2j28 Citations

Following the signal sequence from ribosomal tunnel exit to signal recognition particle.

Nature 444 507-11 (2006)
Cited: 140 times
EuropePMC logo PMID: 17086193

Abstract

Membrane and secretory proteins can be co-translationally inserted into or translocated across the membrane. This process is dependent on signal sequence recognition on the ribosome by the signal recognition particle (SRP), which results in targeting of the ribosome-nascent-chain complex to the protein-conducting channel at the membrane. Here we present an ensemble of structures at subnanometre resolution, revealing the signal sequence both at the ribosomal tunnel exit and in the bacterial and eukaryotic ribosome-SRP complexes. Molecular details of signal sequence interaction in both prokaryotic and eukaryotic complexes were obtained by fitting high-resolution molecular models. The signal sequence is presented at the ribosomal tunnel exit in an exposed position ready for accommodation in the hydrophobic groove of the rearranged SRP54 M domain. Upon ribosome binding, the SRP54 NG domain also undergoes a conformational rearrangement, priming it for the subsequent docking reaction with the NG domain of the SRP receptor. These findings provide the structural basis for improving our understanding of the early steps of co-translational protein sorting.

Reviews - 2j28 mentioned but not cited (2)

  1. Signal recognition particle: an essential protein-targeting machine. Akopian D, Shen K, Zhang X, Shan SO. Annu. Rev. Biochem. 82 693-721 (2013)
  2. Co-translational protein targeting to the bacterial membrane. Saraogi I, Shan SO. Biochim. Biophys. Acta 1843 1433-1441 (2014)

Articles - 2j28 mentioned but not cited (6)

  1. Recognition of a signal peptide by the signal recognition particle. Janda CY, Li J, Oubridge C, Hernández H, Robinson CV, Nagai K. Nature 465 507-510 (2010)
  2. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. Saraogi I, Akopian D, Shan SO. J. Cell Biol. 205 693-706 (2014)
  3. New tools for the analysis and validation of cryo-EM maps and atomic models. Afonine PV, Klaholz BP, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, Adams PD, Urzhumtsev A. Acta Crystallogr D Struct Biol 74 814-840 (2018)
  4. Conformation of the signal recognition particle in ribosomal targeting complexes. Buskiewicz IA, Jöckel J, Rodnina MV, Wintermeyer W. RNA 15 44-54 (2009)
  5. Fingerloop activates cargo delivery and unloading during cotranslational protein targeting. Ariosa AR, Duncan SS, Saraogi I, Lu X, Brown A, Phillips GJ, Shan SO. Mol. Biol. Cell 24 63-73 (2013)
  6. Image-centric compression of protein structures improves space savings. Staniscia L, Yu YW. BMC Bioinformatics 24 437 (2023)


Reviews citing this publication (40)

  1. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Rapoport TA. Nature 450 663-669 (2007)
  2. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Kramer G, Boehringer D, Ban N, Bukau B. Nat. Struct. Mol. Biol. 16 589-597 (2009)
  3. The origin of eukaryotes: a reappraisal. de Duve C. Nat. Rev. Genet. 8 395-403 (2007)
  4. Delivering proteins for export from the cytosol. Cross BC, Sinning I, Luirink J, High S. Nat. Rev. Mol. Cell Biol. 10 255-264 (2009)
  5. How translocons select transmembrane helices. White SH, von Heijne G. Annu Rev Biophys 37 23-42 (2008)
  6. Protein secretion and surface display in Gram-positive bacteria. Schneewind O, Missiakas DM. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 1123-1139 (2012)
  7. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Wilson DN, Beckmann R. Curr. Opin. Struct. Biol. 21 274-282 (2011)
