2g3r Citations

Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.

Cell 127 1361-73 (2006)
Related entries: 2fhd, 2ig0

Cited: 658 times
EuropePMC logo PMID: 17190600

Abstract

Histone lysine methylation has been linked to the recruitment of mammalian DNA repair factor 53BP1 and putative fission yeast homolog Crb2 to DNA double-strand breaks (DSBs), but how histone recognition is achieved has not been established. Here we demonstrate that this link occurs through direct binding of 53BP1 and Crb2 to histone H4. Using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, we show that, despite low amino acid sequence conservation, both 53BP1 and Crb2 contain tandem tudor domains that interact with histone H4 specifically dimethylated at Lys20 (H4-K20me2). The structure of 53BP1/H4-K20me2 complex uncovers a unique five-residue 53BP1 binding cage, remarkably conserved in the structure of Crb2, that best accommodates a dimethyllysine but excludes a trimethyllysine, thus explaining the methylation state-specific recognition of H4-K20. This study reveals an evolutionarily conserved molecular mechanism of targeting DNA repair proteins to DSBs by direct recognition of H4-K20me2.

Articles - 2g3r mentioned but not cited (12)

  1. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G. Cell 127 1361-1373 (2006)
  2. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO, Fleharty BE, Paulson A, Allali-Hassani A, Zhou JQ, Mer G, Grant PA, Workman JL, Zang J, Min J. EMBO J 30 2829-2842 (2011)
  3. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, Xue S, Duan S, Allali-Hassani A, Zuo X, Wang YX, Bronner C, Chédin F, Arrowsmith CH, Dhe-Paganon S. J Biol Chem 286 24300-24311 (2011)
  4. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Drané P, Brault ME, Cui G, Meghani K, Chaubey S, Detappe A, Parnandi N, He Y, Zheng XF, Botuyan MV, Kalousi A, Yewdell WT, Münch C, Harper JW, Chaudhuri J, Soutoglou E, Mer G, Chowdhury D. Nature 543 211-216 (2017)
  5. (PS)2-v2: template-based protein structure prediction server. Chen CC, Hwang JK, Yang JM. BMC Bioinformatics 10 366 (2009)
  6. Structural insight into p53 recognition by the 53BP1 tandem Tudor domain. Roy S, Musselman CA, Kachirskaia I, Hayashi R, Glass KC, Nix JC, Gozani O, Appella E, Kutateladze TG. J Mol Biol 398 489-496 (2010)
  7. Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR. Dai Y, Zhang A, Shan S, Gong Z, Zhou Z. Nat Commun 9 2123 (2018)
  8. Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein. Botuyan MV, Cui G, Drané P, Oliveira C, Detappe A, Brault ME, Parnandi N, Chaubey S, Thompson JR, Bragantini B, Zhao D, Chapman JR, Chowdhury D, Mer G. Nat Struct Mol Biol 25 591-600 (2018)
  9. The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA. Lancelot N, Charier G, Couprie J, Duband-Goulet I, Alpha-Bazin B, Quémeneur E, Ma E, Marsolier-Kergoat MC, Ropars V, Charbonnier JB, Miron S, Craescu CT, Callebaut I, Gilquin B, Zinn-Justin S. Nucleic Acids Res 35 5898-5912 (2007)
  10. Molecular basis for the inhibition of the methyl-lysine binding function of 53BP1 by TIRR. Wang J, Yuan Z, Cui Y, Xie R, Yang G, Kassab MA, Wang M, Ma Y, Wu C, Yu X, Liu X. Nat Commun 9 2689 (2018)
  11. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  12. An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering. Cui G, Botuyan MV, Drané P, Hu Q, Bragantini B, Thompson JR, Schuller DJ, Detappe A, Perfetti MT, James LI, Frye SV, Chowdhury D, Mer G. Nat Commun 14 6091 (2023)


Reviews citing this publication (252)

  1. Chromatin modifications and their function. Kouzarides T. Cell 128 693-705 (2007)
  2. Histone methylation: a dynamic mark in health, disease and inheritance. Greer EL, Shi Y. Nat Rev Genet 13 343-357 (2012)
  3. Playing the end game: DNA double-strand break repair pathway choice. Chapman JR, Taylor MR, Boulton SJ. Mol Cell 47 497-510 (2012)
  4. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. Nat Struct Mol Biol 14 1025-1040 (2007)
  5. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Polo SE, Jackson SP. Genes Dev 25 409-433 (2011)
  6. Mechanism and regulation of class switch recombination. Stavnezer J, Guikema JE, Schrader CE. Annu Rev Immunol 26 261-292 (2008)
  7. Double-strand break repair: 53BP1 comes into focus. Panier S, Boulton SJ. Nat Rev Mol Cell Biol 15 7-18 (2014)
  8. Understanding the language of Lys36 methylation at histone H3. Wagner EJ, Carpenter PB. Nat Rev Mol Cell Biol 13 115-126 (2012)
  9. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Meyer KD, Jaffrey SR. Nat Rev Mol Cell Biol 15 313-326 (2014)
  10. Perceiving the epigenetic landscape through histone readers. Musselman CA, Lalonde ME, Côté J, Kutateladze TG. Nat Struct Mol Biol 19 1218-1227 (2012)
  11. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Lukas J, Lukas C, Bartek J. Nat Cell Biol 13 1161-1169 (2011)
  12. Regulation of DNA damage responses by ubiquitin and SUMO. Jackson SP, Durocher D. Mol Cell 49 795-807 (2013)
  13. Writing, erasing and reading histone lysine methylations. Hyun K, Jeon J, Park K, Kim J. Exp Mol Med 49 e324 (2017)
  14. Chromatin remodeling at DNA double-strand breaks. Price BD, D'Andrea AD. Cell 152 1344-1354 (2013)
  15. Crosstalk between histone modifications during the DNA damage response. van Attikum H, Gasser SM. Trends Cell Biol 19 207-217 (2009)
  16. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Mosammaparast N, Shi Y. Annu Rev Biochem 79 155-179 (2010)
  17. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Lee JH, Paull TT. Oncogene 26 7741-7748 (2007)
  18. Readers of histone modifications. Yun M, Wu J, Workman JL, Li B. Cell Res 21 564-578 (2011)
  19. The emerging role of nuclear architecture in DNA repair and genome maintenance. Misteli T, Soutoglou E. Nat Rev Mol Cell Biol 10 243-254 (2009)
  20. The control of DNA repair by the cell cycle. Hustedt N, Durocher D. Nat Cell Biol 19 1-9 (2016)
  21. Non-histone protein methylation as a regulator of cellular signalling and function. Biggar KK, Li SS. Nat Rev Mol Cell Biol 16 5-17 (2015)
  22. Epigenetic mechanisms in mammals. Kim JK, Samaranayake M, Pradhan S. Cell Mol Life Sci 66 596-612 (2009)
