2jy8 Citations

Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch.

J Biol Chem 283 5427-40 (2008)
Cited: 93 times
EuropePMC logo PMID: 18083707

Abstract

The p62 protein functions as a scaffold in signaling pathways that lead to activation of NF-kappaB and is an important regulator of osteoclastogenesis. Mutations affecting the receptor activator of NF-kappaB signaling axis can result in human skeletal disorders, including those identified in the C-terminal ubiquitin-associated (UBA) domain of p62 in patients with Paget disease of bone. These observations suggest that the disease may involve a common mechanism related to alterations in the ubiquitin-binding properties of p62. The structural basis for ubiquitin recognition by the UBA domain of p62 has been investigated using NMR and reveals a novel binding mechanism involving a slow exchange structural reorganization of the UBA domain to a "bound" non-canonical UBA conformation that is not significantly populated in the absence of ubiquitin. The repacking of the three-helix bundle generates a binding surface localized around the conserved Xaa-Gly-Phe-Xaa loop that appears to optimize both hydrophobic and electrostatic surface complementarity with ubiquitin. NMR titration analysis shows that the p62-UBA binds to Lys 48-linked di-ubiquitin with approximately 4-fold lower affinity than to mono-ubiquitin, suggesting preferential binding of the p62-UBA to single ubiquitin units, consistent with the apparent in vivo preference of the p62 protein for Lys 63-linked polyubiquitin chains (which adopt a more open and extended structure). The conformational switch observed on binding may represent a novel mechanism that underlies specificity in regulating signalinduced protein recognition events.

Reviews citing this publication (32)

  1. Selective autophagy mediated by autophagic adapter proteins. Johansen T, Lamark T. Autophagy 7 279-296 (2011)
  2. A role for ubiquitin in selective autophagy. Kirkin V, McEwan DG, Novak I, Dikic I. Mol. Cell 34 259-269 (2009)
  3. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. Korolchuk VI, Menzies FM, Rubinsztein DC. FEBS Lett. 584 1393-1398 (2010)
  4. Integration of clearance mechanisms: the proteasome and autophagy. Wong E, Cuervo AM. Cold Spring Harb Perspect Biol 2 a006734 (2010)
  5. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C. Circ. Res. 106 463-478 (2010)
  6. Mechanisms of Selective Autophagy. Zaffagnini G, Martens S. J. Mol. Biol. 428 1714-1724 (2016)
  7. The role of 'eat-me' signals and autophagy cargo receptors in innate immunity. Boyle KB, Randow F. Curr. Opin. Microbiol. 16 339-348 (2013)
  8. Protein oxidation in aging and the removal of oxidized proteins. Höhn A, König J, Grune T. J Proteomics 92 132-159 (2013)
  9. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Yamamoto A, Simonsen A. Neurobiol. Dis. 43 17-28 (2011)
  10. Fighting disease by selective autophagy of aggregate-prone proteins. Knaevelsrud H, Simonsen A. FEBS Lett. 584 2635-2645 (2010)
  11. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF. Cell. Mol. Biol. Lett. 21 29 (2016)
  12. Neuronal aggregates: formation, clearance, and spreading. Lim J, Yue Z. Dev. Cell 32 491-501 (2015)
  13. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease. Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I. Prog. Neurobiol. 96 87-95 (2012)
  14. Interaction domains of p62: a bridge between p62 and selective autophagy. Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. DNA Cell Biol. 32 220-227 (2013)
  15. Pathophysiological importance of aggregated damaged proteins. Höhn A, Jung T, Grune T. Free Radic. Biol. Med. 71 70-89 (2014)
  16. Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways. Delgado ME, Dyck L, Laussmann MA, Rehm M. Cell Death Dis 5 e1011 (2014)
  17. Structure biology of selective autophagy receptors. Kim BW, Kwon DH, Song HK. BMB Rep 49 73-80 (2016)
  18. Selective Autophagy and Xenophagy in Infection and Disease. Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. Front Cell Dev Biol 6 147 (2018)
  19. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Root J, Merino P, Nuckols A, Johnson M, Kukar T. Neurobiol Dis 154 105360 (2021)
  20. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. Song WH, Ballard JW, Yi YJ, Sutovsky P. Biomed Res Int 2014 981867 (2014)
  21. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Kocaturk NM, Gozuacik D. Front Cell Dev Biol 6 128 (2018)
  22. Structural insights into specificity and diversity in mechanisms of ubiquitin recognition by ubiquitin-binding domains. Searle MS, Garner TP, Strachan J, Long J, Adlington J, Cavey JR, Shaw B, Layfield R. Biochem. Soc. Trans. 40 404-408 (2012)
  23. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. Mihalas BP, Redgrove KA, McLaughlin EA, Nixon B. Oxid Med Cell Longev 2017 4015874 (2017)
  24. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. Danieli A, Martens S. J. Cell. Sci. 131 (2018)
  25. Genetic aspects of the Paget's disease of bone: concerns on the introduction of DNA-based tests in the clinical practice. Advantages and disadvantages of its application. Falchetti A, Marini F, Masi L, Amedei A, Brandi ML. Eur. J. Clin. Invest. 40 655-667 (2010)
  26. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Zientara-Rytter K, Subramani S. Cells 8 (2019)
  27. Mechanistically Dissecting Autophagy: Insights from In Vitro Reconstitution. Brier LW, Zhang M, Ge L. J. Mol. Biol. 428 1700-1713 (2016)
  28. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Mishra R, Upadhyay A, Prajapati VK, Mishra A. Med Res Rev 38 1916-1973 (2018)
  29. Autophagy in C. elegans development. Palmisano NJ, Meléndez A. Dev. Biol. 447 103-125 (2019)
  30. Scaffold proteins as dynamic integrators of biological processes. DiRusso CJ, Dashtiahangar M, Gilmore TD. J Biol Chem 298 102628 (2022)
  31. p62/SQSTM1 and Selective Autophagy in Cardiometabolic Diseases. Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B. Antioxid Redox Signal 31 458-471 (2019)
  32. Molecular Mechanisms of Senescence and Implications for the Treatment of Myeloid Malignancies. Ernst P, Heidel FH. Cancers (Basel) 13 612 (2021)

