2gd4 Citations

Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation.

EMBO J 25 2029-37 (2006)
Cited: 113 times
EuropePMC logo PMID: 16619025

Abstract

Regulation of blood coagulation is critical for maintaining blood flow, while preventing excessive bleeding or thrombosis. One of the principal regulatory mechanisms involves heparin activation of the serpin antithrombin (AT). Inhibition of several coagulation proteases is accelerated by up to 10,000-fold by heparin, either through bridging AT and the protease or by inducing allosteric changes in the properties of AT. The anticoagulant effect of short heparin chains, including the minimal AT-specific pentasaccharide, is mediated exclusively through the allosteric activation of AT towards efficient inhibition of coagulation factors (f) IXa and Xa. Here we present the crystallographic structure of the recognition (Michaelis) complex between heparin-activated AT and S195A fXa, revealing the extensive exosite contacts that confer specificity. The heparin-induced conformational change in AT is required to allow simultaneous contacts within the active site and two distinct exosites of fXa (36-loop and the autolysis loop). This structure explains the molecular basis of protease recognition by AT, and the mechanism of action of the important therapeutic low-molecular-weight heparins.

Reviews - 2gd4 mentioned but not cited (5)

  1. Demystifying heparan sulfate-protein interactions. Xu D, Esko JD. Annu Rev Biochem 83 129-157 (2014)
  2. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Thacker BE, Xu D, Lawrence R, Esko JD. Matrix Biol 35 60-72 (2014)
  3. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PG. Biochimie 92 1587-1596 (2010)
  4. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA. J Biol Chem 285 24307-24312 (2010)
  5. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)

Articles - 2gd4 mentioned but not cited (26)