  8. Protein targeting by the signal recognition particle. Grudnik P, Bange G, Sinning I. Biol. Chem. 390 775-782 (2009)
  9. Structure and function of the molecular chaperone Trigger Factor. Hoffmann A, Bukau B, Kramer G. Biochim. Biophys. Acta 1803 650-661 (2010)
  10. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Nyathi Y, Wilkinson BM, Pool MR. Biochim. Biophys. Acta 1833 2392-2402 (2013)
  11. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Res. Microbiol. 164 505-534 (2013)
  12. The structure and function of the eukaryotic ribosome. Wilson DN, Doudna Cate JH. Cold Spring Harb Perspect Biol 4 (2012)
  13. Co-translational mechanisms of protein maturation. Gloge F, Becker AH, Kramer G, Bukau B. Curr. Opin. Struct. Biol. 24 24-33 (2014)
  14. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. Mol. Membr. Biol. 31 58-84 (2014)
  15. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Saraogi I, Shan SO. Traffic 12 535-542 (2011)
  16. Breaking on through to the other side: protein export through the bacterial Sec system. Chatzi KE, Sardis MF, Karamanou S, Economou A. Biochem. J. 449 25-37 (2013)
  17. Interactions that drive Sec-dependent bacterial protein transport. Rusch SL, Kendall DA. Biochemistry 46 9665-9673 (2007)
  18. Cotranslational processing mechanisms: towards a dynamic 3D model. Giglione C, Fieulaine S, Meinnel T. Trends Biochem. Sci. 34 417-426 (2009)
  19. Protein transport into the human endoplasmic reticulum. Dudek J, Pfeffer S, Lee PH, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R. J. Mol. Biol. 427 1159-1175 (2015)
  20. Dynamics of co-translational protein targeting. Elvekrog MM, Walter P. Curr Opin Chem Biol 29 79-86 (2015)
  21. Fidelity of cotranslational protein targeting by the signal recognition particle. Zhang X, Shan SO. Annu Rev Biophys 43 381-408 (2014)
  22. Embracing the void--how much do we really know about targeting and translocation to the endoplasmic reticulum? Aviram N, Schuldiner M. Curr. Opin. Cell Biol. 29 8-17 (2014)
  23. Membrane protein integration into the endoplasmic reticulum. Martínez-Gil L, Saurí A, Marti-Renom MA, Mingarro I. FEBS J. 278 3846-3858 (2011)
  24. Use of synthetic signal sequences to explore the protein export machinery. Clérico EM, Maki JL, Gierasch LM. Biopolymers 90 307-319 (2008)
  25. A tale of two GTPases in cotranslational protein targeting. Saraogi I, Akopian D, Shan SO. Protein Sci. 20 1790-1795 (2011)
  26. Cryo-electron microscopy of ribosomal complexes in cotranslational folding, targeting, and translocation. Knoops K, Schoehn G, Schaffitzel C. Wiley Interdiscip Rev RNA 3 429-441 (2012)
  27. Protein transport into the human ER and related diseases, Sec61-channelopathies. Haßdenteufel S, Klein MC, Melnyk A, Zimmermann R. Biochem. Cell Biol. 92 499-509 (2014)
  28. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Lang S, Pfeffer S, Lee PH, Cavalié A, Helms V, Förster F, Zimmermann R. Front Physiol 8 887 (2017)
  29. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Cells 10 1036 (2021)
  30. From the Sec complex to the membrane insertase YidC. Kuhn A. Biol. Chem. 390 701-706 (2009)
  31. The Dynamic SecYEG Translocon. Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. Front Mol Biosci 8 664241 (2021)
  32. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. Sun X, Su X. World J Microbiol Biotechnol 35 54 (2019)
  33. Mechanisms of Cotranslational Protein Maturation in Bacteria. Koubek J, Schmitt J, Galmozzi CV, Kramer G. Front Mol Biosci 8 689755 (2021)
