2jj2 Citations

Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols.

Proc Natl Acad Sci U S A 104 13632-7 (2007)
Related entries: 2jiz, 2jj1

Cited: 204 times
EuropePMC logo PMID: 17698806

Abstract

The structures of F(1)-ATPase from bovine heart mitochondria inhibited with the dietary phytopolyphenol, resveratrol, and with the related polyphenols quercetin and piceatannol have been determined at 2.3-, 2.4- and 2.7-A resolution, respectively. The inhibitors bind to a common site in the inside surface of an annulus made from loops in the three alpha- and three beta-subunits beneath the "crown" of beta-strands in their N-terminal domains. This region of F(1)-ATPase forms a bearing to allow the rotation of the tip of the gamma-subunit inside the annulus during catalysis. The binding site is a hydrophobic pocket between the C-terminal tip of the gamma-subunit and the beta(TP) subunit, and the inhibitors are bound via H-bonds mostly to their hydroxyl moieties mediated by bound water molecules and by hydrophobic interactions. There are no equivalent sites between the gamma-subunit and either the beta(DP) or the beta(E) subunit. The inhibitors probably prevent both the synthetic and hydrolytic activities of the enzyme by blocking both senses of rotation of the gamma-subunit. The beneficial effects of dietary resveratrol may derive in part by preventing mitochondrial ATP synthesis in tumor cells, thereby inducing apoptosis.

Reviews - 2jj2 mentioned but not cited (1)

Articles - 2jj2 mentioned but not cited (5)

  1. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 104 13632-13637 (2007)
  2. Theaflavins inhibit the ATP synthase and the respiratory chain without increasing superoxide production. Li B, Vik SB, Tu Y. J Nutr Biochem 23 953-960 (2012)
  3. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. Nucleic Acids Res 49 D1282-D1288 (2021)
  4. Antibacterial and ATP Synthesis Modulating Compounds from Salvia tingitana. Bisio A, Schito AM, Pedrelli F, Danton O, Reinhardt JK, Poli G, Tuccinardi T, Bürgi T, De Riccardis F, Giacomini M, Calzia D, Panfoli I, Schito GC, Hamburger M, De Tommasi N. J Nat Prod 83 1027-1042 (2020)
  5. The Flavone Cirsiliol from Salvia x jamensis Binds the F1 Moiety of ATP Synthase, Modulating Free Radical Production. Carlini L, Tancreda G, Iobbi V, Caicci F, Bruno S, Esposito A, Calzia D, Benini S, Bisio A, Manni L, Schito A, Traverso CE, Ravera S, Panfoli I. Cells 11 3169 (2022)


Reviews citing this publication (82)

  1. AMPK in Health and Disease. Steinberg GR, Kemp BE. Physiol Rev 89 1025-1078 (2009)
  2. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Hardie DG. Genes Dev 25 1895-1908 (2011)
  3. Targeting mitochondria for cancer therapy. Fulda S, Galluzzi L, Kroemer G. Nat Rev Drug Discov 9 447-464 (2010)
  4. Plant polyphenols: chemical properties, biological activities, and synthesis. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Angew Chem Int Ed Engl 50 586-621 (2011)
  5. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Bonkowski MS, Sinclair DA. Nat Rev Mol Cell Biol 17 679-690 (2016)
  6. AMPK--sensing energy while talking to other signaling pathways. Hardie DG. Cell Metab 20 939-952 (2014)
  7. The ATP synthase: the understood, the uncertain and the unknown. Walker JE. Biochem Soc Trans 41 1-16 (2013)
  8. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Bernardi P, Rasola A, Forte M, Lippe G. Physiol Rev 95 1111-1155 (2015)
  9. AMPK activators: mechanisms of action and physiological activities. Kim J, Yang G, Kim Y, Kim J, Ha J. Exp Mol Med 48 e224 (2016)
  10. Are sirtuins viable targets for improving healthspan and lifespan? Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R, de Cabo R. Nat Rev Drug Discov 11 443-461 (2012)
  11. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Kundu JK, Surh YJ. Cancer Lett 269 243-261 (2008)
  12. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Hardie DG. Diabetes 62 2164-2172 (2013)
  13. Resveratrol: its biologic targets and functional activity. Pervaiz S, Holme AL. Antioxid Redox Signal 11 2851-2897 (2009)
  14. AMPK activation: a therapeutic target for type 2 diabetes? Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. Diabetes Metab Syndr Obes 7 241-253 (2014)