  1. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. Johnson DJ, Li W, Adams TE, Huntington JA. EMBO J 25 2029-2037 (2006)
  2. Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity. Calvo E, Mizurini DM, Sá-Nunes A, Ribeiro JM, Andersen JF, Mans BJ, Monteiro RQ, Kotsyfakis M, Francischetti IM. J Biol Chem 286 27998-28010 (2011)
  3. Crystal structure of protein Z-dependent inhibitor complex shows how protein Z functions as a cofactor in the membrane inhibition of factor X. Wei Z, Yan Y, Carrell RW, Zhou A. Blood 114 3662-3667 (2009)
  4. Designing nonsaccharide, allosteric activators of antithrombin for accelerated inhibition of factor Xa. Al-Horani RA, Liang A, Desai UR. J Med Chem 54 6125-6138 (2011)
  5. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. Izaguirre G, Aguila S, Qi L, Swanson R, Roth R, Rezaie AR, Gettins PG, Olson ST. J Biol Chem 289 34049-34064 (2014)
  6. Kinetic evidence that allosteric activation of antithrombin by heparin is mediated by two sequential conformational changes. Schedin-Weiss S, Richard B, Olson ST. Arch Biochem Biophys 504 169-176 (2010)
  7. Engineering functional antithrombin exosites in alpha1-proteinase inhibitor that specifically promote the inhibition of factor Xa and factor IXa. Izaguirre G, Rezaie AR, Olson ST. J Biol Chem 284 1550-1558 (2009)
  8. The structure of a furin-antibody complex explains non-competitive inhibition by steric exclusion of substrate conformers. Dahms SO, Creemers JW, Schaub Y, Bourenkov GP, Zögg T, Brandstetter H, Than ME. Sci Rep 6 34303 (2016)
  9. A computational modeling and molecular dynamics study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa). Chandrasekaran V, Lee CJ, Lin P, Duke RE, Pedersen LG. J Mol Model 15 897-911 (2009)
  10. Crystal structure of native Anopheles gambiae serpin-2, a negative regulator of melanization in mosquitoes. An C, Lovell S, Kanost MR, Battaile KP, Michel K. Proteins 79 1999-2003 (2011)
  11. Perspective on computational simulations of glycosaminoglycans. Nagarajan B, Sankaranarayanan NV, Desai UR. Wiley Interdiscip Rev Comput Mol Sci 9 e1388 (2019)
  12. Dissecting the mechanism of Yuzhi Zhixue granule on ovulatory dysfunctional uterine bleeding by network pharmacology and molecular docking. Li J, Luo H, Liu X, Zhang J, Zhou W, Guo S, Chen X, Liu Y, Jia S, Wang H, Li B, Cheng G, Wu J. Chin Med 15 113 (2020)
  13. Identification of serpin determinants of specificity and selectivity for furin inhibition through studies of α1PDX (α1-protease inhibitor Portland)-serpin B8 and furin active-site loop chimeras. Izaguirre G, Qi L, Lima M, Olson ST. J Biol Chem 288 21802-21814 (2013)
  14. Increased N-glycosylation efficiency by generation of an aromatic sequon on N135 of antithrombin. Aguila S, Martínez-Martínez I, Dichiara G, Gutiérrez-Gallego R, Navarro-Fernández J, Vicente V, Corral J. PLoS One 9 e114454 (2014)
  15. Expression and functional characterization of two natural heparin-binding site variants of antithrombin. Dinarvand P, Yang L, Villoutreix BO, Rezaie AR. J Thromb Haemost 16 330-341 (2018)
  16. A peptide found by phage display discriminates a specific structure of a trisaccharide in heparin. Yabe T, Hosoda-Yabe R, Kanamaru Y, Kiso M. J Biol Chem 286 12397-12406 (2011)
  17. Elucidating the specificity of non-heparin-based conformational activators of antithrombin for factor Xa inhibition. Rashid Q, Abid M, Jairajpuri MA. J Nat Sci Biol Med 5 36-42 (2014)
  18. Engineering trypsin for inhibitor resistance. Batt AR, St Germain CP, Gokey T, Guliaev AB, Baird T. Protein Sci 24 1463-1474 (2015)
  19. RL-MLZerD: Multimeric protein docking using reinforcement learning. Aderinwale T, Christoffer C, Kihara D. Front Mol Biosci 9 969394 (2022)
  20. Recognition and Conformational Properties of an Alternative Antithrombin Binding Sequence Obtained by Chemoenzymatic Synthesis. Stancanelli E, Elli S, Hsieh PH, Liu J, Guerrini M. Chembiochem (2018)
  21. research-article Thr90Ser Mutation in Antithrombin is Associated with Recurrent Thrombosis in a Heterozygous Carrier. Lu Y, Villoutreix BO, Biswas I, Ding Q, Wang X, Rezaie AR. Thromb Haemost 120 1045-1055 (2020)
  22. Antibodies to FXa and thrombin in patients with SLE differentially regulate C3 and C5 cleavage. McDonnell T, Amarnani R, Spicer C, Jbari H, Pericleous C, Spiteri VA, Wincup C, Artim-Esen B, Mackie I, Botto M, Rahman A, Giles I. Lupus Sci Med 9 e000738 (2022)
  23. A novel antithrombin domain dictates the journey's end of a proteinase. Verhamme IM. J Biol Chem 292 16521-16522 (2017)
  24. Extended Physicochemical Characterization of the Synthetic Anticoagulant Pentasaccharide Fondaparinux Sodium by Quantitative NMR and Single Crystal X-ray Analysis. Wildt W, Kooijman H, Funke C, Üstün B, Leika A, Lunenburg M, Kaspersen F, Kellenbach E. Molecules 22 E1362 (2017)
  25. The Interaction of Factor Xa and IXa with Non-Activated Antithrombin in Michaelis Complex: Insights from Enhanced-Sampling Molecular Dynamics Simulations. Balogh G, Bereczky Z. Biomolecules 13 795 (2023)
  26. Toward non-factor therapy in hemophilia: an antithrombin insensitive Gla-domainless factor Xa as tissue factor pathway inhibitor bait. Dagher MC, Ersayin A, Seyve L, Castellan M, Moreau C, Choisnard L, Thielens N, Marlu R, Polack B, Thomas A. Res Pract Thromb Haemost 7 102175 (2023)


Reviews citing this publication (17)