  34. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Faoro C, Ataide SF. Front Mol Biosci 8 679584 (2021)
  35. Ribosomal tunnel and translation regulation. Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Biochemistry Mosc. 75 1501-1516 (2010)
  36. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Front Mol Biosci 9 871121 (2022)
  37. How Quality Control Systems AID Sec-Dependent Protein Translocation. Jiang C, Wynne M, Huber D. Front Mol Biosci 8 669376 (2021)
  38. Signal Peptide Features Determining the Substrate Specificities of Targeting and Translocation Components in Human ER Protein Import. Lang S, Nguyen D, Bhadra P, Jung M, Helms V, Zimmermann R. Front Physiol 13 833540 (2022)
  39. Genetic Engineering of Filamentous Fungi for Efficient Protein Expression and Secretion. Wang Q, Zhong C, Xiao H. Front Bioeng Biotechnol 8 293 (2020)
  40. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Jung M, Zimmermann R. Int J Mol Sci 24 14166 (2023)

Articles citing this publication (92)

  1. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J. Nat Protoc 3 1941-1974 (2008)
  2. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Frauenfeld J, Gumbart J, Sluis EO, Funes S, Gartmann M, Beatrix B, Mielke T, Berninghausen O, Becker T, Schulten K, Beckmann R. Nat. Struct. Mol. Biol. 18 614-621 (2011)
  3. alpha-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Bhushan S, Gartmann M, Halic M, Armache JP, Jarasch A, Mielke T, Berninghausen O, Wilson DN, Beckmann R. Nat. Struct. Mol. Biol. 17 313-317 (2010)
  4. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. Forte GM, Pool MR, Stirling CJ. PLoS Biol. 9 e1001073 (2011)
  5. The crystal structure of the signal recognition particle in complex with its receptor. Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N. Science 331 881-886 (2011)
  6. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Zhang X, Schaffitzel C, Ban N, Shan SO. Proc. Natl. Acad. Sci. U.S.A. 106 1754-1759 (2009)
  7. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R. PLoS Biol. 9 e1000581 (2011)
  8. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Zhang X, Rashid R, Wang K, Shan SO. Science 328 757-760 (2010)
  9. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Ménétret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, Akey CW. Structure 16 1126-1137 (2008)
  10. Proteomic expression analysis of surgical human colorectal cancer tissues: up-regulation of PSB7, PRDX1, and SRP9 and hypoxic adaptation in cancer. Rho JH, Qin S, Wang JY, Roehrl MH. J. Proteome Res. 7 2959-2972 (2008)
  11. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Peisker K, Braun D, Wölfle T, Hentschel J, Fünfschilling U, Fischer G, Sickmann A, Rospert S. Mol. Biol. Cell 19 5279-5288 (2008)
  12. Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Estrozi LF, Boehringer D, Shan SO, Ban N, Schaffitzel C. Nat. Struct. Mol. Biol. 18 88-90 (2011)
  13. Side-chain recognition and gating in the ribosome exit tunnel. Petrone PM, Snow CD, Lucent D, Pande VS. Proc. Natl. Acad. Sci. U.S.A. 105 16549-16554 (2008)
  14. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Shen K, Arslan S, Akopian D, Ha T, Shan SO. Nature 492 271-275 (2012)
  15. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Lyumkis D, Oliveira dos Passos D, Tahara EB, Webb K, Bennett EJ, Vinterbo S, Potter CS, Carragher B, Joazeiro CA. Proc. Natl. Acad. Sci. U.S.A. 111 15981-15986 (2014)
  16. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N. EMBO J. 36 475-486 (2017)
  17. Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle. Hainzl T, Huang S, Sauer-Eriksson AE. Proc. Natl. Acad. Sci. U.S.A. 104 14911-14916 (2007)
