2h68

X-ray diffraction
1.79Å resolution

Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex

Released:
Source organism: Homo sapiens

Function and Biology Details

Reactions catalysed:
Succinyl-CoA + enzyme N(6)-(dihydrolipoyl)lysine = CoA + enzyme N(6)-(S-succinyldihydrolipoyl)lysine
IMP + diphosphate = hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate
7,8-dihydroneopterin 3'-triphosphate + H(2)O = 6-carboxy-5,6,7,8-tetrahydropterin + acetaldehyde + triphosphate
5-phospho-beta-D-ribosylamine + diphosphate + L-glutamate = L-glutamine + 5-phospho-alpha-D-ribose 1-diphosphate + H(2)O
ATP + D-ribose = ADP + D-ribose 5-phosphate
(1a) [acetyl-CoA C-acyltransferase]-S-acyl-L-cyteine + acetyl-CoA = 3-oxoacyl-CoA + [acetyl-CoA C-acyltransferase]-L-cyteine
ATP + a protein = ADP + a phosphoprotein
Geranyl diphosphate = gamma-terpinene + diphosphate
Geranyl diphosphate = alpha-terpinene + diphosphate
Naphthalene + NADH + O(2) = (1R,2S)-1,2-dihydronaphthalene-1,2-diol + NAD(+)
Release of N-terminal proline from a peptide.
Release of an N-terminal amino acid, Xaa-|-Yaa-, in which Xaa is preferably Leu, but may be other amino acids including Pro although not Arg or Lys, and Yaa may be Pro. Amino acid amides and methyl esters are also readily hydrolyzed, but rates on arylamides are exceedingly low.
2'-deoxyribonucleoside diphosphate + thioredoxin disulfide + H(2)O = ribonucleoside diphosphate + thioredoxin
Diphosphate + H(2)O = 2 phosphate
4 Fe(2+) + 4 H(+) + O(2) = 4 Fe(3+) + 2 H(2)O
S-adenosyl-L-methionine + uridine(2552) in 23S rRNA = S-adenosyl-L-homocysteine + 2'-O-methyluridine(2552) in 23S rRNA
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid
ATP + H(2)O + 4 H(+)(Side 1) = ADP + phosphate + 4 H(+)(Side 2)
(1a) L-cysteine + [enzyme]-cysteine = L-alanine + [enzyme]-S-sulfanylcysteine
Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] = 3-oxoacyl-[acyl-carrier-protein] + CO(2) + [acyl-carrier-protein]
(1a) S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [HECT-type E3 ubiquitin transferase]-L-cysteine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + S-ubiquitinyl-[HECT-type E3 ubiquitin transferase]-L-cysteine
4-phosphonooxy-L-threonine + 2-oxoglutarate = (3R)-3-hydroxy-2-oxo-4-phosphonooxybutanoate + L-glutamate
Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)- glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
Random endo-hydrolysis of N-acetyl-beta-D-glucosaminide (1->4)-beta-linkages in chitin and chitodextrins
NADH + ROOH + H(+) = NAD(+) + H(2)O + ROH
Nitric oxide + H(2)O + ferricytochrome c = nitrite + ferrocytochrome c + 2 H(+)
Endopeptidase with a preference for cleavage when the P1 position is occupied by Glu-|- and the P1' position is occupied by Gly-|-
N-acetyl-O-acetylneuraminate + H(2)O = N-acetylneuraminate + acetate
ATP + H(2)O + cellular protein(Side 1) = ADP + phosphate + cellular protein(Side 2)
An acyl-[acyl-carrier protein] + NAD(+) = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADH
(R)-10-hydroxystearate = oleate + H(2)O
NTP + H(2)O = NDP + phosphate
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate
5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
1-deoxy-L-glycero-tetrulose 4-phosphate + 5-amino-6-(D-ribitylamino)uracil = 6,7-dimethyl-8-(D-ribityl)lumazine + 2 H(2)O + phosphate
2 3-phospho-D-glycerate + 2 H(+) = D-ribulose 1,5-bisphosphate + CO(2) + H(2)O
RX + glutathione = HX + R-S-glutathione
5,10-methylenetetrahydrofolate + dUMP = dihydrofolate + dTMP
ATP = 3',5'-cyclic AMP + diphosphate
ATP + L-phenylalanine + H(2)O = AMP + diphosphate + D-phenylalanine
Hydrolysis of proteins to small peptides in the presence of ATP and magnesium. Alpha-Casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are hydrolyzed (such as succinyl-Leu-Tyr-|-NHMec; and Leu-Tyr-Leu-|-Tyr-Trp, in which cleavage of the -Tyr-|-Leu- and -Tyr-|-Trp bonds also occurs).
Autocatalytic release of the core protein from the N-terminus of the togavirus structural polyprotein by hydrolysis of a -Trp-|-Ser- bond.
Selective hydrolysis of -Xaa-Xaa-|-Yaa- bonds in which each of the Xaa can be either Arg or Lys and Yaa can be either Ser or Ala.
Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
Hydrolyzes glutaminyl bonds, and activity is further restricted by preferences for the amino acids in P6 - P1' that vary with the species of potyvirus, e.g. Glu-Xaa-Xaa-Tyr-Xaa-Gln-|-(Ser or Gly) for the enzyme from tobacco etch virus. The natural substrate is the viral polyprotein, but other proteins and oligopeptides containing the appropriate consensus sequence are also cleaved.