  1. The structure of glycosaminoglycans and their interactions with proteins. Gandhi NS, Mancera RL. Chem Biol Drug Des 72 455-482 (2008)
  2. Serpin structure, function and dysfunction. Huntington JA. J Thromb Haemost 9 Suppl 1 26-34 (2011)
  3. Serpins in thrombosis, hemostasis and fibrinolysis. Rau JC, Beaulieu LM, Huntington JA, Church FC. J Thromb Haemost 5 Suppl 1 102-115 (2007)
  4. Molecular gymnastics: serpin structure, folding and misfolding. Whisstock JC, Bottomley SP. Curr Opin Struct Biol 16 761-768 (2006)
  5. Structural view of glycosaminoglycan-protein interactions. Imberty A, Lortat-Jacob H, Pérez S. Carbohydr Res 342 430-439 (2007)
  6. Shape-shifting serpins--advantages of a mobile mechanism. Huntington JA. Trends Biochem Sci 31 427-435 (2006)
  7. Serpins in arthropod biology. Meekins DA, Kanost MR, Michel K. Semin Cell Dev Biol 62 105-119 (2017)
  8. Serpins in plants and green algae. Roberts TH, Hejgaard J. Funct Integr Genomics 8 1-27 (2008)
  9. The molecular and cellular pathology of α₁-antitrypsin deficiency. Gooptu B, Dickens JA, Lomas DA. Trends Mol Med 20 116-127 (2014)
  10. The conformation and structure of GAGs: recent progress and perspectives. Rudd TR, Skidmore MA, Guerrini M, Hricovini M, Powell AK, Siligardi G, Yates EA. Curr Opin Struct Biol 20 567-574 (2010)
  11. Antithrombin deficiency and its laboratory diagnosis. Muszbek L, Bereczky Z, Kovács B, Komáromi I. Clin Chem Lab Med 48 Suppl 1 S67-78 (2010)
  12. Serpin protease inhibitors in plant biology. Fluhr R, Lampl N, Roberts TH. Physiol Plant 145 95-102 (2012)
  13. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Banik N, Yang SB, Kang TB, Lim JH, Park J. Int J Mol Sci 22 10524 (2021)
  14. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Afosah DK, Al-Horani RA. Curr Med Chem 27 3412-3447 (2020)
  15. Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Nyon MP, Gooptu B. Future Med Chem 6 1047-1065 (2014)
  16. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Li M, Pedersen LC, Xu D. Front Mol Biosci 10 1194293 (2023)
  17. [Preclinical and clinical data of the synthetic Xa inhibitor fondaparinux (Arixtra(®))]. Suzuki I, Ozeki Y. Nihon Yakurigaku Zasshi 139 117-126 (2012)

Articles citing this publication (65)