  18. The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP. Bange G, Petzold G, Wild K, Parlitz RO, Sinning I. Proc. Natl. Acad. Sci. U.S.A. 104 13621-13625 (2007)
  19. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Shen K, Shan SO. Proc. Natl. Acad. Sci. U.S.A. 107 7698-7703 (2010)
  20. Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA. Jaru-Ampornpan P, Chandrasekar S, Shan SO. Mol. Biol. Cell 18 2636-2645 (2007)
  21. The 3'-UTR mediates the cellular localization of an mRNA encoding a short plasma membrane protein. Loya A, Pnueli L, Yosefzon Y, Wexler Y, Ziv-Ukelson M, Arava Y. RNA 14 1352-1365 (2008)
  22. Large-scale purification of ribosome-nascent chain complexes for biochemical and structural studies. Rutkowska A, Beerbaum M, Rajagopalan N, Fiaux J, Schmieder P, Kramer G, Oschkinat H, Bukau B. FEBS Lett. 583 2407-2413 (2009)
  23. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Jomaa A, Boehringer D, Leibundgut M, Ban N. Nat Commun 7 10471 (2016)
  24. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Zhang Y, Berndt U, Gölz H, Tais A, Oellerer S, Wölfle T, Fitzke E, Rospert S. Mol. Biol. Cell 23 3027-3040 (2012)
  25. Secretion genes as determinants of Bacillus anthracis chain length. Nguyen-Mau SM, Oh SY, Kern VJ, Missiakas DM, Schneewind O. J. Bacteriol. 194 3841-3850 (2012)
  26. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. Voorhees RM, Hegde RS. Elife 4 (2015)
  27. The structural basis of FtsY recruitment and GTPase activation by SRP RNA. Voigts-Hoffmann F, Schmitz N, Shen K, Shan SO, Ataide SF, Ban N. Mol. Cell 52 643-654 (2013)
  28. Versatility of trigger factor interactions with ribosome-nascent chain complexes. Lakshmipathy SK, Gupta R, Pinkert S, Etchells SA, Hartl FU. J. Biol. Chem. 285 27911-27923 (2010)
  29. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. Shen K, Zhang X, Shan SO. RNA 17 892-902 (2011)
  30. Signal sequence-independent SRP-SR complex formation at the membrane suggests an alternative targeting pathway within the SRP cycle. Braig D, Mircheva M, Sachelaru I, van der Sluis EO, Sturm L, Beckmann R, Koch HG. Mol. Biol. Cell 22 2309-2323 (2011)
  31. The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Bradshaw N, Walter P. Mol. Biol. Cell 18 2728-2734 (2007)
  32. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. Singh R, Kraft C, Jaiswal R, Sejwal K, Kasaragod VB, Kuper J, Bürger J, Mielke T, Luirink J, Bhushan S. J. Biol. Chem. 289 7190-7199 (2014)
  33. Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Shan SO, Schmid SL, Zhang X. Biochemistry 48 6696-6704 (2009)
  34. Signal recognition particle-ribosome binding is sensitive to nascent chain length. Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB, Chen J, Bradshaw N, Puglisi JD, Walter P. J. Biol. Chem. 289 19294-19305 (2014)
  35. Global conformational changes of ribosome observed by normal mode fitting for 3D Cryo-EM structures. Matsumoto A, Ishida H. Structure 17 1605-1613 (2009)
  36. Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. Stjepanovic G, Kapp K, Bange G, Graf C, Parlitz R, Wild K, Mayer MP, Sinning I. J. Biol. Chem. 286 23489-23497 (2011)
  37. Real-time observation of signal recognition particle binding to actively translating ribosomes. Noriega TR, Chen J, Walter P, Puglisi JD. Elife 3 (2014)
  38. Cotranslational protein folding within the ribosome tunnel influences trigger-factor recruitment. Lin KF, Sun CS, Huang YC, Chan SI, Koubek J, Wu TH, Huang JJ. Biophys. J. 102 2818-2827 (2012)