  23. Assembly and function of DNA double-strand break repair foci in mammalian cells. Bekker-Jensen S, Mailand N. DNA Repair (Amst) 9 1219-1228 (2010)
  24. Protein lysine acetylation by p300/CBP. Dancy BM, Cole PA. Chem Rev 115 2419-2452 (2015)
  25. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Thompson LH. Mutat Res 751 158-246 (2012)
  26. Mechanisms of double-strand break repair in somatic mammalian cells. Hartlerode AJ, Scully R. Biochem J 423 157-168 (2009)
  27. 53BP1: pro choice in DNA repair. Zimmermann M, de Lange T. Trends Cell Biol 24 108-117 (2014)
  28. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Jørgensen S, Schotta G, Sørensen CS. Nucleic Acids Res 41 2797-2806 (2013)
  29. The emerging field of dynamic lysine methylation of non-histone proteins. Huang J, Berger SL. Curr Opin Genet Dev 18 152-158 (2008)
  30. Chromatin dynamics and the preservation of genetic information. Downs JA, Nussenzweig MC, Nussenzweig A. Nature 447 951-958 (2007)
  31. Readout of epigenetic modifications. Patel DJ, Wang Z. Annu Rev Biochem 82 81-118 (2013)
  32. Focus on histone variant H2AX: to be or not to be. Yuan J, Adamski R, Chen J. FEBS Lett 584 3717-3724 (2010)
  33. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Daley JM, Sung P. Mol Cell Biol 34 1380-1388 (2014)
  34. Ubiquitin signalling in DNA replication and repair. Ulrich HD, Walden H. Nat Rev Mol Cell Biol 11 479-489 (2010)
  35. The role of nuclear architecture in genomic instability and ageing. Oberdoerffer P, Sinclair DA. Nat Rev Mol Cell Biol 8 692-702 (2007)
  36. Deciphering arginine methylation: Tudor tells the tale. Chen C, Nott TJ, Jin J, Pawson T. Nat Rev Mol Cell Biol 12 629-642 (2011)
  37. DNA DSB repair pathway choice: an orchestrated handover mechanism. Kakarougkas A, Jeggo PA. Br J Radiol 87 20130685 (2014)
  38. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat Rev Mol Cell Biol 14 563-580 (2013)
  39. Chromatin and the genome integrity network. Papamichos-Chronakis M, Peterson CL. Nat Rev Genet 14 62-75 (2013)
  40. Chromatin and nucleosome dynamics in DNA damage and repair. Hauer MH, Gasser SM. Genes Dev 31 2204-2221 (2017)
  41. The ubiquitous role of ubiquitin in the DNA damage response. Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D. DNA Repair (Amst) 9 1229-1240 (2010)
  42. Lysine methylation: beyond histones. Zhang X, Wen H, Shi X. Acta Biochim Biophys Sin (Shanghai) 44 14-27 (2012)
  43. Double strand break repair functions of histone H2AX. Scully R, Xie A. Mutat Res 750 5-14 (2013)
  44. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. Dantuma NP, van Attikum H. EMBO J 35 6-23 (2016)
  45. How cells ensure correct repair of DNA double-strand breaks. Her J, Bunting SF. J Biol Chem 293 10502-10511 (2018)
  46. The functional diversity of protein lysine methylation. Lanouette S, Mongeon V, Figeys D, Couture JF. Mol Syst Biol 10 724 (2014)
  47. Chromatin dynamics and the repair of DNA double strand breaks. Xu Y, Price BD. Cell Cycle 10 261-267 (2011)
  48. Push back to respond better: regulatory inhibition of the DNA double-strand break response. Panier S, Durocher D. Nat Rev Mol Cell Biol 14 661-672 (2013)
  49. Histone ubiquitination in the DNA damage response. Uckelmann M, Sixma TK. DNA Repair (Amst) 56 92-101 (2017)
  50. Shieldin - the protector of DNA ends. Setiaputra D, Durocher D. EMBO Rep 20 e47560 (2019)
  51. Genomic integrity and the ageing brain. Chow HM, Herrup K. Nat Rev Neurosci 16 672-684 (2015)
  52. 53BP1: a DSB escort. Mirman Z, de Lange T. Genes Dev 34 7-23 (2020)
  53. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M. ChemMedChem 4 1568-1582 (2009)
  54. Dynamic protein methylation in chromatin biology. Ng SS, Yue WW, Oppermann U, Klose RJ. Cell Mol Life Sci 66 407-422 (2009)
  55. DOT1L and H3K79 Methylation in Transcription and Genomic Stability. Wood K, Tellier M, Murphy S. Biomolecules 8 E11 (2018)
  56. Histone demethylases in chromatin biology and beyond. Dimitrova E, Turberfield AH, Klose RJ. EMBO Rep 16 1620-1639 (2015)
  57. Structure and function of histone methylation binding proteins. Adams-Cioaba MA, Min J. Biochem Cell Biol 87 93-105 (2009)
  58. The ubiquitin landscape at DNA double-strand breaks. Messick TE, Greenberg RA. J Cell Biol 187 319-326 (2009)
  59. The chromatin response to DNA breaks: leaving a mark on genome integrity. Smeenk G, van Attikum H. Annu Rev Biochem 82 55-80 (2013)
  60. Stop pulling my strings - what telomeres taught us about the DNA damage response. Lazzerini-Denchi E, Sfeir A. Nat Rev Mol Cell Biol 17 364-378 (2016)
  61. The molecular basis and disease relevance of non-homologous DNA end joining. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. Nat Rev Mol Cell Biol 21 765-781 (2020)
  62. Heterochromatin and the DNA damage response: the need to relax. Cann KL, Dellaire G. Biochem Cell Biol 89 45-60 (2011)
  63. Chromatin remodeling finds its place in the DNA double-strand break response. Pandita TK, Richardson C. Nucleic Acids Res 37 1363-1377 (2009)
  64. Histones: at the crossroads of peptide and protein chemistry. Müller MM, Muir TW. Chem Rev 115 2296-2349 (2015)
  65. Lamin B receptor: multi-tasking at the nuclear envelope. Olins AL, Rhodes G, Welch DB, Zwerger M, Olins DE. Nucleus 1 53-70 (2010)
  66. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks. Bekker-Jensen S, Mailand N. FEBS Lett 585 2914-2919 (2011)
  67. Choreography of recombination proteins during the DNA damage response. Lisby M, Rothstein R. DNA Repair (Amst) 8 1068-1076 (2009)
  68. Epigenetic modifications in double-strand break DNA damage signaling and repair. Rossetto D, Truman AW, Kron SJ, Côté J. Clin Cancer Res 16 4543-4552 (2010)
  69. Biochemical mechanism of DSB end resection and its regulation. Daley JM, Niu H, Miller AS, Sung P. DNA Repair (Amst) 32 66-74 (2015)
  70. Assembly of checkpoint and repair machineries at DNA damage sites. Huen MS, Chen J. Trends Biochem Sci 35 101-108 (2010)
  71. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Finn K, Lowndes NF, Grenon M. Cell Mol Life Sci 69 1447-1473 (2012)
  72. Readers of histone methylarginine marks. Gayatri S, Bedford MT. Biochim Biophys Acta 1839 702-710 (2014)
  73. Tudor: a versatile family of histone methylation 'readers'. Lu R, Wang GG. Trends Biochem Sci 38 546-555 (2013)