  1. Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes. Khan S, Gor J, Mulloy B, Perkins SJ. J Mol Biol 395 504-521 (2010)
  2. A catalytic role of heparin within the extracellular matrix. Mitsi M, Forsten-Williams K, Gopalakrishnan M, Nugent MA. J Biol Chem 283 34796-34807 (2008)
  3. Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Johnson DJ, Langdown J, Huntington JA. Proc Natl Acad Sci U S A 107 645-650 (2010)
  4. Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction. Evidence for very high affinity induced by an unusual glucuronic acid residue. Guerrini M, Guglieri S, Casu B, Torri G, Mourier P, Boudier C, Viskov C. J Biol Chem 283 26662-26675 (2008)
  5. Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. Johnson DJ, Langdown J, Li W, Luis SA, Baglin TP, Huntington JA. J Biol Chem 281 35478-35486 (2006)
  6. Crystal structure of the prothrombinase complex from the venom of Pseudonaja textilis. Lechtenberg BC, Murray-Rust TA, Johnson DJ, Adams TE, Krishnaswamy S, Camire RM, Huntington JA. Blood 122 2777-2783 (2013)
  7. Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. Lin Z, Jiang L, Yuan C, Jensen JK, Zhang X, Luo Z, Furie BC, Furie B, Andreasen PA, Huang M. J Biol Chem 286 7027-7032 (2011)
  8. Allosteric regulation of rhomboid intramembrane proteolysis. Arutyunova E, Panwar P, Skiba PM, Gale N, Mak MW, Lemieux MJ. EMBO J 33 1869-1881 (2014)
  9. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. PLoS One 7 e48632 (2012)
  10. The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin. Langdown J, Belzar KJ, Savory WJ, Baglin TP, Huntington JA. J Mol Biol 386 1278-1289 (2009)
  11. Human neuroserpin: structure and time-dependent inhibition. Ricagno S, Caccia S, Sorrentino G, Antonini G, Bolognesi M. J Mol Biol 388 109-121 (2009)
  12. Toward a robust computational screening strategy for identifying glycosaminoglycan sequences that display high specificity for target proteins. Sankaranarayanan NV, Desai UR. Glycobiology 24 1323-1333 (2014)
  13. Characterization of a heparin-binding site on the catalytic domain of factor XIa: mechanism of heparin acceleration of factor XIa inhibition by the serpins antithrombin and C1-inhibitor. Yang L, Sun MF, Gailani D, Rezaie AR. Biochemistry 48 1517-1524 (2009)
  14. Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase). Gandhi NS, Freeman C, Parish CR, Mancera RL. Glycobiology 22 35-55 (2012)
  15. Impact of the type of SERPINC1 mutation and subtype of antithrombin deficiency on the thrombotic phenotype in hereditary antithrombin deficiency. Luxembourg B, Pavlova A, Geisen C, Spannagl M, Bergmann F, Krause M, Alesci S, Seifried E, Lindhoff-Last E. Thromb Haemost 111 249-257 (2014)
  16. Crystal Structure of the Michaelis Complex between Tissue-type Plasminogen Activator and Plasminogen Activators Inhibitor-1. Gong L, Liu M, Zeng T, Shi X, Yuan C, Andreasen PA, Huang M. J Biol Chem 290 25795-25804 (2015)
  17. Pentosan polysulfate increases affinity between ADAMTS-5 and TIMP-3 through formation of an electrostatically driven trimolecular complex. Troeberg L, Mulloy B, Ghosh P, Lee MH, Murphy G, Nagase H. Biochem J 443 307-315 (2012)
  18. The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation. Richard B, Swanson R, Olson ST. J Biol Chem 284 27054-27064 (2009)
  19. Crystal structures of protease nexin-1 in complex with heparin and thrombin suggest a 2-step recognition mechanism. Li W, Huntington JA. Blood 120 459-467 (2012)
  20. Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Langeslay DJ, Young RP, Beni S, Beecher CN, Mueller LJ, Larive CK. Glycobiology 22 1173-1182 (2012)
  21. A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. Mol Biol Evol 38 2915-2929 (2021)
  22. Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Li SH, Reinke AA, Sanders KL, Emal CD, Whisstock JC, Stuckey JA, Lawrence DA. Proc Natl Acad Sci U S A 110 E4941-9 (2013)
  23. Structural basis for dual inhibitory role of tamarind Kunitz inhibitor (TKI) against factor Xa and trypsin. Patil DN, Chaudhary A, Sharma AK, Tomar S, Kumar P. FEBS J 279 4547-4564 (2012)
  24. Antiangiogenic forms of antithrombin specifically bind to the anticoagulant heparin sequence. Schedin-Weiss S, Richard B, Hjelm R, Olson ST. Biochemistry 47 13610-13619 (2008)
  25. Potent, Selective, Allosteric Inhibition of Human Plasmin by Sulfated Non-Saccharide Glycosaminoglycan Mimetics. Afosah DK, Al-Horani RA, Sankaranarayanan NV, Desai UR. J Med Chem 60 641-657 (2017)
