X, Hoang BH. J Orthop Res 30 1045-1050 (2012)
  122. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies. Iyer S, Anwari K, Alsop AE, Yuen WS, Huang DC, Carroll J, Smith NA, Smith BJ, Dewson G, Kluck RM. Nat Commun 7 11734 (2016)
  123. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. Rizvi S, Mertens JC, Bronk SF, Hirsova P, Dai H, Roberts LR, Kaufmann SH, Gores GJ. J Biol Chem 289 22835-22849 (2014)
  124. Quantitative interactome of a membrane Bcl-2 network identifies a hierarchy of complexes for apoptosis regulation. Bleicken S, Hantusch A, Das KK, Frickey T, Garcia-Saez AJ. Nat Commun 8 73 (2017)
  125. Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Peng R, Tong JS, Li H, Yue B, Zou F, Yu J, Zhang L. Cell Death Differ 20 744-754 (2013)
  126. The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax. Ilkow CS, Goping IS, Hobman TC. PLoS Pathog 7 e1001291 (2011)
  127. Comment Can the analysis of BH3-only protein knockout mice clarify the issue of 'direct versus indirect' activation of Bax and Bak? Villunger A, Labi V, Bouillet P, Adams J, Strasser A. Cell Death Differ 18 1545-1546 (2011)
  128. Assessing the Efficacy of Mdm2/Mdm4-Inhibiting Stapled Peptides Using Cellular Thermal Shift Assays. Tan BX, Brown CJ, Ferrer FJ, Yuen TY, Quah ST, Chan BH, Jansson AE, Teo HL, Nordlund P, Lane DP. Sci Rep 5 12116 (2015)
  129. Born to be alive: a role for the BCL-2 family in melanoma tumor cell survival, apoptosis, and treatment. Anvekar RA, Asciolla JJ, Missert DJ, Chipuk JE. Front Oncol 1 (2011)
  130. Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Robin AY, Krishna Kumar K, Westphal D, Wardak AZ, Thompson GV, Dewson G, Colman PM, Czabotar PE. Cell Death Dis 6 e1809 (2015)
  131. MK-STYX, a catalytically inactive phosphatase regulating mitochondrially dependent apoptosis. Niemi NM, Lanning NJ, Klomp JA, Tait SW, Xu Y, Dykema KJ, Murphy LO, Gaither LA, Xu HE, Furge KA, Green DR, MacKeigan JP. Mol Cell Biol 31 1357-1368 (2011)
  132. Natural diterpenoid compound elevates expression of Bim protein, which interacts with antiapoptotic protein Bcl-2, converting it to proapoptotic Bax-like molecule. Zhao L, He F, Liu H, Zhu Y, Tian W, Gao P, He H, Yue W, Lei X, Ni B, Wang X, Jin H, Hao X, Lin J, Chen Q. J Biol Chem 287 1054-1065 (2012)
  133. Potent and specific peptide inhibitors of human pro-survival protein Bcl-xL. Dutta S, Ryan J, Chen TS, Kougentakis C, Letai A, Keating AE. J Mol Biol 427 1241-1253 (2015)
  134. Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis. Karlberg M, Ekoff M, Labi V, Strasser A, Huang D, Nilsson G. Cell Death Dis 1 e43 (2010)
  135. The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD. J Biol Chem 289 36001-36017 (2014)
  136. A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Amgalan D, Garner TP, Pekson R, Jia XF, Yanamandala M, Paulino V, Liang FG, Corbalan JJ, Lee J, Chen Y, Karagiannis GS, Sanchez LR, Liang H, Narayanagari SR, Mitchell K, Lopez A, Margulets V, Scarlata M, Santulli G, Asnani A, Peterson RT, Hazan RB, Condeelis JS, Oktay MH, Steidl U, Kirshenbaum LA, Gavathiotis E, Kitsis RN. Nat Cancer 1 315-328 (2020)
  137. Allosteric inhibition of antiapoptotic MCL-1. Lee S, Wales TE, Escudero S, Cohen DT, Luccarelli J, Gallagher CG, Cohen NA, Huhn AJ, Bird GH, Engen JR, Walensky LD. Nat Struct Mol Biol 23 600-607 (2016)
  138. Cytosolic Bax: does it require binding proteins to keep its pro-apoptotic activity in check? Vogel S, Raulf N, Bregenhorn S, Biniossek ML, Maurer U, Czabotar P, Borner C. J Biol Chem 287 9112-9127 (2012)
  139. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters. Fayad W, Fryknäs M, Brnjic S, Olofsson MH, Larsson R, Linder S. PLoS One 4 e7238 (2009)