Articles citing this publication (61)

  1. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. Nat. Cell Biol. 12 119-131 (2010)
  2. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, Kakizuka A, Sztul E, Chakraborty T, Sasakawa C. Nat. Cell Biol. 11 1233-1240 (2009)
  3. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Svenning S, Lamark T, Krause K, Johansen T. Autophagy 7 993-1010 (2011)
  4. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, Hipp MS, Lage K, Xavier RJ, Ryu KY, Taguchi K, Yamamoto M, Tanaka K, Mizushima N, Komatsu M, Kopito RR. J. Cell Biol. 191 537-552 (2010)
  5. Protein aggregation and degradation mechanisms in neurodegenerative diseases. Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A. Am J Neurodegener Dis 2 1-14 (2013)
  6. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z. PLoS Genet. 11 e1004987 (2015)
  7. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Matsumoto G, Shimogori T, Hattori N, Nukina N. Hum. Mol. Genet. 24 4429-4442 (2015)
  8. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Wurzer B, Zaffagnini G, Fracchiolla D, Turco E, Abert C, Romanov J, Martens S. Elife 4 e08941 (2015)
  9. Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. Isogai S, Morimoto D, Arita K, Unzai S, Tenno T, Hasegawa J, Sou YS, Komatsu M, Tanaka K, Shirakawa M, Tochio H. J. Biol. Chem. 286 31864-31874 (2011)
  10. RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. Tang F, Wang B, Li N, Wu Y, Jia J, Suo T, Chen Q, Liu YJ, Tang J. PLoS ONE 6 e24367 (2011)
  11. The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain. Agromayor M, Soler N, Caballe A, Kueck T, Freund SM, Allen MD, Bycroft M, Perisic O, Ye Y, McDonald B, Scheel H, Hofmann K, Neil SJ, Martin-Serrano J, Williams RL. Structure 20 414-428 (2012)
  12. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R. Autophagy 12 1094-1104 (2016)
  13. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D, Jho EH. Oncogenesis 2 e64 (2013)
  14. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. FASEB J. 25 2700-2710 (2011)
  15. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. Geisler S, Vollmer S, Golombek S, Kahle PJ. J. Cell. Sci. 127 3280-3293 (2014)
  16. C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation. Heinen C, Acs K, Hoogstraten D, Dantuma NP. Nat Commun 2 191 (2011)
  17. The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function. Wu-Baer F, Ludwig T, Baer R. Mol. Cell. Biol. 30 2787-2798 (2010)
  18. Receptor proteins in selective autophagy. Behrends C, Fulda S. Int J Cell Biol 2012 673290 (2012)
  19. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin. Tung YT, Hsu WM, Lee H, Huang WP, Liao YF. Cell. Mol. Neurobiol. 30 795-806 (2010)
  20. K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNγ-Stimulated Human Cells. Clough B, Wright JD, Pereira PM, Hirst EM, Johnston AC, Henriques R, Frickel EM. PLoS Pathog. 12 e1006027 (2016)
  21. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. Nakashima H, Nguyen T, Goins WF, Chiocca EA. J. Biol. Chem. 290 1485-1495 (2015)
  22. Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. Walinda E, Morimoto D, Sugase K, Konuma T, Tochio H, Shirakawa M. J. Biol. Chem. 289 13890-13902 (2014)
  23. p62 filaments capture and present ubiquitinated cargos for autophagy. Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R, Tarafder AK, Sachse C, Martens S. EMBO J. 37 (2018)
  24. Structural analysis of the conserved ubiquitin-binding motifs (UBMs) of the translesion polymerase iota in complex with ubiquitin. Burschowsky D, Rudolf F, Rabut G, Herrmann T, Peter M, Wider G. J. Biol. Chem. 286 1364-1373 (2011)