  15. Seven sirtuins for seven deadly diseases of aging. Morris BJ. Free Radic Biol Med 56 133-171 (2013)
  16. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. Mol Aspects Med 31 145-170 (2010)
  17. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Hong S, Pedersen PL. Microbiol Mol Biol Rev 72 590-641, Table of Contents (2008)
  18. SIRT1: recent lessons from mouse models. Herranz D, Serrano M. Nat Rev Cancer 10 819-823 (2010)
  19. Polyphenols and human health: a prospectus. Visioli F, De La Lastra CA, Andres-Lacueva C, Aviram M, Calhau C, Cassano A, D'Archivio M, Faria A, Favé G, Fogliano V, Llorach R, Vitaglione P, Zoratti M, Edeas M. Crit Rev Food Sci Nutr 51 524-546 (2011)
  20. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Sandoval-Acuña C, Ferreira J, Speisky H. Arch Biochem Biophys 559 75-90 (2014)
  21. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Beauloye C, Bertrand L, Horman S, Hue L. Cardiovasc Res 90 224-233 (2011)
  22. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Weiskirchen S, Weiskirchen R. Adv Nutr 7 706-718 (2016)
  23. Quercetin and the mitochondria: A mechanistic view. de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Biotechnol Adv 34 532-549 (2016)
  24. Resveratrol and chemoprevention. Goswami SK, Das DK. Cancer Lett 284 1-6 (2009)
  25. SIRT1 metabolic actions: Integrating recent advances from mouse models. Boutant M, Cantó C. Mol Metab 3 5-18 (2014)
  26. Regulation of AMP-activated protein kinase by natural and synthetic activators. Grahame Hardie D. Acta Pharm Sin B 6 1-19 (2016)
  27. Mitochondrially targeted anti-cancer agents. Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrion 10 670-681 (2010)
  28. Metabolic effects of resveratrol: addressing the controversies. Bitterman JL, Chung JH. Cell Mol Life Sci 72 1473-1488 (2015)
  29. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? . Vara-Ciruelos D, Russell FM, Hardie DG. Open Biol 9 190099 (2019)
  30. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Oxid Med Cell Longev 2021 4946711 (2021)
  31. Natural Compounds Modulating Mitochondrial Functions. Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M. Evid Based Complement Alternat Med 2015 527209 (2015)
  32. AMP-activated protein kinase and metabolic control. Viollet B, Andreelli F. Handb Exp Pharmacol 303-330 (2011)
  33. Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Britton RG, Kovoor C, Brown K. Ann N Y Acad Sci 1348 124-133 (2015)
  34. ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. NavaneethaKrishnan S, Rosales JL, Lee KY. Oxid Med Cell Longev 2019 9051542 (2019)
  35. Anticancer drugs targeting the mitochondrial electron transport chain. Rohlena J, Dong LF, Ralph SJ, Neuzil J. Antioxid Redox Signal 15 2951-2974 (2011)
  36. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Teles YCF, Souza MSR, Souza MFV. Molecules 23 E480 (2018)
  37. Adenosine monophosphate-activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Krishan S, Richardson DR, Richardson DR, Sahni S. Mol Pharmacol 87 363-377 (2015)
  38. Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. Wood Dos Santos T, Cristina Pereira Q, Teixeira L, Gambero A, A Villena J, Lima Ribeiro M. Int J Mol Sci 19 E2757 (2018)
  39. Mitochondria as therapeutic targets for the treatment of malignant disease. Fulda S, Kroemer G. Antioxid Redox Signal 15 2937-2949 (2011)
  40. The Role of Resveratrol in Mammalian Reproduction. Pasquariello R, Verdile N, Brevini TAL, Gandolfi F, Boiti C, Zerani M, Maranesi M. Molecules 25 E4554 (2020)
  41. Life span extension by resveratrol, rapamycin, and metformin: The promise of dietary restriction mimetics for an healthy aging. Mouchiroud L, Molin L, Dallière N, Solari F. Biofactors 36 377-382 (2010)
  42. Mitochondrial drugs. Toogood PL. Curr Opin Chem Biol 12 457-463 (2008)
  43. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. Cameron RB, Beeson CC, Schnellmann RG. J Med Chem 59 10411-10434 (2016)
  44. Efficacy and Mechanism of Traditional Medicinal Plants and Bioactive Compounds against Clinically Important Pathogens. Mickymaray S. Antibiotics (Basel) 8 E257 (2019)
  45. Mitochondrial metabolism inhibitors for cancer therapy. Ramsay EE, Hogg PJ, Dilda PJ. Pharm Res 28 2731-2744 (2011)
  46. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Int J Mol Sci 21 E6014 (2020)