  140. Mantle cell lymphoma in cyclin D1 transgenic mice with Bim-deficient B cells. Katz SG, Labelle JL, Meng H, Valeriano RP, Fisher JK, Sun H, Rodig SJ, Kleinstein SH, Walensky LD. Blood 123 884-893 (2014)
  141. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R, Sebo P. Cell Microbiol 18 384-398 (2016)
  142. Intrinsic Instability of BOK Enables Membrane Permeabilization in Apoptosis. Zheng JH, Grace CR, Guibao CD, McNamara DE, Llambi F, Wang YM, Chen T, Moldoveanu T. Cell Rep 23 2083-2094.e6 (2018)
  143. Mapping the interaction of pro-apoptotic tBID with pro-survival BCL-XL. Yao Y, Bobkov AA, Plesniak LA, Marassi FM. Biochemistry 48 8704-8711 (2009)
  144. Novel Bcl-2 homology-3 domain-like sequences identified from screening randomized peptide libraries for inhibitors of the pro-survival Bcl-2 proteins. Lee EF, Fedorova A, Zobel K, Boyle MJ, Yang H, Perugini MA, Colman PM, Huang DC, Deshayes K, Fairlie WD. J Biol Chem 284 31315-31326 (2009)
  145. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. Guillemin Y, Lopez J, Gimenez D, Fuertes G, Valero JG, Blum L, Gonzalo P, Salgado J, Girard-Egrot A, Aouacheria A. PLoS One 5 e9066 (2010)
  146. BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Renault TT, Floros KV, Chipuk JE. Methods 61 146-155 (2013)
  147. Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide. Edwards AL, Wachter F, Lammert M, Huhn AJ, Luccarelli J, Bird GH, Walensky LD. ACS Chem Biol 10 2149-2157 (2015)
  148. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line. Chopra D, Ray L, Dwivedi A, Tiwari SK, Singh J, Singh KP, Kushwaha HN, Jahan S, Pandey A, Gupta SK, Chaturvedi RK, Pant AB, Ray RS, Gupta KC. Biomaterials 84 25-41 (2016)
  149. BaxΔ2 is a novel bax isoform unique to microsatellite unstable tumors. Haferkamp B, Zhang H, Lin Y, Yeap X, Bunce A, Sharpe J, Xiang J. J Biol Chem 287 34722-34729 (2012)
  150. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease. Zhang F, Guo X, Wang W, Yan H, Li C. PLoS One 6 e22983 (2011)
  151. Allosteric sensitization of proapoptotic BAX. Pritz JR, Wachter F, Lee S, Luccarelli J, Wales TE, Cohen DT, Coote P, Heffron GJ, Engen JR, Massefski W, Walensky LD. Nat Chem Biol 13 961-967 (2017)
  152. Direct targeting of β-catenin: Inhibition of protein-protein interactions for the inactivation of Wnt signaling. Hahne G, Grossmann TN. Bioorg Med Chem 21 4020-4026 (2013)
  153. Heroin activates Bim via c-Jun N-terminal kinase/c-Jun pathway to mediate neuronal apoptosis. Tan M, Li Z, Ma S, Luo J, Xu S, Lu A, Gan W, Su P, Lin H, Li S, Lai B. Neuroscience 233 1-8 (2013)
  154. BAD dephosphorylation and decreased expression of MCL-1 induce rapid apoptosis in prostate cancer cells. Yancey D, Nelson KC, Baiz D, Hassan S, Flores A, Pullikuth A, Karpova Y, Axanova L, Moore V, Sui G, Kulik G. PLoS One 8 e74561 (2013)
  155. Examining BCL-2 family function with large unilamellar vesicles. Asciolla JJ, Renault TT, Chipuk JE. J Vis Exp (2012)
  156. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. Mignani S, El Brahmi N, Eloy L, Poupon J, Nicolas V, Steinmetz A, El Kazzouli S, Bousmina MM, Blanchard-Desce M, Caminade AM, Majoral JP, Cresteil T. Eur J Med Chem 132 142-156 (2017)
  157. Cdk2 phosphorylation of Bcl-xL after stress converts it to a pro-apoptotic protein mimicking Bax/Bak. Megyesi J, Tarcsafalvi A, Seng N, Hodeify R, Price PM. Cell Death Discov 2 (2016)
  158. Focal adhesion kinase antagonizes doxorubicin cardiotoxicity via p21(Cip1.). Cheng Z, DiMichele LA, Rojas M, Vaziri C, Mack CP, Taylor JM. J Mol Cell Cardiol 67 1-11 (2014)
  159. Targeting the regulatory machinery of BIM for cancer therapy. Harada H, Grant S. Crit Rev Eukaryot Gene Expr 22 117-129 (2012)