  74. Chromatin and the DNA damage response: the cancer connection. Luijsterburg MS, van Attikum H. Mol Oncol 5 349-367 (2011)
  75. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Yao H, Rahman I. Biochem Pharmacol 84 1332-1339 (2012)
  76. Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Langerak P, Russell P. Philos Trans R Soc Lond B Biol Sci 366 3562-3571 (2011)
  77. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK. Radiat Res 179 383-392 (2013)
  78. Keeping it in the family: diverse histone recognition by conserved structural folds. Yap KL, Zhou MM. Crit Rev Biochem Mol Biol 45 488-505 (2010)
  79. DNA double-strand break repair in a cellular context. Shibata A, Jeggo PA. Clin Oncol (R Coll Radiol) 26 243-249 (2014)
  80. Modular evolution of phosphorylation-based signalling systems. Jin J, Pawson T. Philos Trans R Soc Lond B Biol Sci 367 2540-2555 (2012)
  81. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Coster G, Goldberg M. Nucleus 1 166-178 (2010)
  82. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Roos WP, Krumm A. Nucleic Acids Res 44 10017-10030 (2016)
  83. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. Gong F, Chiu LY, Miller KM. PLoS Genet 12 e1006272 (2016)
  84. Protein methylation: a new mechanism of p53 tumor suppressor regulation. Scoumanne A, Chen X. Histol Histopathol 23 1143-1149 (2008)
  85. Histone marks: repairing DNA breaks within the context of chromatin. Miller KM, Jackson SP. Biochem Soc Trans 40 370-376 (2012)
  86. Histone methylation and the DNA damage response. Gong F, Miller KM. Mutat Res Rev Mutat Res 780 37-47 (2019)
  87. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK. Radiat Res 181 1-8 (2014)
  88. Chatting histone modifications in mammals. Izzo A, Schneider R. Brief Funct Genomics 9 429-443 (2010)
  89. PHD fingers: epigenetic effectors and potential drug targets. Musselman CA, Kutateladze TG. Mol Interv 9 314-323 (2009)
  90. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Yao H, Rahman I. Am J Physiol Lung Cell Mol Physiol 303 L557-66 (2012)
  91. Epigenetic Changes in Diabetes and Cardiovascular Risk. Keating ST, Plutzky J, El-Osta A, El-Osta A. Circ Res 118 1706-1722 (2016)
  92. Epigenetic regulation of development by histone lysine methylation. Dambacher S, Hahn M, Schotta G. Heredity (Edinb) 105 24-37 (2010)
  93. Epigenetic regulation: methylation of histone and non-histone proteins. Lan F, Shi Y. Sci China C Life Sci 52 311-322 (2009)
  94. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Yan J, Jetten AM. Cancer Lett 271 179-190 (2008)
  95. MDC1: The art of keeping things in focus. Jungmichel S, Stucki M. Chromosoma 119 337-349 (2010)
  96. An unexpected journey: lysine methylation across the proteome. Moore KE, Gozani O. Biochim Biophys Acta 1839 1395-1403 (2014)
  97. The emerging role of Polycomb repressors in the response to DNA damage. Vissers JH, van Lohuizen M, Citterio E. J Cell Sci 125 3939-3948 (2012)
  98. Building RNA-protein granules: insight from the germline. Arkov AL, Ramos A. Trends Cell Biol 20 482-490 (2010)
  99. RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response. Shiloh Y, Shema E, Moyal L, Oren M. FEBS Lett 585 2795-2802 (2011)
  100. Crosstalk between ubiquitin and other post-translational modifications on chromatin during double-strand break repair. Zhao Y, Brickner JR, Majid MC, Mosammaparast N. Trends Cell Biol 24 426-434 (2014)
  101. Histone post-translational modifications - cause and consequence of genome function. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Nat Rev Genet 23 563-580 (2022)
  102. The multiple facets of histone H4-lysine 20 methylation. Yang H, Mizzen CA. Biochem Cell Biol 87 151-161 (2009)
  103. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Kim W, Choi M, Kim JE. Cell Cycle 13 726-738 (2014)
  104. The upstreams and downstreams of H3K79 methylation by DOT1L. Vlaming H, van Leeuwen F. Chromosoma 125 593-605 (2016)
  105. Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin. Franz A, Ackermann L, Hoppe T. Front Genet 7 73 (2016)
  106. Role of H2AX in DNA damage response and human cancers. Srivastava N, Gochhait S, de Boer P, Bamezai RNK. Mutat Res 681 180-188 (2009)
  107. Structure and function of the BAH domain in chromatin biology. Yang N, Xu RM. Crit Rev Biochem Mol Biol 48 211-221 (2013)
  108. The role of arginine methylation in the DNA damage response. Auclair Y, Richard S. DNA Repair (Amst) 12 459-465 (2013)
  109. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Patel DJ. Cold Spring Harb Perspect Biol 8 a018754 (2016)
  110. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Sinha M, Peterson CL. Epigenomics 1 371-385 (2009)
  111. Chromatin dynamics in DNA double-strand break repair. Shi L, Oberdoerffer P. Biochim Biophys Acta 1819 811-819 (2012)
  112. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Nat Rev Drug Discov 20 265-286 (2021)
  113. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. Philos Trans R Soc Lond B Biol Sci 372 20160284 (2017)
  114. Antigen receptor diversification and chromosome translocations. Jankovic M, Nussenzweig A, Nussenzweig MC. Nat Immunol 8 801-808 (2007)
  115. A fine-scale dissection of the DNA double-strand break repair machinery and its implications for breast cancer therapy. Liu C, Srihari S, Cao KA, Chenevix-Trench G, Simpson PT, Ragan MA, Khanna KK. Nucleic Acids Res 42 6106-6127 (2014)
  116. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Chiolo I, Tang J, Georgescu W, Costes SV. Mutat Res 750 56-66 (2013)
  117. Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation. Migliori V, Phalke S, Bezzi M, Guccione E. Epigenomics 2 119-137 (2010)
  118. Integrating the DNA damage and protein stress responses during cancer development and treatment. Gorgoulis VG, Pefani DE, Pateras IS, Trougakos IP. J Pathol 246 12-40 (2018)
  119. Decoding the histone H4 lysine 20 methylation mark. Balakrishnan L, Milavetz B. Crit Rev Biochem Mol Biol 45 440-452 (2010)
  120. Dual role of CDKs in DNA repair: to be, or not to be. Yata K, Esashi F. DNA Repair (Amst) 8 6-18 (2009)
  121. Many keys to push: diversifying the 'readership' of plant homeodomain fingers. Li Y, Li H. Acta Biochim Biophys Sin (Shanghai) 44 28-39 (2012)