  47. ATP synthase: a molecular therapeutic drug target for antimicrobial and antitumor peptides. Ahmad Z, Okafor F, Azim S, Laughlin TF. Curr Med Chem 20 1956-1973 (2013)
  48. The mechanism of neuroprotective action of natural compounds. Wąsik A, Antkiewicz-Michaluk L. Pharmacol Rep 69 851-860 (2017)
  49. At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Kerimi A, Williamson G. Mol Nutr Food Res 60 1770-1788 (2016)
  50. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Ahmad Z, Laughlin TF. Curr Med Chem 17 2822-2836 (2010)
  51. Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Huang YY, Gusdon AM, Qu S. Lipids Health Dis 12 171 (2013)
  52. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Martelli AM, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, Billi AM, Manzoli L, Cappellini A, McCubrey JA. Expert Opin Ther Targets 16 729-742 (2012)
  53. mTOR: more targets of resveratrol? Widlund AL, Baur JA, Vang O. Expert Rev Mol Med 15 e10 (2013)
  54. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs-A mechanistic revisit to understand their mode of action. Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Pharmacol Res 113 636-674 (2016)
  55. Exploiting mitochondrial apoptosis for the treatment of cancer. Fulda S. Mitochondrion 10 598-603 (2010)
  56. Mitochondrial therapeutics for cardioprotection. Carreira RS, Lee P, Gottlieb RA. Curr Pharm Des 17 2017-2035 (2011)
  57. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism. Madrigal-Perez LA, Ramos-Gomez M. Int J Mol Sci 17 368 (2016)
  58. Mitochondrial dynamics in exercise physiology. Tanaka T, Nishimura A, Nishiyama K, Goto T, Numaga-Tomita T, Nishida M. Pflugers Arch 472 137-153 (2020)
  59. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Saqib U, Kelley TT, Panguluri SK, Liu D, Savai R, Baig MS, Schürer SC. Front Pharmacol 9 1201 (2018)
  60. SIRT1 and Kidney Function. Guan Y, Hao CM. Kidney Dis (Basel) 1 258-265 (2016)
  61. Dosis Facit Sanitatem-Concentration-Dependent Effects of Resveratrol on Mitochondria. Madreiter-Sokolowski CT, Sokolowski AA, Graier WF. Nutrients 9 E1117 (2017)
  62. Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Donadio G, Mensitieri F, Santoro V, Parisi V, Bellone ML, De Tommasi N, Izzo V, Dal Piaz F. Pharmaceutics 13 660 (2021)
  63. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Li Q, Cheng JC, Jiang Q, Lee WY. Aging Cell 20 e13301 (2021)
  64. The new role of F1Fo ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Mnatsakanyan N, Jonas EA. Exp Neurol 332 113400 (2020)
  65. Mitochondrial effects of plant-made compounds. Biasutto L, Szabo' I, Zoratti M. Antioxid Redox Signal 15 3039-3059 (2011)
  66. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation. Van Dyke MW. ChemMedChem 9 511-522 (2014)
  67. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase. Ahmad Z, Hassan SS, Azim S. Curr Med Chem 24 3894-3906 (2017)
  68. Mitochondrial DNA and Neurodegeneration: Any Role for Dietary Antioxidants? Bordoni L, Gabbianelli R. Antioxidants (Basel) 9 E764 (2020)
  69. Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. Lippe G, Coluccino G, Zancani M, Baratta W, Crusiz P. Oxid Med Cell Longev 2019 8743257 (2019)
  70. Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Lim KG, Gray AI, Anthony NG, Mackay SP, Pyne S, Pyne NJ. Arch Toxicol 88 2213-2232 (2014)
  71. ATP synthase: the right size base model for nanomotors in nanomedicine. Ahmad Z, Cox JL. ScientificWorldJournal 2014 567398 (2014)
  72. Natural products and other inhibitors of F1FO ATP synthase. Patel BA, D'Amico TL, Blagg BSJ. Eur J Med Chem 207 112779 (2020)
  73. Targeting mitochondrial function for the treatment of breast cancer. Deus CM, Coelho AR, Serafim TL, Oliveira PJ. Future Med Chem 6 1499-1513 (2014)
  74. Endocannabinoids, FOXO and the metabolic syndrome: redox, function and tipping point--the view from two systems. Nunn AV, Guy GW, Bell JD. Immunobiology 215 617-628 (2010)
  75. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics. Nakanishi-Matsui M, Sekiya M, Futai M. IUBMB Life 65 247-254 (2013)
  76. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Lee I. Cells 10 1346 (2021)