  160. Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Pham TK, Kim DH, Lee BJ, Kim YW. Bioorg Med Chem Lett 23 6717-6720 (2013)
  161. A new i, i + 3 peptide stapling system for α-helix stabilization. Shim SY, Kim YW, Verdine GL. Chem Biol Drug Des 82 635-642 (2013)
  162. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation. Liao C, Zhang Z, Kale J, Andrews DW, Lin J, Li J. Sci Rep 6 29502 (2016)
  163. Topology of active, membrane-embedded Bax in the context of a toroidal pore. Bleicken S, Assafa TE, Stegmueller C, Wittig A, Garcia-Saez AJ, Bordignon E. Cell Death Differ 25 1717-1731 (2018)
  164. A Short Double-Stapled Peptide Inhibits Respiratory Syncytial Virus Entry and Spreading. Gaillard V, Galloux M, Garcin D, Eléouët JF, Le Goffic R, Larcher T, Rameix-Welti MA, Boukadiri A, Héritier J, Segura JM, Baechler E, Arrell M, Mottet-Osman G, Nyanguile O. Antimicrob Agents Chemother 61 (2017)
  165. A myosin-Va tail fragment sequesters dynein light chains leading to apoptosis in melanoma cells. Izidoro-Toledo TC, Borges AC, Araújo DD, Mazzi DP, Nascimento Júnior FO, Sousa JF, Alves CP, Paiva AP, Trindade DM, Patussi EV, Peixoto PM, Kinnally KW, Espreafico EM. Cell Death Dis 4 e547 (2013)
  166. BAK α6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Li MX, Tan IKL, Ma SB, Hockings C, Kratina T, Dengler MA, Alsop AE, Kluck RM, Dewson G. Proc Natl Acad Sci U S A 114 7629-7634 (2017)
  167. BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. Jeng PS, Inoue-Yamauchi A, Hsieh JJ, Cheng EH. Curr Opin Physiol 3 71-81 (2018)
  168. Bax forms two types of channels, one of which is voltage-gated. Lin SH, Perera MN, Nguyen T, Datskovskiy D, Miles M, Colombini M. Biophys J 101 2163-2169 (2011)
  169. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Singh AP, Glennon MS, Umbarkar P, Gupte M, Galindo CL, Zhang Q, Force T, Becker JR, Lal H. Cardiovasc Res 115 966-977 (2019)
  170. ARID3B induces tumor necrosis factor alpha mediated apoptosis while a novel ARID3B splice form does not induce cell death. Joseph S, Deneke VE, Cowden Dahl KD. PLoS One 7 e42159 (2012)
  171. Ligand binding and membrane insertion compete with oligomerization of the BclXL apoptotic repressor. Bhat V, McDonald CB, Mikles DC, Deegan BJ, Seldeen KL, Bates ML, Farooq A. J Mol Biol 416 57-77 (2012)
  172. Mitochondrial residence of the apoptosis inducer BAX is more important than BAX oligomerization in promoting membrane permeabilization. Kuwana T, King LE, Cosentino K, Suess J, Garcia-Saez AJ, Gilmore AP, Newmeyer DD. J Biol Chem 295 1623-1636 (2020)
  173. Multivalent design of apoptosis-inducing bid-BH3 peptide-oligosaccharides boosts the intracellular activity at identical overall peptide concentrations. Richter M, Chakrabarti A, Ruttekolk IR, Wiesner B, Beyermann M, Brock R, Rademann J. Chemistry 18 16708-16715 (2012)
  174. Variations in the rheostat model of apoptosis: what studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins. Nickells RW. Exp Eye Res 91 2-8 (2010)
  175. Grouper iridovirus GIV66 is a Bcl-2 protein that inhibits apoptosis by exclusively sequestering Bim. Banjara S, Mao J, Ryan TM, Caria S, Kvansakul M. J Biol Chem 293 5464-5477 (2018)
  176. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release. Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P, Wang JY. PLoS One 10 e0140585 (2015)
  177. PP1γ functionally augments the alternative splicing of CaMKIIδ through interaction with ASF. Huang C, Cao W, Liao R, Wang J, Wang Y, Tong L, Chen X, Zhu W, Zhang W. Am J Physiol Cell Physiol 306 C167-77 (2014)
  178. The N Terminus of the Vaccinia Virus Protein F1L Is an Intrinsically Unstructured Region That Is Not Involved in Apoptosis Regulation. Caria S, Marshall B, Burton RL, Campbell S, Pantaki-Eimany D, Hawkins CJ, Barry M, Kvansakul M. J Biol Chem 291 14600-14608 (2016)