  25. Independent interactions of ubiquitin-binding domains in a ubiquitin-mediated ternary complex. Garner TP, Strachan J, Shedden EC, Long JE, Cavey JR, Shaw B, Layfield R, Searle MS. Biochemistry 50 9076-9087 (2011)
  26. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Xie X, Li F, Wang Y, Wang Y, Lin Z, Cheng X, Liu J, Chen C, Pan L. Autophagy 11 1775-1789 (2015)
  27. RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy. Heath RJ, Goel G, Baxt LA, Rush JS, Mohanan V, Paulus GLC, Jani V, Lassen KG, Xavier RJ. Cell Rep 17 2183-2194 (2016)
  28. Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1. Song J, Park JK, Lee JJ, Choi YS, Ryu KS, Kim JH, Kim E, Lee KJ, Jeon YH, Kim EE. Protein Sci. 18 2265-2276 (2009)
  29. Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm. Schmucki R, Yokoyama S, Güntert P. J. Biomol. NMR 43 97-109 (2009)
  30. Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco. Zientara-Rytter K, Sirko A. Front Plant Sci 5 13 (2014)
  31. Monoubiquitination of ancient ubiquitous protein 1 promotes lipid droplet clustering. Lohmann D, Spandl J, Stevanovic A, Schoene M, Philippou-Massier J, Thiele C. PLoS ONE 8 e72453 (2013)
  32. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, Esposito T, Gennari L, Merlotti D, Rendina D, Rea SL, Sultana M, Searle MS, Layfield R. Biochim. Biophys. Acta 1842 992-1000 (2014)
  33. Targeted sequencing of the Paget's disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget's disease of bone. Vallet M, Soares DC, Wani S, Sophocleous A, Warner J, Salter DM, Ralston SH, Albagha OM. Hum. Mol. Genet. 24 3286-3295 (2015)
  34. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/α-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Feng L, Zhang J, Zhu N, Ding Q, Zhang X, Yu J, Qiang W, Zhang Z, Ma Y, Huang D, Shen Y, Fang S, Yu Y, Wang H, Shen Y. Autophagy 13 686-702 (2017)
  35. CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation. Li X, Wu XQ, Deng R, Li DD, Tang J, Chen WD, Chen JH, Ji J, Jiao L, Jiang S, Yang F, Feng GK, Senthilkumar R, Yue F, Zhang HL, Wu RY, Yu Y, Xu XL, Mai J, Li ZL, Peng XD, Huang Y, Huang X, Ma NF, Tao Q, Zeng YX, Zhu XF. Nat Commun 8 1159 (2017)
  36. Mutant p62/SQSTM1 UBA domains linked to Paget's disease of bone differ in their abilities to function as stabilization signals. Heinen C, Garner TP, Long J, Böttcher C, Ralston SH, Cavey JR, Searle MS, Layfield R, Dantuma NP. FEBS Lett. 584 1585-1590 (2010)
  37. Decoding the patterns of ubiquitin recognition by ubiquitin-associated domains from free energy simulations. Bouvier B. Phys Chem Chem Phys 16 48-60 (2014)
  38. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes. Nakayasu ES, Ansong C, Brown JN, Yang F, Lopez-Ferrer D, Qian WJ, Smith RD, Adkins JN. J. Am. Soc. Mass Spectrom. 24 1214-1223 (2013)
  39. Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter. Kwon DH, Park OH, Kim L, Jung YO, Park Y, Jeong H, Hyun J, Kim YK, Song HK. Nat Commun 9 3291 (2018)
  40. Mechanistic insights into enhancement or inhibition of phase separation by different polyubiquitin chains. Dao TP, Yang Y, Presti MF, Cosgrove MS, Hopkins JB, Ma W, Loh SN, Castañeda CA. EMBO Rep 23 e55056 (2022)
  41. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Turco E, Savova A, Gere F, Ferrari L, Romanov J, Schuschnig M, Martens S. Nat Commun 12 5212 (2021)
  42. Novel polyubiquitin imaging system, PolyUb-FC, reveals that K33-linked polyubiquitin is recruited by SQSTM1/p62. Nibe Y, Oshima S, Kobayashi M, Maeyashiki C, Matsuzawa Y, Otsubo K, Matsuda H, Aonuma E, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Nakada S, Watanabe M. Autophagy 14 347-358 (2018)
  43. Structural insights into interactions between ubiquitin specific protease 5 and its polyubiquitin substrates by mass spectrometry and ion mobility spectrometry. Scott D, Layfield R, Oldham NJ. Protein Sci. 24 1257-1263 (2015)