  77. A spotlight on underlying the mechanism of AMPK in diabetes complications. Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, Al-Harrasi A, Bungau S. Inflamm Res 70 939-957 (2021)
  78. The F1Fo-ATPase inhibitor protein IF1 in pathophysiology. Gatto C, Grandi M, Solaini G, Baracca A, Giorgio V. Front Physiol 13 917203 (2022)
  79. Mitochondrion at the Crossroad Between Nutrients and Epigenome. Taormina G, Russo A, Latteri MA, Mirisola MG. Front Endocrinol (Lausanne) 10 673 (2019)
  80. Role of AMPK in Diabetic Cardiovascular Complications: An Overview. Nellaiappan K, Yerra VG, Kumar A. Cardiovasc Hematol Disord Drug Targets 19 5-13 (2019)
  81. An overview of ATP synthase, inhibitors, and their toxicity. Althaher AR, Alwahsh M. Heliyon 9 e22459 (2023)
  82. Potential of Selected African Medicinal Plants as Alternative Therapeutics against Multi-Drug-Resistant Bacteria. Moiketsi BN, Makale KPP, Rantong G, Rahube TO, Makhzoum A. Biomedicines 11 2605 (2023)

Articles citing this publication (116)

  1. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, de Cabo R, Baur JA, Sinclair DA. Cell Metab 15 675-690 (2012)
  2. Dimers of mitochondrial ATP synthase form the permeability transition pore. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P. Proc Natl Acad Sci U S A 110 5887-5892 (2013)
  3. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG. Cell Metab 11 554-565 (2010)
  4. Xenohormesis: sensing the chemical cues of other species. Howitz KT, Sinclair DA. Cell 133 387-391 (2008)
  5. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 104 15671-15676 (2007)
  6. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z. Cell Metab 16 738-750 (2012)
  7. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F. J Biol Chem 285 36387-36394 (2010)
  8. Lecture AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Hardie DG. Biochem Soc Trans 39 1-13 (2011)
  9. Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P. EMBO Rep 18 1065-1076 (2017)
  10. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. Yun H, Park S, Kim MJ, Yang WK, Im DU, Yang KR, Hong J, Choe W, Kang I, Kim SS, Ha J. FEBS J 281 4421-4438 (2014)
  11. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Eid HM, Martineau LC, Saleem A, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, Nistor L, Afshar A, Arnason JT, Haddad PS. Mol Nutr Food Res 54 991-1003 (2010)
  12. Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N, Walsh J, Viskaduraki M, West K, Miller A, Hemingway D, Steward WP, Gescher AJ, Brown K. Sci Transl Med 7 298ra117 (2015)
  13. Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD. Robb EL, Page MM, Wiens BE, Stuart JA. Biochem Biophys Res Commun 367 406-412 (2008)
  14. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. Vollmar M, Schlieper D, Winn M, Büchner C, Groth G. J Biol Chem 284 18228-18235 (2009)
  15. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. Nin V, Escande C, Chini CC, Giri S, Camacho-Pereira J, Matalonga J, Lou Z, Chini EN. J Biol Chem 287 23489-23501 (2012)
  16. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Robb EL, Winkelmolen L, Visanji N, Brotchie J, Stuart JA. Biochem Biophys Res Commun 372 254-259 (2008)
  17. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria. Rees DM, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 109 11139-11143 (2012)
  18. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M. Nat Chem Biol 10 930-936 (2014)
  19. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Dadi PK, Ahmad M, Ahmad Z. Int J Biol Macromol 45 72-79 (2009)
  20. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. Chinnam N, Dadi PK, Sabri SA, Ahmad M, Kabir MA, Ahmad Z. Int J Biol Macromol 46 478-486 (2010)
  21. Up-regulation of adiponectin by resveratrol: the essential roles of the Akt/FOXO1 and AMP-activated protein kinase signaling pathways and DsbA-L. Wang A, Liu M, Liu X, Dong LQ, Glickman RD, Slaga TJ, Zhou Z, Liu F. J Biol Chem 286 60-66 (2011)
  22. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. Trampari E, Stevenson CE, Little RH, Wilhelm T, Lawson DM, Malone JG. J Biol Chem 290 24470-24483 (2015)
  23. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. Sallin O, Reymond L, Gondrand C, Raith F, Koch B, Johnsson K. Elife 7 e32638 (2018)
  24. Take a break--resveratrol in action on DNA. Gatz SA, Wiesmüller L. Carcinogenesis 29 321-332 (2008)