  26. A factor VIIIa-mimetic bispecific antibody, Mim8, ameliorates bleeding upon severe vascular challenge in hemophilia A mice. Østergaard H, Lund J, Greisen PJ, Kjellev S, Henriksen A, Lorenzen N, Johansson E, Røder G, Rasch MG, Johnsen LB, Egebjerg T, Lund S, Rahbek-Nielsen H, Gandhi PS, Lamberth K, Loftager M, Andersen LM, Bonde AC, Stavenuiter F, Madsen DE, Li X, Holm TL, Ley CD, Thygesen P, Zhu H, Zhou R, Thorn K, Yang Z, Hermit MB, Bjelke JR, Hansen BG, Hilden I. Blood 138 1258-1268 (2021)
  27. Contribution of exosite occupancy by heparin to the regulation of coagulation proteases by antithrombin. Yang L, Manithody C, Qureshi SH, Rezaie AR. Thromb Haemost 103 277-283 (2010)
  28. Conformational selection of the AGA*IA(M) heparin pentasaccharide when bound to the fibroblast growth factor receptor. Nieto L, Canales Á, Giménez-Gallego G, Nieto PM, Jiménez-Barbero J. Chemistry 17 11204-11209 (2011)
  29. Antithrombin-binding oligosaccharides: structural diversities in a unique function? Guerrini M, Mourier PA, Torri G, Viskov C. Glycoconj J 31 409-416 (2014)
  30. Multiple domains of MASP-2, an initiating complement protease, are required for interaction with its substrate C4. Duncan RC, Bergström F, Coetzer TH, Blom AM, Wijeyewickrema LC, Pike RN. Mol Immunol 49 593-600 (2012)
  31. A mutation in the heparin-binding site of noggin as a novel mechanism of proximal symphalangism and conductive hearing loss. Masuda S, Namba K, Mutai H, Usui S, Miyanaga Y, Kaneko H, Matsunaga T. Biochem Biophys Res Commun 447 496-502 (2014)
  32. Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling. Sankaranarayanan NV, Sarkar A, Desai UR, Mosier PD. Methods Mol Biol 1229 289-314 (2015)
  33. Activation of antithrombin as a factor IXa and Xa inhibitor involves mitigation of repression rather than positive enhancement. Gettins PG, Olson ST. FEBS Lett 583 3397-3400 (2009)
  34. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin. Richard B, Swanson R, Schedin-Weiss S, Ramirez B, Izaguirre G, Gettins PG, Olson ST. J Biol Chem 283 14417-14429 (2008)
  35. The allosteric mechanism of activation of antithrombin as an inhibitor of factor IXa and factor Xa: heparin-independent full activation through mutations adjacent to helix D. Dementiev A, Swanson R, Roth R, Isetti G, Izaguirre G, Olson ST, Gettins PGW. J Biol Chem 288 33611-33619 (2013)
  36. The superiority of anti-FXa assay over anti-FIIa assay in detecting heparin-binding site antithrombin deficiency. Kovács B, Bereczky Z, Oláh Z, Gindele R, Kerényi A, Selmeczi A, Boda Z, Muszbek L. Am J Clin Pathol 140 675-679 (2013)
  37. Disease-causing mutations in the serpin antithrombin reveal a key domain critical for inhibiting protease activities. Águila S, Izaguirre G, Martínez-Martínez I, Vicente V, Olson ST, Corral J. J Biol Chem 292 16513-16520 (2017)
  38. Structural glycobiology of heparin dynamics on the exosite 2 of coagulation cascade proteases: Implications for glycosaminoglycans antithrombotic activity. Pol-Fachin L, Verli H. Glycobiology 24 97-105 (2014)
  39. Heparin Binds Lamprey Angiotensinogen and Promotes Thrombin Inhibition through a Template Mechanism. Wei H, Cai H, Wu J, Wei Z, Zhang F, Huang X, Ma L, Feng L, Zhang R, Wang Y, Ragg H, Zheng Y, Zhou A. J Biol Chem 291 24900-24911 (2016)
  40. Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers. Huntington JA, Whisstock JC. Biol Chem 391 973-982 (2010)
  41. Protein Z-dependent protease inhibitor (ZPI) is a physiologically significant inhibitor of prothrombinase function. Huang X, Swanson R, Kroh HK, Bock PE. J Biol Chem 294 7644-7657 (2019)
  42. Mass Spectrometry Reveals a Multifaceted Role of Glycosaminoglycan Chains in Factor Xa Inactivation by Antithrombin. Minsky BB, Abzalimov RR, Niu C, Zhao Y, Kirsch Z, Dubin PL, Savinov SN, Kaltashov IA. Biochemistry 57 4880-4890 (2018)
  43. Saturation Mutagenesis of the Antithrombin Reactive Center Loop P14 Residue Supports a Three-step Mechanism of Heparin Allosteric Activation Involving Intermediate and Fully Activated States. Roth R, Swanson R, Izaguirre G, Bock SC, Gettins PGW, Olson ST. J Biol Chem 290 28020-28036 (2015)
  44. Structural and inhibitory effects of hinge loop mutagenesis in serpin-2 from the malaria vector Anopheles gambiae. Zhang X, Meekins DA, An C, Zolkiewski M, Battaile KP, Kanost MR, Lovell S, Michel K. J Biol Chem 290 2946-2956 (2015)