  44. Transcriptomic analysis of the autophagy machinery in crustaceans. Suwansa-Ard S, Kankuan W, Thongbuakaew T, Saetan J, Kornthong N, Kruangkum T, Khornchatri K, Cummins SF, Isidoro C, Sobhon P. BMC Genomics 17 587 (2016)
  45. VBP1 facilitates proteasome and autophagy-mediated degradation of MutS homologue hMSH4. Xu Y, Her C. FASEB J. 27 4799-4810 (2013)
  46. Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. Mazzucco AE, Smogorzewska A, Kang C, Luo J, Schlabach MR, Xu Q, Patel R, Elledge SJ. Genes Dev. 31 1933-1938 (2017)
  47. Mass spectrometry insights into a tandem ubiquitin-binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin. Scott D, Garner TP, Long J, Strachan J, Mistry SC, Bottrill AR, Tooth DJ, Searle MS, Oldham NJ, Layfield R. Proteomics 16 1961-1969 (2016)
  48. Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy. Lee A, Rayner SL, Gwee SSL, De Luca A, Shahheydari H, Sundaramoorthy V, Ragagnin A, Morsch M, Radford R, Galper J, Freckleton S, Shi B, Walker AK, Don EK, Cole NJ, Yang S, Williams KL, Yerbury JJ, Blair IP, Atkin JD, Molloy MP, Chung RS. Cell. Mol. Life Sci. 75 335-354 (2018)
  49. Protein kinase CK2 modulates HSJ1 function through phosphorylation of the UIM2 domain. Ottaviani D, Marin O, Arrigoni G, Franchin C, Vilardell J, Sandre M, Li W, Parfitt DA, Pinna LA, Cheetham ME, Ruzzene M. Hum. Mol. Genet. 26 611-623 (2017)
  50. Sortase-mediated chemical protein synthesis reveals the bidentate binding of bisphosphorylated p62 with K63 diubiquitin. Tan XL, Pan M, Zheng Y, Gao S, Liang LJ, Li YM. Chem Sci 8 6881-6887 (2017)
  51. PB1 and UBA domains of p62 are essential for aggresome-like induced structure formation. Cabe M, Rademacher DJ, Karlsson AB, Cherukuri S, Bakowska JC. Biochem. Biophys. Res. Commun. 503 2306-2311 (2018)
  52. The pros and cons of ubiquitination on the formation of protein condensates. Hou XN, Tang C. Acta Biochim Biophys Sin (Shanghai) 55 1084-1098 (2023)
  53. Autophagy differentially regulates TNF receptor Fn14 by distinct mammalian Atg8 proteins. Winer H, Fraiberg M, Abada A, Dadosh T, Tamim-Yecheskel BC, Elazar Z. Nat Commun 9 3744 (2018)
  54. Cytoplasmic Cargo Receptor p62 Inhibits Avibirnavirus Replication by Mediating Autophagic Degradation of Viral Protein VP2. Li Y, Hu B, Ji G, Zhang Y, Xu C, Lei J, Ding C, Zhou J. J Virol 94 e01255-20 (2020)
  55. Paget's disease: epidemiology and pathophysiology. Seton M. Curr Osteoporos Rep 6 125-129 (2008)
  56. The Cys-N-degron pathway modulates pexophagy through the N-terminal oxidation and arginylation of ACAD10. Shim SM, Choi HR, Kwon SC, Kim HY, Sung KW, Jung EJ, Mun SR, Bae TH, Kim DH, Son YS, Jung CH, Lee J, Lee MJ, Park JW, Kwon YT. Autophagy 19 1642-1661 (2023)
  57. Bacterial interaction with host autophagy. Wu YW, Li F. Virulence 10 352-362 (2019)
  58. Featuring ACE2 binding SARS-CoV and SARS-CoV-2 through a conserved evolutionary pattern of amino acid residues. Carvalho PPD, Alves NA. J Biomol Struct Dyn 1-10 (2021)
  59. Inhibition of the proteasome and proteaphagy enhances apoptosis in FLT3-ITD-driven acute myeloid leukemia. Lopez-Reyes RG, Quinet G, Gonzalez-Santamarta M, Larrue C, Sarry JE, Rodriguez MS. FEBS Open Bio 11 48-60 (2021)
  60. Tethering ATG16L1 or LC3 induces targeted autophagic degradation of protein aggregates and mitochondria. Mei L, Chen X, Wei F, Huang X, Liu L, Yao J, Chen J, Luo X, Wang Z, Yang A. Autophagy 19 2997-3013 (2023)
  61. The high stability of the three-helix bundle UBA domain of p62 protein as revealed by molecular dynamics simulations. Teixeira AL, Alves NA. J Mol Model 27 102 (2021)