  179. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein. Semaan SJ, Nickells RW. BMC Cancer 10 554 (2010)
  180. The carboxyl-terminal sequence of bim enables bax activation and killing of unprimed cells. Chi X, Nguyen D, Pemberton JM, Osterlund EJ, Liu Q, Brahmbhatt H, Zhang Z, Lin J, Leber B, Andrews DW. Elife 9 (2020)
  181. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells. Reshi L, Wang HV, Hui CF, Su YC, Hong JR. Fish Shellfish Immunol 61 120-129 (2017)
  182. BH3-only protein BIM mediates heat shock-induced apoptosis. Mahajan IM, Chen MD, Muro I, Robertson JD, Wright CW, Bratton SB. PLoS One 9 e84388 (2014)
  183. Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates. Lee EJ, Shin SH, Hyun S, Chun J, Kang SS. Anim Cells Syst (Seoul) 15 95-106 (2011)
  184. The cytosolic domain of human Tom22 modulates human Bax mitochondrial translocation and conformation in yeast. Renault TT, Grandier-Vazeille X, Arokium H, Velours G, Camougrand N, Priault M, Teijido O, Dejean LM, Manon S. FEBS Lett 586 116-121 (2012)
  185. article-commentary The liver's dance with death: two Bcl-2 guardian proteins from the abyss. Cazanave SC, Gores GJ. Hepatology 50 1009-1013 (2009)
  186. Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper- and Hypo-Osmotic Challenges. Martos-Sitcha JA, Mancera JM, Calduch-Giner JA, Yúfera M, Martínez-Rodríguez G, Pérez-Sánchez J. PLoS One 11 e0148113 (2016)
  187. AILERON Therapeutics. Sawyer TK. Chem Biol Drug Des 73 3-6 (2009)
  188. Activation of Bax by joint action of tBid and mitochondrial outer membrane: Monte Carlo simulations. Veresov VG, Davidovskii AI. Eur Biophys J 38 941-960 (2009)
  189. An Akt3 Splice Variant Lacking the Serine 472 Phosphorylation Site Promotes Apoptosis and Suppresses Mammary Tumorigenesis. Suyama K, Yao J, Liang H, Benard O, Loudig OD, Amgalan D, McKimpson WM, Phillips GR, Segall J, Wang Y, Fineberg S, Norton L, Kitsis RN, Hazan RB. Cancer Res 78 103-114 (2018)
  190. Blockade of the BAK hydrophobic groove by inhibitory phosphorylation regulates commitment to apoptosis. Azad A, Fox J, Leverrier S, Storey A. PLoS One 7 e49601 (2012)
  191. Elevated Mcl-1 inhibits thymocyte apoptosis and alters thymic selection. Campbell KJ, Gray DH, Anstee N, Strasser A, Cory S. Cell Death Differ 19 1962-1971 (2012)
  192. Hepatic deficiency of COP9 signalosome subunit 8 induces ubiquitin-proteasome system impairment and Bim-mediated apoptosis in murine livers. Lei D, Li F, Su H, Liu J, Wei N, Wang X. PLoS One 8 e67793 (2013)
  193. Humanin induces conformational changes in the apoptosis regulator BAX and sequesters it into fibers, preventing mitochondrial outer-membrane permeabilization. Morris DL, Kastner DW, Johnson S, Strub MP, He Y, Bleck CKE, Lee DY, Tjandra N. J Biol Chem 294 19055-19065 (2019)
  194. Inflammation-inducing Th1 and Th17 cells differ in their expression patterns of apoptosis-related molecules. Tan C, Ramaswamy M, Shi G, Vistica BP, Siegel RM, Gery I. Cell Immunol 271 210-213 (2011)
  195. Regulation of mitochondrial ceramide distribution by members of the BCL-2 family. Zhang T, Barclay L, Walensky LD, Saghatelian A. J Lipid Res 56 1501-1510 (2015)
  196. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Iyer S, Uren RT, Dengler MA, Shi MX, Uno E, Adams JM, Dewson G, Kluck RM. Cell Death Dis 11 268 (2020)
  197. Bcl-2 delays cell cycle through mitochondrial ATP and ROS. Du X, Fu X, Yao K, Lan Z, Xu H, Cui Q, Yang E. Cell Cycle 16 707-713 (2017)
  198. Challenges in Targeting a Basic Helix-Loop-Helix Transcription Factor with Hydrocarbon-Stapled Peptides. Edwards AL, Meijer DH, Guerra RM, Molenaar RJ, Alberta JA, Bernal F, Bird GH, Stiles CD, Walensky LD. ACS Chem Biol 11 3146-3153 (2016)