  122. The emerging role of lysine methyltransferase SETD8 in human diseases. Milite C, Feoli A, Viviano M, Rescigno D, Cianciulli A, Balzano AL, Mai A, Castellano S, Sbardella G. Clin Epigenetics 8 102 (2016)
  123. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair. Nair N, Shoaib M, Sørensen CS. Int J Mol Sci 18 E1486 (2017)
  124. Combinatorial readout of dual histone modifications by paired chromatin-associated modules. Wang Z, Patel DJ. J Biol Chem 286 18363-18368 (2011)
  125. Nuclear compartmentalization of DNA repair. Kalousi A, Soutoglou E. Curr Opin Genet Dev 37 148-157 (2016)
  126. Structural insight into histone recognition by the ING PHD fingers. Champagne KS, Kutateladze TG. Curr Drug Targets 10 432-441 (2009)
  127. Histone methyltransferases: regulation of transcription and contribution to human disease. Nimura K, Ura K, Kaneda Y. J Mol Med (Berl) 88 1213-1220 (2010)
  128. Altered histone modifications in gliomas. Kim YZ. Brain Tumor Res Treat 2 7-21 (2014)
  129. Cell biology of mitotic recombination. Lisby M, Rothstein R. Cold Spring Harb Perspect Biol 7 a016535 (2015)
  130. Chromatin response to DNA double-strand break damage. Bao Y. Epigenomics 3 307-321 (2011)
  131. Histone H4 Lysine 20 (H4K20) Methylation, Expanding the Signaling Potential of the Proteome One Methyl Moiety at a Time. van Nuland R, Gozani O. Mol Cell Proteomics 15 755-764 (2016)
  132. Preserving genome integrity and function: the DNA damage response and histone modifications. Kim JJ, Lee SY, Miller KM. Crit Rev Biochem Mol Biol 54 208-241 (2019)
  133. Epigenetic virtues of chromodomains. Blus BJ, Wiggins K, Khorasanizadeh S. Crit Rev Biochem Mol Biol 46 507-526 (2011)
  134. Metnase/SETMAR: a domesticated primate transposase that enhances DNA repair, replication, and decatenation. Shaheen M, Williamson E, Nickoloff J, Lee SH, Hromas R. Genetica 138 559-566 (2010)
  135. Telomeres, histone code, and DNA damage response. Misri S, Pandita S, Kumar R, Pandita TK. Cytogenet Genome Res 122 297-307 (2008)
  136. Beyond histones - the expanding roles of protein lysine methylation. Wu Z, Connolly J, Biggar KK. FEBS J 284 2732-2744 (2017)
  137. Epigenetic regulation of genomic integrity. Deem AK, Li X, Tyler JK. Chromosoma 121 131-151 (2012)
  138. Histone methylation and aging: lessons learned from model systems. McCauley BS, Dang W. Biochim Biophys Acta 1839 1454-1462 (2014)
  139. Low-dose radiation-induced responses: focusing on epigenetic regulation. Ma S, Liu X, Jiao B, Yang Y, Liu X. Int J Radiat Biol 86 517-528 (2010)
  140. Prenatal nutrition and the risk of adult obesity: Long-term effects of nutrition on epigenetic mechanisms regulating gene expression. Navarro E, Funtikova AN, Fíto M, Schröder H. J Nutr Biochem 39 1-14 (2017)
  141. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Young NL, Plazas-Mayorca MD, Garcia BA. Expert Rev Proteomics 7 79-92 (2010)
  142. Epigenomics and the regulation of aging. Boyd-Kirkup JD, Green CD, Wu G, Wang D, Han JD. Epigenomics 5 205-227 (2013)
  143. Histone Lysine Methylation and Neurodevelopmental Disorders. Kim JH, Lee JH, Lee IS, Lee SB, Cho KS. Int J Mol Sci 18 E1404 (2017)
  144. On your histone mark, SET, methylate! Binda O. Epigenetics 8 457-463 (2013)
  145. Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Javaid N, Choi S. Genes (Basel) 8 E196 (2017)
  146. Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. Pan L, Penney J, Tsai LH. J Mol Biol 426 3376-3388 (2014)
  147. Regulation of DNA Double Strand Breaks Processing: Focus on Barriers. Marini F, Rawal CC, Liberi G, Pellicioli A. Front Mol Biosci 6 55 (2019)
  148. The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Torrecilla I, Oehler J, Ramadan K. Philos Trans R Soc Lond B Biol Sci 372 20160282 (2017)
  149. Chromatin at the intersection of viral infection and DNA damage. Lilley CE, Chaurushiya MS, Weitzman MD. Biochim Biophys Acta 1799 319-327 (2010)
  150. Control of histone methylation and genome stability by PTIP. Muñoz IM, Rouse J. EMBO Rep 10 239-245 (2009)
  151. Histone ubiquitylation and its roles in transcription and DNA damage response. Meas R, Mao P. DNA Repair (Amst) 36 36-42 (2015)
  152. A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response. Lin X, Ojo D, Wei F, Wong N, Gu Y, Tang D. Biomolecules 5 3396-3415 (2015)
  153. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses. Berger ND, Stanley FKT, Moore S, Goodarzi AA. Philos Trans R Soc Lond B Biol Sci 372 20160283 (2017)
  154. H3K36me3, message from chromatin to DNA damage repair. Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H, Fang D. Cell Biosci 10 9 (2020)
  155. Reading chromatin signatures after DNA double-strand breaks. Wilson MD, Durocher D. Philos Trans R Soc Lond B Biol Sci 372 20160280 (2017)
  156. BRCT domains: A little more than kin, and less than kind. Gerloff DL, Woods NT, Farago AA, Monteiro AN. FEBS Lett 586 2711-2716 (2012)
  157. Mind the methyl: methyllysine binding proteins in epigenetic regulation. Wagner T, Robaa D, Sippl W, Jung M. ChemMedChem 9 466-483 (2014)
  158. NIRF/UHRF2 occupies a central position in the cell cycle network and allows coupling with the epigenetic landscape. Mori T, Ikeda DD, Yamaguchi Y, Unoki M, NIRF Project. FEBS Lett 586 1570-1583 (2012)
  159. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Weaver TM, Morrison EA, Musselman CA. Molecules 23 E2614 (2018)
  160. Epigenetic targets and drug discovery: part 1: histone methylation. Liu Y, Liu K, Qin S, Xu C, Min J. Pharmacol Ther 143 275-294 (2014)
  161. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Chen Y, Zhu WG. Acta Biochim Biophys Sin (Shanghai) 48 603-616 (2016)
  162. Bromodomain proteins: repairing DNA damage within chromatin. Chiu LY, Gong F, Miller KM. Philos Trans R Soc Lond B Biol Sci 372 20160286 (2017)
  163. Histone modifications and the DNA double-strand break response. Van HT, Santos MA. Cell Cycle 17 2399-2410 (2018)
  164. The epigenetics of suicide: explaining the biological effects of early life environmental adversity. Labonte B, Turecki G. Arch Suicide Res 14 291-310 (2010)