  45. Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. Richard B, Swanson R, Izaguirre G, Olson ST. Biochemistry 57 2211-2226 (2018)
  46. Role of the C-sheet in the maturation of N-glycans on antithrombin: functional relevance of pleiotropic mutations. Aguila S, Navarro-Fernández J, Bohdan N, Gutiérrez-Gallego R, de la Morena-Barrio ME, Vicente V, Corral J, Martínez-Martínez I. J Thromb Haemost 12 1131-1140 (2014)
  47. Role of the residues of the 39-loop in determining the substrate and inhibitor specificity of factor IXa. Yang L, Manithody C, Qureshi SH, Rezaie AR. J Biol Chem 285 28488-28495 (2010)
  48. Dynamic properties of the native free antithrombin from molecular dynamics simulations: computational evidence for solvent- exposed Arg393 side chain. Tóth L, Fekete A, Balogh G, Bereczky Z, Komáromi I. J Biomol Struct Dyn 33 2023-2036 (2015)
  49. Factor Va alters the conformation of the Na+-binding loop of factor Xa in the prothrombinase complex. Yang L, Manithody C, Qureshi SH, Rezaie AR. Biochemistry 47 5976-5985 (2008)
  50. Glycan Activation of a Sheddase: Electrostatic Recognition between Heparin and proMMP-7. Fulcher YG, Prior SH, Masuko S, Li L, Pu D, Zhang F, Linhardt RJ, Van Doren SR. Structure 25 1100-1110.e5 (2017)
  51. Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site. Bohdan N, Espín S, Águila S, Teruel-Montoya R, Vicente V, Corral J, Martínez-Martínez I. PLoS One 11 e0157834 (2016)
  52. No interactions between heparin and atacicept, an antagonist of B cell survival cytokines. Kowalczyk-Quintas C, Willen D, Willen L, Golob M, Schuepbach-Mallepell S, Peter B, Eslami M, Vigolo M, Broly H, Samy E, Yalkinoglu Ö, Schneider P. Br J Pharmacol 176 4019-4033 (2019)
  53. Predictive value of combining the level of lipoprotein-associated phospholipase A2 and antithrombin III for acute coronary syndrome risk. Lu J, Niu D, Zheng D, Zhang Q, Li W. Biomed Rep 9 517-522 (2018)
  54. Stable complex formation between serine protease inhibitor and zymogen: coagulation factor X cleaves the Arg393-Ser394 bond in a reactive centre loop of antithrombin in the presence of heparin. Nakatomi Y, Tsuji M, Gokudan S, Hanada-Dateki T, Nakashima T, Miyazaki H, Hamamoto T, Nakagaki T, Tomokiyo K. J Biochem 152 463-470 (2012)
  55. The role of autolysis loop in determining the specificity of coagulation proteases. Yang L, Manithody C, Rezaie AR. Braz J Med Biol Res 40 1055-1064 (2007)
  56. Effect of Hemodilution In Vitro with Hydroxyethyl Starch on Hemostasis. Jin S, Yu G, Hou R, Shen B, Jiang H. Med Sci Monit 23 2189-2197 (2017)
  57. Heparin Blocks the Inhibition of Tissue Kallikrein 1 by Kallistatin through Electrostatic Repulsion. Ma L, Wu J, Zheng Y, Shu Z, Wei Z, Sun Y, Carrell RW, Zhou A. Biomolecules 10 E828 (2020)
  58. Mechanism of protein-z-mediated inhibition of coagulation factor xa by z-protein-dependent inhibitor: a molecular dynamic approach. Dayer MR, Ghayour O, Dayer MS. ISRN Hematol 2012 762728 (2012)
  59. Prothrombotic SERPINC1 gene polymorphism may affect heparin sensitivity among different ethnicities of Chinese patients receiving heart surgery. Wang J, Ma HP, Ti AL, Zhang YQ, Zheng H. Clin Appl Thromb Hemost 21 760-767 (2015)
  60. Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR. Beecher CN, Manighalam MS, Nwachuku AF, Larive CK. Anal Bioanal Chem 408 1545-1555 (2016)
  61. Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function. Sankaranarayanan NV, Desai U. Methods Mol Biol 2303 513-537 (2022)
  62. Energetics of hydrogen bond switch, residue burial and cavity analysis reveals molecular basis of improved heparin binding to antithrombin. Singh P, Singh K, Jairajpuri MA. J Biomol Struct Dyn 29 339-350 (2011)
  63. Identification of a new SERPINC1 mutation in a Kazak family that alters the heparin binding capacity of antithrombin. Zheng H, Ma HP, Xu WF, Zhang YQ, Wu JJ, Wang J. Thromb Res 134 1344-1349 (2014)
  64. Protein C polymorphism and susceptibility to PTE in China. Zhang YJ, Miao YF, Cheng KB, Yue J, Tan XY, Liu JM. Blood Coagul Fibrinolysis 23 693-699 (2012)
  65. Role of P2 glycine in determining the specificity of antithrombin reaction with coagulation proteases. Yang L, Qureshi SH, Manithody C, Rezaie AR. Biochem Biophys Res Commun 389 162-167 (2009)