  199. IKKγ-Mimetic Peptides Block the Resistance to Apoptosis Associated with Kaposi's Sarcoma-Associated Herpesvirus Infection. Briggs LC, Chan AWE, Davis CA, Whitelock N, Hotiana HA, Baratchian M, Bagnéris C, Selwood DL, Collins MK, Barrett TE. J Virol 91 (2017)
  200. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Sun XZ, Liao Y, Li W, Guo LM. Neural Regen Res 12 953-958 (2017)
  201. Preferential targeting of MCL-1 by a hydrocarbon-stapled BIM BH3 peptide. Hadji A, Schmitt GK, Schnorenberg MR, Roach L, Hickey CM, Leak LB, Tirrell MV, LaBelle JL. Oncotarget 10 6219-6233 (2019)
  202. BH3 helix-derived biophotonic nanoswitches regulate cytochrome c release in permeabilised cells. Mart RJ, Errington RJ, Watkins CL, Chappell SC, Wiltshire M, Jones AT, Smith PJ, Allemann RK. Mol Biosyst 9 2597-2603 (2013)
  203. Integration and oligomerization of Bax protein in lipid bilayers characterized by single molecule fluorescence study. Luo L, Yang J, Liu D. J Biol Chem 289 31708-31718 (2014)
  204. research-article Tracking BAX once its trigger is pulled. Gavathiotis E, Walensky LD. Cell Cycle 10 868-870 (2011)
  205. APG-1252-12A induces mitochondria-dependent apoptosis through inhibiting the antiapoptotic proteins Bcl-2/Bcl-xl in HL-60 cells. Wang J, Yang D, Luo Q, Qiu M, Zhang L, Li B, Chen H, Yi H, Yan X, Li S, Sun J. Int J Oncol 51 563-572 (2017)
  206. An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane. Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, OuYang B. EMBO J 40 e106438 (2021)
  207. BIMEL is a key effector molecule in oxidative stress-mediated apoptosis in acute myeloid leukemia cells when combined with arsenic trioxide and buthionine sulfoximine. Tanaka Y, Komatsu T, Shigemi H, Yamauchi T, Fujii Y. BMC Cancer 14 27 (2014)
  208. Di(2-ethylhexyl) phthalate induces apoptosis through mitochondrial pathway in GC-2spd cells. Fu G, Dai J, Zhang D, Zhu L, Tang X, Zhang L, Zhou T, Duan P, Quan C, Zhang Z, Song S, Shi Y. Environ Toxicol 32 1055-1064 (2017)
  209. Homogeneous Oligomers of Pro-apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Hauseman ZJ, Harvey EP, Newman CE, Wales TE, Bucci JC, Mintseris J, Schweppe DK, David L, Fan L, Cohen DT, Herce HD, Mourtada R, Ben-Nun Y, Bloch NB, Hansen SB, Wu H, Gygi SP, Engen JR, Walensky LD. Mol Cell 79 68-83.e7 (2020)
  210. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures. Rosas-Trigueros JL, Correa-Basurto J, Benítez-Cardoza CG, Zamorano-Carrillo A. Protein Sci 20 2035-2046 (2011)
  211. article-commentary Self-regulation of BAX-induced cell death. Reyna DE, Gavathiotis E. Oncotarget 7 66326-66327 (2016)
  212. The functional domains for Bax∆2 aggregate-mediated caspase 8-dependent cell death. Mañas A, Wang S, Nelson A, Li J, Zhao Y, Zhang H, Davis A, Xie B, Maltsev N, Xiang J. Exp Cell Res 359 342-355 (2017)
  213. The use of a neutral peptide aptamer scaffold to anchor BH3 peptides constitutes a viable approach to studying their function. Stadler LK, Tomlinson DC, Lee T, Knowles MA, Ko Ferrigno P. Cell Death Dis 5 e1037 (2014)
  214. Allostery in BAX protein activation. Jiang Z, Zhang H, Böckmann RA. J Biomol Struct Dyn 34 2469-2480 (2016)
  215. Comment Direct BAKtivation. Walensky LD. Nat Struct Mol Biol 20 536-538 (2013)
  216. Evaluation and Elucidation Studies of Natural Aglycones for Anticancer Potential using Apoptosis-Related Markers: An In silico Study. Akhtar S, Khan MKA, Arif JM. Interdiscip Sci 10 297-310 (2018)
  217. Galectin-1 Modulates the Survival and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Sensitivity in Human Hepatocellular Carcinoma Cells. Li J, Sun RR, Yu ZJ, Liang H, Shen S, Kan Q. Cancer Biother Radiopharm 30 336-341 (2015)