  165. Histone modifications in DNA damage response. Cao LL, Shen C, Zhu WG. Sci China Life Sci 59 257-270 (2016)
  166. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice. Nakada S. J Radiat Res 57 Suppl 1 i33-i40 (2016)
  167. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair. Smeenk G, Mailand N. Front Genet 7 122 (2016)
  168. Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Barry ER, Corry GN, Rasmussen TP. Expert Opin Ther Targets 14 405-418 (2010)
  169. The Histone Code of Senescence. Paluvai H, Di Giorgio E, Brancolini C. Cells 9 E466 (2020)
  170. Interplay between modifications of chromatin and meiotic recombination hotspots. Brachet E, Sommermeyer V, Borde V. Biol Cell 104 51-69 (2012)
  171. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Egorova KS, Olenkina OM, Olenina LV. Biochemistry (Mosc) 75 535-548 (2010)
  172. Ub-family modifications at the replication fork: Regulating PCNA-interacting components. Kirchmaier AL. FEBS Lett 585 2920-2928 (2011)
  173. Chromatin modifications associated with DNA double-strand breaks repair as potential targets for neurological diseases. Brochier C, Langley B. Neurotherapeutics 10 817-830 (2013)
  174. Epigenetic changes in gliomas. Burgess R, Jenkins R, Zhang Z. Cancer Biol Ther 7 1326-1334 (2008)
  175. The histone codes for meiosis. Wang L, Xu Z, Khawar MB, Liu C, Li W. Reproduction 154 R65-R79 (2017)
  176. Roles for histone H3K4 methyltransferase activities during immunoglobulin class-switch recombination. Daniel JA, Nussenzweig A. Biochim Biophys Acta 1819 733-738 (2012)
  177. The accumulation of DNA repair defects is the molecular origin of carcinogenesis. Cha HJ, Yim H. Tumour Biol 34 3293-3302 (2013)
  178. The nucleosome: orchestrating DNA damage signaling and repair within chromatin. Agarwal P, Miller KM. Biochem Cell Biol 94 381-395 (2016)
  179. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Kieffer SR, Lowndes NF. Front Genet 13 793884 (2022)
  180. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Liu J, Kim J, Oberdoerffer P. Front Genet 4 182 (2013)
  181. Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases. Teijido O, Cacabelos R. Int J Mol Sci 19 E3199 (2018)
  182. A survey of the year 2006 literature on applications of isothermal titration calorimetry. Okhrimenko O, Jelesarov I. J Mol Recognit 21 1-19 (2008)
  183. Around and beyond 53BP1 Nuclear Bodies. Fernandez-Vidal A, Vignard J, Mirey G. Int J Mol Sci 18 E2611 (2017)
  184. Changing the ubiquitin landscape during viral manipulation of the DNA damage response. Weitzman MD, Lilley CE, Chaurushiya MS. FEBS Lett 585 2897-2906 (2011)
  185. Epigenomic Modifications Mediating Antibody Maturation. Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Front Immunol 9 355 (2018)
  186. Ubiquitin and ubiquitin-like molecules in DNA double strand break repair. Yu J, Qin B, Lou Z. Cell Biosci 10 13 (2020)
  187. Understanding the Histone DNA Repair Code: H4K20me2 Makes Its Mark. Paquin KL, Howlett NG. Mol Cancer Res 16 1335-1345 (2018)
  188. Ways of improving precise knock-in by genome-editing technologies. Smirnikhina SA, Anuchina AA, Lavrov AV. Hum Genet 138 1-19 (2019)
  189. Every methyl counts--epigenetic calculus. Scharf AN, Imhof A. FEBS Lett 585 2001-2007 (2011)
  190. Histone-binding domains: strategies for discovery and characterization. Wilkinson AW, Gozani O. Biochim Biophys Acta 1839 669-675 (2014)
  191. Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. J Mol Biol 429 3409-3429 (2017)
  192. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Mancini M, Magnani E, Macchi F, Bonapace IM. Nucleic Acids Res 49 6053-6068 (2021)
  193. DNA double-strand break repair, immunodeficiency and the RIDDLE syndrome. Blundred RM, Stewart GS. Expert Rev Clin Immunol 7 169-185 (2011)
  194. Structure and function of eTudor domain containing TDRD proteins. Gan B, Chen S, Liu H, Min J, Liu K. Crit Rev Biochem Mol Biol 54 119-132 (2019)
  195. Methyllysine binding domains: Structural insight and small molecule probe development. Teske KA, Hadden MK. Eur J Med Chem 136 14-35 (2017)
  196. Modular paths to 'decoding' and 'wiping' histone lysine methylation. Kustatscher G, Ladurner AG. Curr Opin Chem Biol 11 628-635 (2007)
  197. New factors in mammalian DNA repair-the chromatin connection. Raschellà G, Melino G, Malewicz M. Oncogene 36 4673-4681 (2017)
  198. The Role of Recombinant AAV in Precise Genome Editing. Bijlani S, Pang KM, Sivanandam V, Singh A, Chatterjee S. Front Genome Ed 3 799722 (2021)
  199. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. Fijen C, Rothenberg E. DNA Repair (Amst) 105 103170 (2021)
  200. A modified epigenetics toolbox to study histone modifications on the nucleosome core. Frederiks F, Stulemeijer IJ, Ovaa H, van Leeuwen F. Chembiochem 12 308-313 (2011)
  201. CRISPR-based genome editing through the lens of DNA repair. Nambiar TS, Baudrier L, Billon P, Ciccia A. Mol Cell 82 348-388 (2022)
  202. Modifying chromatin architecture during the response to DNA breakage. Venkitaraman AR. Crit Rev Biochem Mol Biol 45 2-13 (2010)
  203. Choreographing the Double Strand Break Response: Ubiquitin and SUMO Control of Nuclear Architecture. Harding SM, Greenberg RA. Front Genet 7 103 (2016)
  204. Clinically Applicable Inhibitors Impacting Genome Stability. Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Molecules 23 E1166 (2018)
  205. A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Bártová E, Legartová S, Dundr M, Suchánková J. Aging (Albany NY) 11 2488-2511 (2019)
  206. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function. Pick H, Kilic S, Fierz B. Biochim Biophys Acta 1839 644-656 (2014)
  207. Evolving insights: how DNA repair pathways impact cancer evolution. Zhou J, Zhou XA, Zhang N, Wang J. Cancer Biol Med 17 805-827 (2020)
  208. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Oberdoerffer P, Miller KM. Semin Cell Dev Biol 135 59-72 (2023)
  209. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Sanchez A, Lee D, Kim DI, Miller KM. Front Genet 12 747734 (2021)
  210. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Karl LA, Peritore M, Galanti L, Pfander B. Front Genet 12 821543 (2021)