  25. SIRT1 takes a backseat to AMPK in the regulation of insulin sensitivity by resveratrol. Fullerton MD, Steinberg GR. Diabetes 59 551-553 (2010)
  26. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. J Transl Med 12 208 (2014)
  27. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Front Oncol 3 41 (2013)
  28. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice. Gueguen N, Desquiret-Dumas V, Leman G, Chupin S, Baron S, Nivet-Antoine V, Vessières E, Ayer A, Henrion D, Lenaers G, Reynier P, Procaccio V. PLoS One 10 e0144290 (2015)
  29. Resveratrol-Induced AMP-Activated Protein Kinase Activation Is Cell-Type Dependent: Lessons from Basic Research for Clinical Application. Lan F, Weikel KA, Cacicedo JM, Ido Y. Nutrients 9 E751 (2017)
  30. Pigment epithelium-derived factor binds to cell-surface F(1)-ATP synthase. Notari L, Arakaki N, Mueller D, Meier S, Amaral J, Becerra SP. FEBS J 277 2192-2205 (2010)
  31. Mitochondrial inhibitor as a new class of insulin sensitizer. Zhang Y, Ye J. Acta Pharm Sin B 2 341-349 (2012)
  32. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Xu T, Pagadala V, Mueller DM. Microb Cell 2 105-125 (2015)
  33. A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, Zoratti M, Paradisi C. Chembiochem 9 2633-2642 (2008)
  34. Cytotoxicity of mitochondria-targeted resveratrol derivatives: interactions with respiratory chain complexes and ATP synthase. Sassi N, Mattarei A, Azzolini M, Szabo' I, Paradisi C, Zoratti M, Biasutto L. Biochim Biophys Acta 1837 1781-1789 (2014)
  35. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides. Laughlin TF, Ahmad Z. Int J Biol Macromol 46 367-374 (2010)
  36. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons. Peng Y, Liu J, Shi L, Tang Y, Gao D, Long J, Liu J. J Neurochem 137 701-713 (2016)
  37. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum. Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 113 10860-10865 (2016)
  38. Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations. Okazaki K, Takada S. Structure 19 588-598 (2011)
  39. The six steps of the complete F1-ATPase rotary catalytic cycle. Sobti M, Ueno H, Noji H, Stewart AG. Nat Commun 12 4690 (2021)
  40. Mitochondrial F(0) F(1) -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S. Br J Pharmacol 166 2331-2347 (2012)
  41. Design, synthesis and spectroscopic studies of resveratrol aliphatic acid ligands of human serum albumin. Jiang YL. Bioorg Med Chem 16 6406-6414 (2008)
  42. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis. Gu C, Stashko MA, Puhl-Rubio AC, Chakraborty M, Chakraborty A, Frye SV, Pearce KH, Wang X, Shears SB, Wang H. J Med Chem 62 1443-1454 (2019)
  43. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Pineda-Sanabria SE, Robertson IM, Sykes BD. Biochemistry 50 1309-1320 (2011)
  44. Effect of structural modulation of polyphenolic compounds on the inhibition of Escherichia coli ATP synthase. Ahmad Z, Ahmad M, Okafor F, Jones J, Abunameh A, Cheniya RP, Kady IO. Int J Biol Macromol 50 476-486 (2012)
  45. NMR studies of an immunomodulatory benzodiazepine binding to its molecular target on the mitochondrial F(1)F(0)-ATPase. Stelzer AC, Frazee RW, Van Huis C, Cleary J, Opipari AW, Glick GD, Al-Hashimi HM. Biopolymers 93 85-92 (2010)
  46. Biotinylated quercetin as an intrinsic photoaffinity proteomics probe for the identification of quercetin target proteins. Wang RE, Hunt CR, Chen J, Taylor JS. Bioorg Med Chem 19 4710-4720 (2011)
  47. Chemical modifications of resveratrol for improved protein kinase C alpha activity. Das J, Pany S, Majhi A. Bioorg Med Chem 19 5321-5333 (2011)
  48. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H(+) pumping. Hotra A, Suter M, Biuković G, Ragunathan P, Kundu S, Dick T, Grüber G. FEBS J 283 1947-1961 (2016)
  49. AKT/mTOR as Novel Targets of Polyphenol Piceatannol Possibly Contributing to Inhibition of Proliferation of Cultured Prostate Cancer Cells. Hsieh TC, Lin CY, Lin HY, Wu JM. ISRN Urol 2012 272697 (2012)
  50. Effect of polyphenolic phytochemicals on ectopic oxidative phosphorylation in rod outer segments of bovine retina. Calzia D, Oneto M, Caicci F, Bianchini P, Ravera S, Bartolucci M, Diaspro A, Degan P, Manni L, Traverso CE, Panfoli I. Br J Pharmacol 172 3890-3903 (2015)