  39. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. Träger C, Rosenblad MA, Ziehe D, Garcia-Petit C, Schrader L, Kock K, Richter CV, Klinkert B, Narberhaus F, Herrmann C, Hofmann E, Aronsson H, Schünemann D. Plant Cell 24 4819-4836 (2012)
  40. Mechanisms of ribosome stalling by SecM at multiple elongation steps. Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Elife 4 (2015)
  41. Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, Shan SO. J. Biol. Chem. 288 36385-36397 (2013)
  42. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. Egea PF, Napetschnig J, Walter P, Stroud RM. PLoS ONE 3 e3528 (2008)
  43. A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast srp pathway. Jaru-Ampornpan P, Nguyen TX, Shan SO. Mol. Biol. Cell 20 3965-3973 (2009)
  44. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. Carapito R, Konantz M, Paillard C, Miao Z, Pichot A, Leduc MS, Yang Y, Bergstrom KL, Mahoney DH, Shardy DL, Alsaleh G, Naegely L, Kolmer A, Paul N, Hanauer A, Rolli V, Müller JS, Alghisi E, Sauteur L, Macquin C, Morlon A, Sancho CS, Amati-Bonneau P, Procaccio V, Mosca-Boidron AL, Marle N, Osmani N, Lefebvre O, Goetz JG, Unal S, Akarsu NA, Radosavljevic M, Chenard MP, Rialland F, Grain A, Béné MC, Eveillard M, Vincent M, Guy J, Faivre L, Thauvin-Robinet C, Thevenon J, Myers K, Fleming MD, Shimamura A, Bottollier-Lemallaz E, Westhof E, Lengerke C, Isidor B, Bahram S. J. Clin. Invest. 127 4090-4103 (2017)
  45. SRP RNA remodeling by SRP68 explains its role in protein translocation. Grotwinkel JT, Wild K, Segnitz B, Sinning I. Science 344 101-104 (2014)
  46. Signal-sequence induced conformational changes in the signal recognition particle. Hainzl T, Sauer-Eriksson AE. Nat Commun 6 7163 (2015)
  47. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Ariosa A, Lee JH, Wang S, Saraogi I, Shan SO. Proc. Natl. Acad. Sci. U.S.A. 112 E3169-78 (2015)
  48. Structural insights into the assembly of the human and archaeal signal recognition particles. Wild K, Bange G, Bozkurt G, Segnitz B, Hendricks A, Sinning I. Acta Crystallogr D Biol Crystallogr 66 295-303 (2010)
  49. Access to ribosomal protein Rpl25p by the signal recognition particle is required for efficient cotranslational translocation. Dalley JA, Selkirk A, Pool MR. Mol. Biol. Cell 19 2876-2884 (2008)
  50. High-resolution single-particle orientation refinement based on spectrally self-adapting common lines. Elmlund D, Elmlund H. J. Struct. Biol. 167 83-94 (2009)
  51. Ribosome-SRP-FtsY cotranslational targeting complex in the closed state. von Loeffelholz O, Jiang Q, Ariosa A, Karuppasamy M, Huard K, Berger I, Shan SO, Schaffitzel C. Proc. Natl. Acad. Sci. U.S.A. 112 3943-3948 (2015)
  52. Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex. von Loeffelholz O, Knoops K, Ariosa A, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO, Schaffitzel C. Nat. Struct. Mol. Biol. 20 604-610 (2013)
  53. Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Jadhav B, McKenna M, Johnson N, High S, Sinning I, Pool MR. Nat Commun 6 10133 (2015)
  54. Protein translocation: checkpoint role for SRP GTPase activation. Bange G, Wild K, Sinning I. Curr. Biol. 17 R980-2 (2007)
  55. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions. Graf M, Arenz S, Huter P, Dönhöfer A, Novácek J, Wilson DN. Nucleic Acids Res. 45 2887-2896 (2017)
  56. Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods. Clérico EM, Szymańska A, Gierasch LM. Biopolymers 92 201-211 (2009)
  57. Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Beckert B, Kedrov A, Sohmen D, Kempf G, Wild K, Sinning I, Stahlberg H, Wilson DN, Beckmann R. Nat. Struct. Mol. Biol. 22 767-773 (2015)