  211. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Dahiya R, Mohammad T, Alajmi MF, Rehman MT, Hasan GM, Hussain A, Hassan MI. Biomolecules 10 E882 (2020)
  212. Nucleosome Remodeling by Fun30SMARCAD1 in the DNA Damage Response. Bantele SCS, Pfander B. Front Mol Biosci 6 78 (2019)
  213. Regulation of DNA double-strand break repair pathway choice: a new focus on 53BP1. Zhang F, Gong Z. J Zhejiang Univ Sci B 22 38-46 (2021)
  214. Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Zhu H, Wei T, Cai Y, Jin J. Molecules 25 E578 (2020)
  215. A PIAS-ed view of DNA double strand break repair focuses on SUMO. Zlatanou A, Stewart GS. DNA Repair (Amst) 9 588-592 (2010)
  216. Role of Histone Methylation in Maintenance of Genome Integrity. Mushtaq A, Mir US, Hunt CR, Pandita S, Tantray WW, Bhat A, Pandita RK, Altaf M, Pandita TK. Genes (Basel) 12 1000 (2021)
  217. Systematic analysis of histone modification readout. Nikolov M, Fischle W. Mol Biosyst 9 182-194 (2013)
  218. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Ackerson SM, Romney C, Schuck PL, Stewart JA. Front Cell Dev Biol 9 708763 (2021)
  219. A multifaceted role for MOF histone modifying factor in genome maintenance. Mujoo K, Hunt CR, Horikoshi N, Pandita TK. Mech Ageing Dev 161 177-180 (2017)
  220. Beyond reversal: ubiquitin and ubiquitin-like proteases and the orchestration of the DNA double strand break repair response. Garvin AJ. Biochem Soc Trans 47 1881-1893 (2019)
  221. DNA repair as a shared hallmark in cancer and ageing. Clarke TL, Mostoslavsky R. Mol Oncol 16 3352-3379 (2022)
  222. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. Separovich RJ, Wilkins MR. J Biol Chem 297 100939 (2021)
  223. SGF29 and Sry pathway in hepatocarcinogenesis. Kurabe N, Murakami S, Tashiro F. World J Biol Chem 6 139-147 (2015)
  224. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Linhares BM, Grembecka J, Cierpicki T. Future Med Chem 12 1305-1326 (2020)
  225. DNA Damage Response Regulation by Histone Ubiquitination. Sekiguchi M, Matsushita N. Int J Mol Sci 23 8187 (2022)
  226. Epigenetic mechanisms and implications in tendon inflammation (Review). Thankam FG, Boosani CS, Dilisio MF, Agrawal DK. Int J Mol Med 43 3-14 (2019)
  227. Histone methylation in myelodysplastic syndromes. Wei Y, Gañán-Gómez I, Salazar-Dimicoli S, McCay SL, Garcia-Manero G. Epigenomics 3 193-205 (2011)
  228. Small RNAs: emerging key players in DNA double-strand break repair. Ba Z, Qi Y. Sci China Life Sci 56 933-936 (2013)
  229. The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Chen Z, Tyler JK. Front Cell Dev Biol 10 909696 (2022)
  230. Disassembly of the Shieldin Complex by TRIP13. Sarangi P, Clairmont CS, D'Andrea AD. Cell Cycle 19 1565-1575 (2020)
  231. Methylation of histone 4's lysine 20: a critical analysis of the state of the field. Corvalan AZ, Coller HA. Physiol Genomics 53 22-32 (2021)
  232. Role of ubiquitination in meiotic recombination repair. Cui L, Li W. Sci China Life Sci 53 447-454 (2010)
  233. Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy. Johnson DP, Chandrasekharan MB, Dutreix M, Bhaskara S. Cancers (Basel) 13 381 (2021)
  234. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. McPherson KS, Korzhnev DM. RSC Chem Biol 2 1167-1195 (2021)
  235. Ubiquitination events that regulate recombination of immunoglobulin Loci gene segments. Chao J, Rothschild G, Basu U. Front Immunol 5 100 (2014)
  236. Balancing act: To be, or not to be ubiquitylated. Nishi R. Mutat Res 803-805 43-50 (2017)
  237. Communication between chromatin and homologous recombination. Verma P, Greenberg RA. Curr Opin Genet Dev 71 1-9 (2021)
  238. Protein Methylation in Diabetic Kidney Disease. Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Front Med (Lausanne) 9 736006 (2022)
  239. Roles for the methyltransferase SETD8 in DNA damage repair. Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Clin Epigenetics 14 34 (2022)
  240. Structural aspects of small-molecule inhibition of methyllysine reader proteins. Milosevich N, Warmerdam Z, Hof F. Future Med Chem 8 1681-1702 (2016)
  241. TIRR: a potential front runner in HDR race-hypotheses and perspectives. Anuchina AA, Lavrov AV, Smirnikhina SA. Mol Biol Rep 47 2371-2379 (2020)
  242. The Role of DNA Repair in Genomic Instability of Multiple Myeloma. Ali JYH, Fitieh AM, Ismail IH. Int J Mol Sci 23 5688 (2022)
  243. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Rass E, Willaume S, Bertrand P. Genes (Basel) 13 2390 (2022)
  244. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Kolobynina KG, Rapp A, Cardoso MC. Front Cell Dev Biol 10 928113 (2022)
  245. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Lei T, Du S, Peng Z, Chen L. Int J Mol Med 50 90 (2022)
  246. The regulation of DNA end resection by chromatin response to DNA double strand breaks. Chen BR, Sleckman BP. Front Cell Dev Biol 10 932633 (2022)
  247. Decoding histone ubiquitylation. Chen JJ, Stermer D, Tanny JC. Front Cell Dev Biol 10 968398 (2022)
  248. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Agredo A, Kasinski AL. Front Genet 14 1243395 (2023)
  249. SMN post-translational modifications in spinal muscular atrophy. Riboldi GM, Faravelli I, Rinchetti P, Lotti F. Front Cell Neurosci 17 1092488 (2023)
  250. The Multifaceted Roles of Lamins in Lung Cancer and DNA Damage Response. Janetzko J, Oeck S, Schramm A. Cancers (Basel) 15 5501 (2023)
  251. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Biomedicines 10 332 (2022)
  252. Tudor-dimethylarginine interactions: the condensed version. Šimčíková D, Gelles-Watnick S, Neugebauer KM. Trends Biochem Sci 48 689-698 (2023)

Articles citing this publication (394)

  1. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. Cell 131 887-900 (2007)
  2. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. Cell 131 901-914 (2007)
  3. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C. Cell 136 435-446 (2009)
  4. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA. Cell 135 907-918 (2008)
  5. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, Durocher D. Cell 136 420-434 (2009)
  6. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ. Mol Cell 49 858-871 (2013)
  7. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F, Durocher D. Nature 499 50-54 (2013)