Hydrolyzes a Gly-|-Gly bond at its own C-terminus, commonly in the sequence -Tyr-Xaa-Val-Gly-|-Gly, in the processing of the potyviral polyprotein.
2 phenolic donor + H(2)O(2) = 2 phenoxyl radical of the donor + 2 H(2)O
Peptidylproline (omega=180) = peptidylproline (omega=0)
Choline = trimethylamine + acetaldehyde
Endohydrolysis of (1->4)-beta-D-xylosidic linkages in xylans
(2E,6E)-farnesyl diphosphate + isopentenyl diphosphate = diphosphate + geranylgeranyl diphosphate
Endohydrolysis of (1->4)-beta-D-glucosidic linkages in cellulose, lichenin and cereal beta-D-glucans
N-carbamoylputrescine + H(2)O = putrescine + CO(2) + NH(3)
L-lysine = cadaverine + CO(2)
S-methyl-5'-thioadenosine + phosphate = adenine + S-methyl-5-thio-alpha-D-ribose 1-phosphate
ATP + thymidine = ADP + thymidine 5'-phosphate
Geranylgeranyl diphosphate = (+)-copalyl diphosphate
Thiol-dependent hydrolysis of ester, thioester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1)
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1)
L-arginine + 2-oxoglutarate + O(2) = (3S)-3-hydroxy-L-arginine + succinate + CO(2)
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate
Acetyl-CoA + a 2-deoxystreptamine antibiotic = CoA + N(3)-acetyl-2-deoxystreptamine antibiotic
(S)-lactate + NAD(+) = pyruvate + NADH
Shikimate + NADP(+) = 3-dehydroshikimate + NADPH
ATP + AMP = 2 ADP
L-glutamate + H(2)O + NAD(+) = 2-oxoglutarate + NH(3) + NADH
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine
Protein L-glutamine + H(2)O = protein L-glutamate + NH(3)
ATP + thiamine = AMP + thiamine diphosphate
NAD(P)H + a quinone = NAD(P)(+) + a hydroquinone
Adenosine + H(2)O = inosine + NH(3)
A (3R)-3-hydroxyacyl-[acyl-carrier-protein] + a UDP-3-O-((3R)-hydroxyacyl)-alpha-D-glucosamine = a UDP-2-N,3-O-bis((3R)-3-hydroxyacyl)-alpha-D-glucosamine + a holo-[acyl-carrier-protein]
Beta-D-ribopyranose = beta-D-ribofuranose
ATP + glycerol = ADP + sn-glycerol 3-phosphate
GDP-beta-L-fucose + NADP(+) = GDP-4-dehydro-alpha-D-rhamnose + NADPH
Succinate + a quinone = fumarate + a quinol
Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
Selective cleavage of Tyr-|-Gly bond in picornavirus polyprotein.
An aldehyde + NAD(+) + H(2)O = a carboxylate + NADH
AMP + H(2)O = D-ribose 5-phosphate + adenine
ATP + H(2)O + a folded polypeptide = ADP + phosphate + an unfolded polypeptide
Preferential cleavage: (Ac)(2)-L-Lys-D-Ala-|-D-Ala. Also transpeptidation of peptidyl-alanyl moieties that are N-acyl substituents of D-alanine.
Hydrolysis of terminal non-reducing beta-D-galactose residues in beta-D-galactosides
Hydrolysis of terminal, non-reducing beta-D-mannose residues in beta-D-mannosides
ATP + H(2)O = ADP + phosphate
5,6,7,8-tetrahydrofolate + NADP(+) = 7,8-dihydrofolate + NADPH
(GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala))(n)-diphosphoundecaprenol + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = (GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala))(n+1)-diphosphoundecaprenol + undecaprenyl diphosphate
The C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken by a beta-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate
Purine deoxynucleoside + phosphate = purine + 2'-deoxy-alpha-D-ribose 1-phosphate
Alpha-D-glucose = beta-D-glucose
Release of N-terminal amino acids, preferentially methionine, from peptides and arylamides.
Biochemical function:
Cellular component:

Structure analysis Details

Assembly composition:
monomeric (preferred)
Entry contents:
1 distinct polypeptide molecule
Macromolecule:
WD repeat-containing protein 5 Chains: A, B
Molecule details ›
Chains: A, B
Length: 312 amino acids
Theoretical weight: 34.3 KDa
Source organism: Homo sapiens
Expression system: Escherichia coli
UniProt:
  • Canonical: P61964 (Residues: 23-334; Coverage: 93%)
Gene names: BIG3, WDR5
Sequence domains: WD domain, G-beta repeat
Structure domains: YVTN repeat-like/Quinoprotein amine dehydrogenase

Ligands and Environments

No bound ligands
No modified residues

Experiments and Validation Details

Entry percentile scores
X-ray source: NSLS BEAMLINE X29A
Spacegroup: C2
Unit cell:
a: 134.591Å b: 46.359Å c: 112.369Å
α: 90° β: 117.15° γ: 90°
R-values:
R R work R free
0.178 0.166 0.192
Expression system: Escherichia coli