  51. Inhibition of ATP synthase by chlorinated adenosine analogue. Chen LS, Nowak BJ, Ayres ML, Krett NL, Rosen ST, Zhang S, Gandhi V. Biochem Pharmacol 78 583-591 (2009)
  52. Resveratrol induces SIRT1- and energy-stress-independent inhibition of tumor cell regrowth after low-dose platinum treatment. Björklund M, Roos J, Gogvadze V, Shoshan M. Cancer Chemother Pharmacol 68 1459-1467 (2011)
  53. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth. Ahmad Z, Laughlin TF, Kady IO. PLoS One 10 e0127802 (2015)
  54. Phenolic secoiridoids in extra virgin olive oil impede fibrogenic and oncogenic epithelial-to-mesenchymal transition: extra virgin olive oil as a source of novel antiaging phytochemicals. Vazquez-Martin A, Fernández-Arroyo S, Cufí S, Oliveras-Ferraros C, Lozano-Sánchez J, Vellón L, Micol V, Joven J, Segura-Carretero A, Menendez JA. Rejuvenation Res 15 3-21 (2012)
  55. Plant-Derived Polyphenols Modulate Human Dendritic Cell Metabolism and Immune Function via AMPK-Dependent Induction of Heme Oxygenase-1. Campbell NK, Fitzgerald HK, Fletcher JM, Dunne A. Front Immunol 10 345 (2019)
  56. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation. Shabani Nashtaei M, Amidi F, Sedighi Gilani MA, Aleyasin A, Bakhshalizadeh S, Naji M, Nekoonam S. Andrology 5 313-326 (2017)
  57. Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency. Khoury N, Xu J, Stegelmann SD, Jackson CW, Koronowski KB, Dave KR, Young JI, Perez-Pinzon MA. Mol Neurobiol 56 4549-4565 (2019)
  58. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. Proc Natl Acad Sci U S A 115 2102-2107 (2018)
  59. The effect of crataegus fruit extract and some of its flavonoids on mitochondrial oxidative phosphorylation in the heart. Bernatoniene J, Trumbeckaite S, Majiene D, Baniene R, Baliutyte G, Savickas A, Toleikis A. Phytother Res 23 1701-1707 (2009)
  60. New findings in ATP supply in rod outer segments: insights for retinopathies. Calzia D, Barabino S, Bianchini P, Garbarino G, Oneto M, Caicci F, Diaspro A, Tacchetti C, Manni L, Candiani S, Ravera S, Morelli A, Enrico Traverso C, Panfoli I. Biol Cell 105 345-358 (2013)
  61. A novel RNA aptamer identifies plasma membrane ATP synthase beta subunit as an early marker and therapeutic target in aggressive cancer. Speransky S, Serafini P, Caroli J, Bicciato S, Lippman ME, Bishopric NH. Breast Cancer Res Treat 176 271-289 (2019)
  62. Mechanism of inhibition of mitochondrial ATP synthase by 17β-estradiol. Moreno AJ, Moreira PI, Custódio JB, Santos MS. J Bioenerg Biomembr 45 261-270 (2013)
  63. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Liu M, Amini A, Ahmad Z. Int J Biol Macromol 95 145-152 (2017)
  64. Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism. Rowlands BD, Lau CL, Ryall JG, Thomas DS, Klugmann M, Beart PM, Rae CD. J Neurosci Res 93 1147-1156 (2015)
  65. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase. Amini A, Liu M, Ahmad Z. Int J Biol Macromol 101 153-164 (2017)
  66. Binding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPase. Sekiya M, Nakamoto RK, Nakanishi-Matsui M, Futai M. J Biol Chem 287 22771-22780 (2012)
  67. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. FEBS J 285 614-628 (2018)
  68. Inhibition of the ATP synthase sensitizes Staphylococcus aureus towards human antimicrobial peptides. Liu L, Beck C, Nøhr-Meldgaard K, Peschel A, Kretschmer D, Ingmer H, Vestergaard M. Sci Rep 10 11391 (2020)
  69. Rejuvenating SIRT1 activators. Gut P, Verdin E. Cell Metab 17 635-637 (2013)
  70. Structural constraints and the importance of lipophilicity for the mitochondrial uncoupling activity of naturally occurring caffeic acid esters with potential for the treatment of insulin resistance. Eid HM, Vallerand D, Muhammad A, Durst T, Haddad PS, Martineau LC. Biochem Pharmacol 79 444-454 (2010)
  71. Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5' AMP-activated protein kinase activation. Shabani Nashtaei M, Nekoonam S, Naji M, Bakhshalizadeh S, Amidi F. Cell Tissue Bank 19 87-95 (2018)
  72. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, Eiden L, Tischler AS, Wesley R, Zhuang Z, Lehnert H, Pacak K. Am J Cancer Res 5 1558-1570 (2015)
  73. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. Huang Y, Lu J, Zhan L, Wang M, Shi R, Yuan X, Gao X, Liu X, Zang J, Liu W, Yao X. J Biol Chem 297 100929 (2021)