  8. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Dimitrova N, Chen YC, Spector DL, de Lange T. Nature 456 524-528 (2008)
  9. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, Legube G. Nat Struct Mol Biol 21 366-374 (2014)
  10. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA. Nat Struct Mol Biol 20 317-325 (2013)
  11. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR. Mol Cell Biol 28 2825-2839 (2008)
  12. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Pei H, Zhang L, Luo K, Qin Y, Chesi M, Fei F, Bergsagel PL, Wang L, You Z, Lou Z. Nature 470 124-128 (2011)
  13. Modulation of p53 function by SET8-mediated methylation at lysine 382. Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW, Dutta S, Appella E, Gozani O. Mol Cell 27 636-646 (2007)
  14. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callén E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T. Genes Dev 22 2048-2061 (2008)
  15. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DV, Shimada M, Tauchi H, Suzuki H, Tashiro S, Zou L, Komatsu K. Mol Cell 41 515-528 (2011)
  16. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. EMBO J 31 1865-1878 (2012)
  17. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J. Cell Stem Cell 5 214-226 (2009)
  18. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Difilippantonio S, Gapud E, Wong N, Huang CY, Mahowald G, Chen HT, Kruhlak MJ, Callen E, Livak F, Nussenzweig MC, Sleckman BP, Nussenzweig A. Nature 456 529-533 (2008)
  19. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Cao L, Xu X, Bunting SF, Liu J, Wang RH, Cao LL, Wu JJ, Peng TN, Chen J, Nussenzweig A, Deng CX, Finkel T. Mol Cell 35 534-541 (2009)
  20. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, Patel DJ, Gozani O. Nature 484 115-119 (2012)
  21. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK. Mol Cell Biol 30 3582-3595 (2010)
  22. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, Torres-Padilla ME, Heard E, Reinberg D. Mol Cell Biol 29 2278-2295 (2009)
  23. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Acs K, Luijsterburg MS, Ackermann L, Salomons FA, Hoppe T, Dantuma NP. Nat Struct Mol Biol 18 1345-1350 (2011)
  24. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D. Mol Cell Biol 28 2718-2731 (2008)
  25. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Pesavento JJ, Yang H, Kelleher NL, Mizzen CA. Mol Cell Biol 28 468-486 (2008)
  26. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Fnu S, Williamson EA, De Haro LP, Brenneman M, Wray J, Shaheen M, Radhakrishnan K, Lee SH, Nickoloff JA, Hromas R. Proc Natl Acad Sci U S A 108 540-545 (2011)
  27. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X. Nat Struct Mol Biol 15 245-250 (2008)
  28. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Bunting SF, Callén E, Kozak ML, Kim JM, Wong N, López-Contreras AJ, Ludwig T, Baer R, Faryabi RB, Malhowski A, Chen HT, Fernandez-Capetillo O, D'Andrea A, Nussenzweig A. Mol Cell 46 125-135 (2012)
  29. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC. Nat Struct Mol Biol 14 689-695 (2007)
  30. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Nat Struct Mol Biol 16 639-646 (2009)
  31. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Oda H, Hübner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL, Reinberg D. Mol Cell 40 364-376 (2010)
  32. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Bothmer A, Robbiani DF, Di Virgilio M, Bunting SF, Klein IA, Feldhahn N, Barlow J, Chen HT, Bosque D, Callen E, Nussenzweig A, Nussenzweig MC. Mol Cell 42 319-329 (2011)
  33. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, Citterio E, van Lohuizen M, Ganesan S. Mol Cell Biol 31 1972-1982 (2011)
  34. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Xie A, Hartlerode A, Stucki M, Odate S, Puget N, Kwok A, Nagaraju G, Yan C, Alt FW, Chen J, Jackson SP, Scully R. Mol Cell 28 1045-1057 (2007)
  35. The histone methyltransferase SET8 is required for S-phase progression. Jørgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON, Helleday T, Helin K, Sørensen CS. J Cell Biol 179 1337-1345 (2007)
  36. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Ballaré C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, Carlomagno T, Benitah SA, Di Croce L. Nat Struct Mol Biol 19 1257-1265 (2012)
  37. The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, Greenberg RA. Proc Natl Acad Sci U S A 106 3166-3171 (2009)
  38. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. van Vugt MA, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong SE, Tan CS, Miao H, Keezer SM, Li J, Pawson T, Lewis TA, Carr SA, Smerdon SJ, Brummelkamp TR, Yaffe MB. PLoS Biol 8 e1000287 (2010)
  39. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Lee J, Thompson JR, Botuyan MV, Mer G. Nat Struct Mol Biol 15 109-111 (2008)
  40. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Li H, Fischle W, Wang W, Duncan EM, Liang L, Murakami-Ishibe S, Allis CD, Patel DJ. Mol Cell 28 677-691 (2007)
  41. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Ramón-Maiques S, Kuo AJ, Carney D, Matthews AG, Oettinger MA, Gozani O, Yang W. Proc Natl Acad Sci U S A 104 18993-18998 (2007)
  42. L3MBTL1 recognition of mono- and dimethylated histones. Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y, MacKenzie F, Vedadi M, Arrowsmith CH. Nat Struct Mol Biol 14 1229-1230 (2007)
  43. The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C, Pandita RK, Paquet E, Herst P, Gingras AC, Pandita TK, Legube G, Doyon Y, Durocher D, Côté J. Mol Cell 62 409-421 (2016)
  44. ATM activation and signaling under hypoxic conditions. Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM. Mol Cell Biol 29 526-537 (2009)
  45. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. Lazzaro F, Sapountzi V, Granata M, Pellicioli A, Vaze M, Haber JE, Plevani P, Lydall D, Muzi-Falconi M. EMBO J 27 1502-1512 (2008)
  46. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD. J Cell Biol 191 31-43 (2010)
  47. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD. EMBO J 29 943-955 (2010)
  48. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Xu C, Bian C, Yang W, Galka M, Ouyang H, Chen C, Qiu W, Liu H, Jones AE, MacKenzie F, Pan P, Li SS, Wang H, Min J. Proc Natl Acad Sci U S A 107 19266-19271 (2010)