  218. Inter-organellar communication with mitochondria regulates both the intrinsic and extrinsic pathways of apoptosis. Renault TT, Chipuk JE. Commun Integr Biol 6 e22872 (2013)
  219. Molecular mechanism of local drug delivery with Paclitaxel-eluting membranes in biliary and pancreatic cancer: new application for an old drug. Bang S, Jang SI, Lee SY, Baek YY, Yun J, Oh SJ, Lee CW, Jo EA, Na K, Yang S, Lee DH, Lee DK. Gastroenterol Res Pract 2015 568981 (2015)
  220. NMR studies of interactions between Bax and BH3 domain-containing peptides in the absence and presence of CHAPS. Yao S, Westphal D, Babon JJ, Thompson GV, Robin AY, Adams JM, Colman PM, Czabotar PE. Arch Biochem Biophys 545 33-43 (2014)
  221. Pancreatic β-Cell Death due to Pdx-1 Deficiency Requires Multi-BH Domain Protein Bax but Not Bak. Sun J, Mao LQ, Polonsky KS, Ren DC. J Biol Chem 291 13529-13534 (2016)
  222. The dynamics of Bax channel formation: influence of ionic strength. Ganesan V, Walsh T, Chang KT, Colombini M. Biophys J 103 483-491 (2012)
  223. Therapeutic potential of a peptide targeting BCL-2 cell guardians in cancer. Adams JM. J Clin Invest 122 1965-1967 (2012)
  224. Unlatched BAX pairs for death. Lamb HM, Hardwick JM. Cell 152 383-384 (2013)
  225. Aileron staples peptides. Wolfson W. Chem Biol 16 910-912 (2009)
  226. BAX and BAK caught in the act. Yao Y, Marassi FM. Mol Cell 36 353-354 (2009)
  227. Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1). Delbridge AR, Chappaz S, Ritchie ME, Kile BT, Strasser A, Grabow S. Br J Haematol 174 962-969 (2016)
  228. Site-Dependent Cysteine Lipidation Potentiates the Activation of Proapoptotic BAX. Cohen DT, Wales TE, McHenry MW, Engen JR, Walensky LD. Cell Rep 30 3229-3239.e6 (2020)
  229. Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Hung CL, Chang HH, Lee SW, Chiang YW. Cell Death Differ 28 1910-1925 (2021)
  230. The role of conformational heterogeneity in regulating the apoptotic activity of BAX protein. Kao TY, Tsai CJ, Lan YJ, Chiang YW. Phys Chem Chem Phys 19 9584-9591 (2017)
  231. Transient Unfolding and Long-Range Interactions in Viral BCL2 M11 Enable Binding to the BECN1 BH3 Domain. Ramanathan A, Parvatikar A, Chennubhotla SC, Mei Y, Sinha SC. Biomolecules 10 (2020)
  232. (-)-Gochnatiolide B, synthesized from dehydrocostuslactone, exhibits potent anti-bladder cancer activity in vitro and in vivo. Chen Y, Li W, Zeng Z, Tang Y. Sci Rep 8 8807 (2018)
  233. A 3(10)-helical pentapeptide in water: interplay of alpha,alpha-disubstituted amino acids and the central residue on structure formation. Wang J, McElheny D, Fu Y, Li G, Kim J, Zhou Z, Wu L, Keiderling TA, Hammer RP. Biopolymers 92 452-464 (2009)
  234. Activating the Intrinsic Pathway of Apoptosis Using BIM BH3 Peptides Delivered by Peptide Amphiphiles with Endosomal Release. Schnorenberg MR, Bellairs JA, Samaeekia R, Acar H, Tirrell MV, LaBelle JL. Materials (Basel) 12 (2019)
  235. Bax and Bif-1 proteins interact on Bilayer Lipid Membrane and form pore. Gupta R, Ghosh S. Biochem Biophys Res Commun 463 751-755 (2015)
  236. research-article Bcl-2 turns deadly. Qi B, Hardwick JM. Nat Chem Biol 4 722-723 (2008)
  237. Mitochondria and apoptosis: a quick take on a long view. Parsons MJ, Green DR. F1000 Biol Rep 1 17 (2009)
  238. Myeloid leukemia factor 1 interfered with Bcl-XL to promote apoptosis and its function was regulated by 14-3-3. Sun Y, Fu A, Xu W, Chao JR, Moshiach S, Morris SW. J Physiol Biochem 71 807-821 (2015)
  239. Synthesis of novel dibenzoxanthene derivatives and observation of apoptosis in human hepatocellular cancer cells. Yang HH, Liu YJ, Wang XZ. Bioorg Chem 72 333-344 (2017)