  74. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. Jhanji M, Rao CN, Sajish M. Geroscience 43 1171-1200 (2021)
  75. Treatment of FANCA cells with resveratrol and N-acetylcysteine: a comparative study. Columbaro M, Ravera S, Capanni C, Panfoli I, Cuccarolo P, Stroppiana G, Degan P, Cappelli E. PLoS One 9 e104857 (2014)
  76. Effect of resveratrol on oxygen consumption by Philasterides dicentrarchi, a scuticociliate parasite of turbot. Morais P, Piazzon C, Lamas J, Mallo N, Leiro JM. Protist 164 206-217 (2013)
  77. Preconditioning mice with activators of AMPK ameliorates ischemic acute kidney injury in vivo. Lieberthal W, Tang M, Lusco M, Abate M, Levine JS. Am J Physiol Renal Physiol 311 F731-F739 (2016)
  78. The mitochondrial F1FO-ATPase desensitization to oligomycin by tributyltin is due to thiol oxidation. Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Biochimie 97 128-137 (2014)
  79. The novel resveratrol derivative 3,5-diethoxy-3',4'-dihydroxy-trans-stilbene induces mitochondrial ROS-mediated ER stress and cell death in human hepatoma cells in vitro. Park JW, Choi WG, Lee PJ, Chung SW, Kim BS, Chung HT, Cho S, Kim JH, Kang BH, Kim H, Kim HP, Back SH. Acta Pharmacol Sin 38 1486-1500 (2017)
  80. Effect of quercetin on oxidative nuclear and mitochondrial DNA damage. Potenza L, Calcabrini C, De Bellis R, Mancini U, Cucchiarini L, Dachà M. Biofactors 33 33-48 (2008)
  81. Functional expression of oxidative phosphorylation proteins in the rod outer segment disc. Panfoli I, Calzia D, Bruschi M, Oneto M, Bianchini P, Ravera S, Petretto A, Diaspro A, Candiano G. Cell Biochem Funct 31 532-538 (2013)
  82. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. Ahmad Z, Okafor F, Laughlin TF. J Amino Acids 2011 785741 (2011)
  83. Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Kim MS, Gernapudi R, Cedeño YC, Polster BM, Martinez R, Shapiro P, Kesari S, Nurmemmedov E, Passaniti A. Oncotarget 11 3863-3885 (2020)
  84. Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet. Hernández-Salinas R, Decap V, Leguina A, Cáceres P, Perez D, Urquiaga I, Iturriaga R, Velarde V. Biol Res 48 53 (2015)
  85. Effects of standardized extract of Ginkgo biloba leaves EGb761 on mitochondrial functions: mechanism(s) of action and dependence on the source of mitochondria and respiratory substrate. Baliutyte G, Trumbeckaite S, Baniene R, Borutaite V, Toleikis A. J Bioenerg Biomembr 46 493-501 (2014)
  86. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae. Madrigal-Perez LA, Canizal-Garcia M, González-Hernández JC, Reynoso-Camacho R, Nava GM, Ramos-Gomez M. Yeast 33 227-234 (2016)
  87. Targeting the ATP Synthase in Staphylococcus aureus Small Colony Variants, Streptococcus pyogenes and Pathogenic Fungi. Vestergaard M, Roshanak S, Ingmer H. Antibiotics (Basel) 10 376 (2021)
  88. Activated CAMKKβ-AMPK signaling promotes autophagy in a spheroid model of ovarian tumour metastasis. Laski J, Singha B, Wang X, Valdés YR, Collins O, Shepherd TG. J Ovarian Res 13 58 (2020)
  89. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase. Ahmad Z, Tayou J, Laughlin TF. Int J Biol Macromol 75 37-43 (2015)
  90. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner. Ramos-Gomez M, Olivares-Marin IK, Canizal-García M, González-Hernández JC, Nava GM, Madrigal-Perez LA. J Bioenerg Biomembr 49 241-251 (2017)
  91. Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. Setzer WN. J Mol Model 17 1841-1845 (2011)
  92. A unique mechanism of curcumin inhibition on F1 ATPase. Sekiya M, Hisasaka R, Iwamoto-Kihara A, Futai M, Nakanishi-Matsui M. Biochem Biophys Res Commun 452 940-944 (2014)
  93. Letter Reversible optical control of F1 Fo -ATP synthase using photoswitchable inhibitors. Eisel B, Hartrampf FWW, Meier T, Trauner D. FEBS Lett 592 343-355 (2018)
  94. Role of α/β interface in F1 ATPase rotational catalysis probed by inhibitors and mutations. Sekiya M, Sakamoto Y, Futai M, Nakanishi-Matsui M. Int J Biol Macromol 99 615-621 (2017)
  95. Transcriptome Analysis of Juvenile Tilapia (Oreochromis niloticus) Blood, Fed With Different Concentrations of Resveratrol. Zheng Y, Wu W, Hu G, Qiu L, Chen J. Front Physiol 11 600730 (2020)