  58. A molecular modeling study of the interaction between SRP-receptor complex and peptide translocon. Chen S, Fan Y, Shen X, Sun P, Jiang G, Shen Y, Xue W, Li Y, Chen X. Biochem. Biophys. Res. Commun. 377 346-350 (2008)
  59. Directed evolution of efficient secretion in the SRP-dependent export of TolB. Zalucki YM, Shafer WM, Jennings MP. Biochim. Biophys. Acta 1808 2544-2550 (2011)
  60. Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. Yosef I, Bochkareva ES, Bibi E. MBio 1 82 (2010)
  61. Compaction of a prokaryotic signal-anchor transmembrane domain begins within the ribosome tunnel and is stabilized by SRP during targeting. Robinson PJ, Findlay JE, Woolhead CA. J. Mol. Biol. 423 600-612 (2012)
  62. Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle. Nguyen TX, Chandrasekar S, Neher S, Walter P, Shan SO. Biochemistry 50 7208-7217 (2011)
  63. Identification of proteomic signatures of mantle cell lymphoma, small lymphocytic lymphoma, and marginal zone lymphoma biopsies by surface enhanced laser desorption/ionization-time of flight mass spectrometry. Rolland D, Bouamrani A, Houlgatte R, Barbarat A, Ramus C, Arlotto M, Ballester B, Berger F, Felman P, Callet-Bauchu E, Baseggio L, Traverse-Glehen A, Brugière S, Garin J, Coiffier B, Berger F, Thieblemont C. Leuk. Lymphoma 52 648-658 (2011)
  64. RNA gymnastics in mammalian signal recognition particle assembly. Wild K, Sinning I. RNA Biol 11 1330-1334 (2014)
  65. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Jomaa A, Jomaa A, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO, Ban N. Cell Rep 36 109350 (2021)
  66. The bacterial SRP receptor, FtsY, is activated on binding to the translocon. Draycheva A, Bornemann T, Ryazanov S, Lakomek NA, Wintermeyer W. Mol. Microbiol. 102 152-167 (2016)
  67. The signal recognition particle contacts uL23 and scans substrate translation inside the ribosomal tunnel. Denks K, Sliwinski N, Erichsen V, Borodkina B, Origi A, Koch HG. Nat Microbiol 2 16265 (2017)
  68. Co-evolution of Two GTPases Enables Efficient Protein Targeting in an RNA-less Chloroplast Signal Recognition Particle Pathway. Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO. J. Biol. Chem. 292 386-396 (2017)
  69. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. Lange S, Franks WT, Rajagopalan N, Döring K, Geiger MA, Linden A, van Rossum BJ, Kramer G, Bukau B, Oschkinat H. Sci Adv 2 e1600379 (2016)
  70. A Proteomic Study on the Membrane Protein Fraction of T Cells Confirms High Substrate Selectivity for the ER Translocation Inhibitor Cyclotriazadisulfonamide. Pauwels E, Rutz C, Provinciael B, Stroobants J, Schols D, Hartmann E, Krause E, Stephanowitz H, Schülein R, Vermeire K. Mol Cell Proteomics 20 100144 (2021)
  71. Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting. Chandrasekar S, Shan SO. J. Biol. Chem. 292 397-406 (2017)
  72. FlhF(T368A) modulates motility in the bacteriophage carrier state of Campylobacter jejuni. Liang L, Connerton IF. Mol. Microbiol. 110 616-633 (2018)
  73. Numerical integration methods and layout improvements in the context of dynamic RNA visualization. Shabash B, Wiese KC. BMC Bioinformatics 18 282 (2017)
  74. Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze HH, Förster F, Helms V, Dudek J, Zimmermann R. Nat Commun 9 3765 (2018)
  75. Quantitative Proteomics and Differential Protein Abundance Analysis after Depletion of Putative mRNA Receptors in the ER Membrane of Human Cells Identifies Novel Aspects of mRNA Targeting to the ER. Bhadra P, Schorr S, Lerner M, Nguyen D, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. Molecules 26 3591 (2021)