  240. Tailor-made designer helical peptides that induce mitochondrion-mediated cell death without necrosis. Nogami K, Takahama K, Okushima A, Oyoshi T, Fujimoto K, Inouye M. Chembiochem 15 2571-2576 (2014)
  241. Uncoupling the Folding-Function Paradigm of Lytic Peptides to Deliver Impermeable Inhibitors of Intracellular Protein-Protein Interactions. Miller SE, Tsuji K, Abrams RPM, Burke TR, Schneider JP. J Am Chem Soc 142 19950-19955 (2020)
  242. A screening strategy for trapping the inactive conformer of a dimeric enzyme with a small molecule inhibitor. Craik CS, Shahian T. Methods Mol Biol 928 119-131 (2012)
  243. BAX mitochondrial integration is regulated allosterically by its α1-α2 loop. Dengler MA, Gibson L, Adams JM. Cell Death Differ 28 3270-3281 (2021)
  244. Letter Cheating Death: New Molecules Block BAX. Walensky LD. Trends Mol Med 25 259-261 (2019)
  245. Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis. Gitego N, Agianian B, Mak OW, Kumar Mv V, Cheng EH, Gavathiotis E. Nat Commun 14 8381 (2023)
  246. D,L-Methadone causes leukemic cell apoptosis via an OPRM1-triggered increase in IP3R-mediated ER Ca2+ release and decrease in Ca2+ efflux, elevating [Ca2+]i. Lee J, Rosales JL, Byun HG, Lee KY. Sci Rep 11 1009 (2021)
  247. DRP1 interacts directly with BAX to induce its activation and apoptosis. Jenner A, Peña-Blanco A, Salvador-Gallego R, Ugarte-Uribe B, Zollo C, Ganief T, Bierlmeier J, Mund M, Lee JE, Ries J, Schwarzer D, Macek B, Garcia-Saez AJ. EMBO J 41 e108587 (2022)
  248. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. van der Zwet JCG, Buijs-Gladdines JGCAM, Cordo' V, Debets DO, Smits WK, Chen Z, Dylus J, Zaman GJR, Altelaar M, Oshima K, Bornhauser B, Bourquin JP, Cools J, Ferrando AA, Vormoor J, Pieters R, Vormoor B, Meijerink JPP. Leukemia 35 3394-3405 (2021)
  249. Editorial Pulling the BAX trigger for tumor cell death. Reyna DE, Gavathiotis E. Oncotarget 9 8204-8205 (2018)
  250. RNAi targeting Nogo Receptor enhanced survival and proliferation of murine retinal ganglion cells during N-methyl-D-aspartate-induced optic nerve crush. Zeng K, Zhong B, Shen XL, Fang M, Lin BT, Ma DH. Oncotarget 8 65009-65021 (2017)
  251. The conformational stability of pro-apoptotic BAX is dictated by discrete residues of the protein core. Bloch NB, Wales TE, Prew MS, Levy HR, Engen JR, Walensky LD. Nat Commun 12 4932 (2021)
  252. In vitro toxicogenomic activity of an MTA/salicylate-based endodontic sealer. Leme KSV, Salvadori DMF. Toxicol Rep 9 1076-1081 (2022)
  253. News A taste of the early steps in BAX activation with FLAMBE. Gil M, Hanna MR, Gama V. Cell Rep Methods 2 100190 (2022)
  254. An atlas of inter- and intra-tumor heterogeneity of apoptosis competency in colorectal cancer tissue at single-cell resolution. Lindner AU, Salvucci M, McDonough E, Cho S, Stachtea X, O'Connell EP, Corwin AD, Santamaria-Pang A, Carberry S, Fichtner M, Van Schaeybroeck S, Laurent-Puig P, Burke JP, McNamara DA, Lawler M, Sood A, Graf JF, Rehm M, Dunne PD, Longley DB, Ginty F, Prehn JHM. Cell Death Differ 29 806-817 (2022)
  255. An exploratory research on antitumor effect of drug-eluting slow-releasing electrospinning membranes. Li L, Li F, Zhao Z, Xie R, Xu D, Ding M, Zhang J, Shen D, Fei J. Heliyon 9 e20295 (2023)
  256. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Moldoveanu T. Bioessays 45 e2200221 (2023)
  257. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells RW. Mol Neurodegener 18 67 (2023)
  258. BCL-2 Protein Family Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy. Garner TP, Gavathiotis E. Methods Mol Biol 1877 217-231 (2019)