  96. Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Avila-Barrientos LP, Cofas-Vargas LF, Agüero-Chapin G, Hernández-García E, Ruiz-Carmona S, Valdez-Cruz NA, Trujillo-Roldán M, Weber J, Ruiz-Blanco YB, Barril X, García-Hernández E. Antibiotics (Basel) 11 557 (2022)
  97. Construction of Hierarchical-Targeting pH-Sensitive Liposomes to Reverse Chemotherapeutic Resistance of Cancer Stem-like Cells. Ba S, Qiao M, Jia L, Zhang J, Zhao X, Hu H, Chen D. Pharmaceutics 13 1205 (2021)
  98. Single-molecule pull-out manipulation of the shaft of the rotary motor F1-ATPase. Naito TM, Masaike T, Nakane D, Sugawa M, Okada KA, Nishizaka T. Sci Rep 9 7451 (2019)
  99. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol. Du C, Dong MH, Ren YJ, Jin L, Xu C. J Asian Nat Prod Res 19 890-902 (2017)
  100. GIRAF: a method for fast search and flexible alignment of ligand binding interfaces in proteins at atomic resolution. Kinjo AR, Nakamura H. Biophysics (Nagoya-shi) 8 79-94 (2012)
  101. Intracellular monitoring of NADH release from mitochondria using a single functionalized nanowire electrode. Jiang H, Qi YT, Wu WT, Wen MY, Liu YL, Huang WH. Chem Sci 11 8771-8778 (2020)
  102. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties. Wang R, MoYung KC, Zhang MH, Poon K. Environ Sci Pollut Res Int 22 19618-19631 (2015)
  103. Beneficial effect of polyphenols in COVID-19 and the ectopic F1 FO -ATP synthase: Is there a link? Panfoli I, Esposito A. J Cell Biochem 123 1281-1284 (2022)
  104. Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Cofas-Vargas LF, Mendoza-Espinosa P, Avila-Barrientos LP, Prada-Gracia D, Riveros-Rosas H, García-Hernández E. Front Pharmacol 13 1012008 (2022)
  105. Functional and metabolic fitness of human CD4+ T lymphocytes during metabolic stress. Holthaus L, Sharma V, Brandt D, Ziegler AG, Jastroch M, Bonifacio E. Life Sci Alliance 4 e202101013 (2021)
  106. Genome-Wide Identification of Resveratrol Intrinsic Resistance Determinants in Staphylococcus aureus. Liu L, Ingmer H, Vestergaard M. Antibiotics (Basel) 10 82 (2021)
  107. Icariin enhances AMP-activated protein kinase and prevents high fructose and high salt-induced metabolic syndrome in rats. Aljehani AA, Albadr NA, Eid BG, Abdel-Naim AB. Saudi Pharm J 28 1309-1316 (2020)
  108. Screening of Some Essential Oil Constituents as Potential Inhibitors of the ATP Synthase of Escherichia coli. Issa D, Najjar A, Greige-Gerges H, Nehme H. J Food Sci 84 138-146 (2019)
  109. Structure of F1-ATPase from the obligate anaerobe Fusobacterium nucleatum. Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, Cook GM. Open Biol 9 190066 (2019)
  110. Transient Ca2+ entry by plasmalogen-mediated activation of receptor potential cation channel promotes AMPK activity. Honsho M, Mawatari S, Fujino T. Front Mol Biosci 9 1008626 (2022)
  111. A naturally occurring polyacetylene isolated from carrots promotes health and delays signatures of aging. Thomas C, Erni R, Wu JY, Fischer F, Lamers G, Grigolon G, Mitchell SJ, Zarse K, Carreira EM, Ristow M. Nat Commun 14 8142 (2023)
  112. Actions and interactions of AMPK with insulin, the peroxisomal-proliferator activated receptors and sirtuins. Holness MJ, Sugden PH, Silvestre MF, Sugden MC. Expert Rev Endocrinol Metab 7 191-208 (2012)
  113. Cirsiliol and Quercetin Inhibit ATP Synthesis and Decrease the Energy Balance in Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin-Resistant Staphylococcus epidermidis (MRSE) Strains Isolated from Patients. Ravera S, Tancreda G, Vezzulli L, Schito AM, Panfoli I. Molecules 28 6183 (2023)
  114. Enterodiol is Actively Transported by Rat Liver Cell Membranes. de Athayde Moncorvo Collado A, Salazar PB, Minahk C. J Membr Biol 251 593-600 (2018)
  115. Molecular mechanism and energetics of coupling between substrate binding and product release in the F1-ATPase catalytic cycle. Badocha M, Wieczór M, Marciniak A, Kleist C, Grubmüller H, Czub J. Proc Natl Acad Sci U S A 120 e2215650120 (2023)
  116. Mutation Status and Glucose Availability Affect the Response to Mitochondria-Targeted Quercetin Derivative in Breast Cancer Cells. Przybylski P, Lewińska A, Rzeszutek I, Błoniarz D, Moskal A, Betlej G, Deręgowska A, Cybularczyk-Cecotka M, Szmatoła T, Litwinienko G, Wnuk M. Cancers (Basel) 15 5614 (2023)