  76. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids. Reinau ME, Otzen DE. Arch. Biochem. Biophys. 492 48-53 (2009)
  77. Allosteric response and substrate sensitivity in peptide binding of the signal recognition particle. Wang CY, Miller TF. J. Biol. Chem. 289 30868-30879 (2014)
  78. Domain Organization in the 54-kDa Subunit of the Chloroplast Signal Recognition Particle. Henderson RC, Gao F, Jayanthi S, Kight A, Sharma P, Goforth RL, Heyes CD, Henry RL, Suresh Kumar TK. Biophys. J. 111 1151-1162 (2016)
  79. Human apo-SRP72 and SRP68/72 complex structures reveal the molecular basis of protein translocation. Gao Y, Zhang Q, Lang Y, Liu Y, Dong X, Chen Z, Tian W, Tang J, Wu W, Tong Y, Chen Z. J Mol Cell Biol 9 220-230 (2017)
  80. Partial suppression of Oxa1 mutants by mitochondria-targeted signal recognition particle provides insights into the evolution of the cotranslational insertion systems. Funes S, Westerburg H, Jaimes-Miranda F, Woellhaf MW, Aguilar-Lopez JL, Janßen L, Bonnefoy N, Kauff F, Herrmann JM. FEBS J. 280 904-915 (2013)
  81. Two Signal Recognition Particle Sequences Are Present in the Amino-Terminal Domain of the C-Tailed Protein SciP. Pross E, Kuhn A. J Bacteriol 203 e00312-20 (2020)
  82. UPF201 archaeal specific family members reveal structural similarity to RNA-binding proteins but low likelihood for RNA-binding function. Rao KN, Burley SK, Swaminathan S. PLoS ONE 3 e3903 (2008)
  83. Dynamic analysis of ribosome by a movie made from many three-dimensional electron-microscopy density maps. Matsumoto A. Biophys Physicobiol 16 108-113 (2019)
  84. Episodic sitewise positive selection on the signal recognition particle protein Ffh in Actinobacteria. Shen XL, Li SZ, Li YQ, Chen X. FEBS Lett. 584 3975-3978 (2010)
  85. Hydrophobicity, rather than secondary structure, is essential for the SRP dependent targeting of GPR35 to the ER membrane. Cherry JK, Woolhead CA. J. Bioenerg. Biomembr. 51 137-150 (2019)
  86. Inhibition of SRP-dependent protein secretion by the bacterial alarmone (p)ppGpp. Czech L, Mais CN, Kratzat H, Sarmah P, Giammarinaro P, Freibert SA, Esser HF, Musial J, Berninghausen O, Steinchen W, Beckmann R, Koch HG, Bange G. Nat Commun 13 1069 (2022)
  87. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Jomaa A, Gamerdinger M, Hsieh HH, Wallisch A, Chandrasekaran V, Ulusoy Z, Scaiola A, Hegde RS, Shan SO, Ban N, Deuerling E. Science 375 839-844 (2022)
  88. Proteomics Identifies Substrates and a Novel Component in hSnd2-Dependent ER Protein Targeting. Tirincsi A, O'Keefe S, Nguyen D, Sicking M, Dudek J, Förster F, Jung M, Hadzibeganovic D, Helms V, High S, Zimmermann R, Lang S. Cells 11 2925 (2022)
  89. Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions. Wild K, Juaire KD, Soni K, Shanmuganathan V, Hendricks A, Segnitz B, Beckmann R, Sinning I. Nucleic Acids Res. 47 3184-3196 (2019)
  90. Ribosome-Associated Chloroplast SRP54 Enables Efficient Cotranslational Membrane Insertion of Key Photosynthetic Proteins. Hristou A, Gerlach I, Stolle DS, Neumann J, Bischoff A, Dünschede B, Nowaczyk MM, Zoschke R, Schünemann D. Plant Cell 31 2734-2750 (2019)
  91. TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Klein MC, Lerner M, Nguyen D, Pfeffer S, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. Channels (Austin) 14 28-44 (2020)
  92. mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria. Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M, Lichtenberg E, Wilde A, Koch HG. Cell Rep 42 112140 (2023)