  259. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, Nordstrøm LU, Narayanagari SR, Chi P, Vilar E, Tsirigos A, Gavathiotis E. Nat Commun 13 1199 (2022)
  260. Covalent inhibition of pro-apoptotic BAX. McHenry MW, Shi P, Camara CM, Cohen DT, Rettenmaier TJ, Adhikary U, Gygi MA, Yang K, Gygi SP, Wales TE, Engen JR, Wells JA, Walensky LD. Nat Chem Biol (2024)
  261. Deubiquitinating Enzyme USP12 Regulates the Pro-Apoptosis Protein Bax. Choi HS, Lim ES, Baek KH. Int J Mol Sci 23 13107 (2022)
  262. Direct Measurement of the Affinity between tBid and Bax in a Mitochondria-Like Membrane. Rose M, Kurylowicz M, Mahmood M, Winkel S, Moran-Mirabal JM, Fradin C. Int J Mol Sci 22 (2021)
  263. Eltrombopag directly activates BAK and induces apoptosis. Chen M, Hu L, Bao X, Ye K, Li Y, Zhang Z, Kaufmann SH, Xiao J, Dai H. Cell Death Dis 14 394 (2023)
  264. FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX. Mohammed JN, Gelles JD, Chipuk JE. STAR Protoc 3 101252 (2022)
  265. Isolation of Synthetic Antibodies Against BCL-2-Associated X Protein (BAX). Dai Z, Lai JR. Methods Mol Biol 1877 351-357 (2019)
  266. Musings on genome medicine: cancer genetics and the promise of effective treatment. Nathan DG, Orkin SH. Genome Med 1 49 (2009)
  267. Oligomerization process of Bcl-2 associated X protein revealed from intermediate structures in solution. Shih O, Yeh YQ, Liao KF, Sung TC, Chiang YW, Jeng US. Phys Chem Chem Phys 19 7947-7954 (2017)
  268. Parkin-mediated ubiquitination inhibits BAK apoptotic activity by blocking its canonical hydrophobic groove. Cheng P, Hou Y, Bian M, Fang X, Liu Y, Rao Y, Cao S, Liu Y, Zhang S, Chen Y, Dong X, Liu Z. Commun Biol 6 1260 (2023)
  269. Peptides from human BNIP5 and PXT1 and non-native binders of pro-apoptotic BAK can directly activate or inhibit BAK-mediated membrane permeabilization. Aguilar F, Yu S, Grant RA, Swanson S, Ghose D, Su BG, Sarosiek KA, Keating AE. Structure 31 265-281.e7 (2023)
  270. Reduced ER-mitochondria connectivity promotes neuroblastoma multidrug resistance. Çoku J, Booth DM, Skoda J, Pedrotty MC, Vogel J, Liu K, Vu A, Carpenter EL, Ye JC, Chen MA, Dunbar P, Scadden E, Yun TD, Nakamaru-Ogiso E, Area-Gomez E, Li Y, Goldsmith KC, Reynolds CP, Hajnoczky G, Hogarty MD. EMBO J 41 e108272 (2022)
  271. Structural basis of BAK activation in mitochondrial apoptosis initiation. Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, Vaithiyalingam S, Waddell MB, Moldoveanu T. Nat Commun 13 250 (2022)
  272. Structure of the BAK-activating antibody 7D10 bound to BAK reveals an unexpected role for the α1-α2 loop in BAK activation. Robin AY, Miller MS, Iyer S, Shi MX, Wardak AZ, Lio D, Smith NA, Smith BJ, Birkinshaw RW, Czabotar PE, Kluck RM, Colman PM. Cell Death Differ (2022)
  273. Study of the Bcl-2 Interactome by BiFC Reveals Differences in the Activation Mechanism of Bax and Bak. Gonzalo Ó, Benedi A, Vela L, Anel A, Naval J, Marzo I. Cells 12 800 (2023)
  274. Synergistic activity of combined inhibition of anti-apoptotic molecules in B-cell precursor ALL. Seyfried F, Stirnweiß FU, Niedermayer A, Enzenmüller S, Hörl RL, Münch V, Köhrer S, Debatin KM, Meyer LH. Leukemia (2022)
  275. Synthesis and inhibitory effect of 10-chlorocanthin-6-one on ovarian cancer HO8910PM cells. Li W, Chen Y, Sheng Y, Xie Z, Tang Y. Biotechnol Lett 40 23-30 (2018)
  276. Synthetic Dibenzoxanthene Derivatives Induce Apoptosis Through Mitochondrial Pathway in Human Hepatocellular Cancer Cells. Jia Z, Yang HH, Liu YJ, Wang XZ. Appl Biochem Biotechnol 186 145-160 (2018)
  277. [Physiological Function and Structural Basis of Bcl-2 Family Proteins]. 健愉 冯, 玉山 朱, 陈 权, 凌 林, Jianyu F, Yushan Z, Quan C, Jialing L. Zhongguo Xi Bao Sheng Wu Xue Xue Bao 41 1477-1489 (2019)