  49. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Sulli G, Di Micco R, d'Adda di Fagagna F, d'Adda di Fagagna F. Nat Rev Cancer 12 709-720 (2012)
  50. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S. EMBO J 29 2598-2610 (2010)
  51. The structural basis of modified nucleosome recognition by 53BP1. Wilson MD, Benlekbir S, Fradet-Turcotte A, Sherker A, Julien JP, McEwan A, Noordermeer SM, Sicheri F, Rubinstein JL, Durocher D. Nature 536 100-103 (2016)
  52. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L. EMBO J 35 1488-1503 (2016)
  53. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Fiedler M, Sánchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Müller J, Evans P, Bienz M. Mol Cell 30 507-518 (2008)
  54. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nuñez JK, Nickoloff J, Kulesza CA, Yasui A, Côté J, Kutateladze TG. Nat Struct Mol Biol 19 1266-1272 (2012)
  55. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Luo S, Tong L. Proc Natl Acad Sci U S A 111 13834-13839 (2014)
  56. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Kalakonda N, Fischle W, Boccuni P, Gurvich N, Hoya-Arias R, Zhao X, Miyata Y, Macgrogan D, Zhang J, Sims JK, Rice JC, Nimer SD. Oncogene 27 4293-4304 (2008)
  57. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, Noordermeer SM, Seclen E, Wilson MD, Vorobyov A, Munro M, Ernst A, Ng TF, Cho T, Cannon PM, Sidhu SS, Sicheri F, Durocher D. Nat Biotechnol 36 95-102 (2018)
  58. Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Annu Rev Cancer Biol 2 313-336 (2018)
  59. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. Tardat M, Murr R, Herceg Z, Sardet C, Julien E. J Cell Biol 179 1413-1426 (2007)
  60. Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. Hammet A, Magill C, Heierhorst J, Jackson SP. EMBO Rep 8 851-857 (2007)
  61. Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. Houston SI, McManus KJ, Adams MM, Sims JK, Carpenter PB, Hendzel MJ, Rice JC. J Biol Chem 283 19478-19488 (2008)
  62. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Bonilla CY, Melo JA, Toczyski DP. Mol Cell 30 267-276 (2008)
  63. H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Saredi G, Huang H, Hammond CM, Alabert C, Bekker-Jensen S, Forne I, Reverón-Gómez N, Foster BM, Mlejnkova L, Bartke T, Cejka P, Mailand N, Imhof A, Patel DJ, Groth A. Nature 534 714-718 (2016)
  64. Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. Hsiao KY, Mizzen CA. J Mol Cell Biol 5 157-165 (2013)
  65. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Jiang Y, Qian X, Shen J, Wang Y, Li X, Liu R, Xia Y, Chen Q, Peng G, Lin SY, Lu Z. Nat Cell Biol 17 1158-1168 (2015)
  66. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M. Nat Struct Mol Biol 18 1414-1420 (2011)
  67. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Gatti M, Pinato S, Maspero E, Soffientini P, Polo S, Penengo L. Cell Cycle 11 2538-2544 (2012)
  68. Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Frederiks F, Tzouros M, Oudgenoeg G, van Welsem T, Fornerod M, Krijgsveld J, van Leeuwen F. Nat Struct Mol Biol 15 550-557 (2008)
  69. RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Stewart GS, Stankovic T, Byrd PJ, Wechsler T, Miller ES, Huissoon A, Drayson MT, West SC, Elledge SJ, Taylor AM. Proc Natl Acad Sci U S A 104 16910-16915 (2007)
  70. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Wu J, Huen MS, Lu LY, Ye L, Dou Y, Ljungman M, Chen J, Yu X. Mol Cell Biol 29 849-860 (2009)
  71. Structural and histone binding ability characterizations of human PWWP domains. Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J. PLoS One 6 e18919 (2011)
  72. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Yan Q, Dutt S, Xu R, Graves K, Juszczynski P, Manis JP, Shipp MA. Mol Cell 36 110-120 (2009)
  73. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. Huen MS, Sy SM, van Deursen JM, Chen J. J Biol Chem 283 11073-11077 (2008)
  74. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Liu K, Chen C, Guo Y, Lam R, Bian C, Xu C, Zhao DY, Jin J, MacKenzie F, Pawson T, Min J. Proc Natl Acad Sci U S A 107 18398-18403 (2010)
  75. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. Wiltshire TD, Lovejoy CA, Wang T, Xia F, O'Connor MJ, Cortez D. J Biol Chem 285 14565-14571 (2010)
  76. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Korboukh VK, Herold JM, MacNevin CJ, Norris JL, Sagum CA, Tempel W, Marcon E, Guo H, Gao C, Huang XP, Duan S, Emili A, Greenblatt JF, Kireev DB, Jin J, Janzen WP, Brown PJ, Bedford MT, Arrowsmith CH, Frye SV. Nat Chem Biol 9 184-191 (2013)
  77. Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. van Ingen H, van Schaik FM, Wienk H, Ballering J, Rehmann H, Dechesne AC, Kruijzer JA, Liskamp RM, Timmers HT, Boelens R. Structure 16 1245-1256 (2008)
  78. Preferential dimethylation of histone H4 lysine 20 by Suv4-20. Yang H, Pesavento JJ, Starnes TW, Cryderman DE, Wallrath LL, Kelleher NL, Mizzen CA. J Biol Chem 283 12085-12092 (2008)
  79. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Liu H, Wang JY, Huang Y, Li Z, Gong W, Lehmann R, Xu RM. Genes Dev 24 1876-1881 (2010)
  80. Genetic alterations of histone lysine methyltransferases and their significance in breast cancer. Liu L, Kimball S, Liu H, Holowatyj A, Yang ZQ. Oncotarget 6 2466-2482 (2015)
  81. Phosphorylation of the budding yeast 9-1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Puddu F, Granata M, Di Nola L, Balestrini A, Piergiovanni G, Lazzaro F, Giannattasio M, Plevani P, Muzi-Falconi M. Mol Cell Biol 28 4782-4793 (2008)
  82. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Goulet I, Boisvenue S, Mokas S, Mazroui R, Côté J. Hum Mol Genet 17 3055-3074 (2008)
  83. UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Hashimoto H, Horton JR, Zhang X, Cheng X. Epigenetics 4 8-14 (2009)
  84. 53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms. Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N, Chapman JR. Mol Cell 64 51-64 (2016)
  85. Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair. Gong F, Clouaire T, Aguirrebengoa M, Legube G, Miller KM. J Cell Biol 216 1959-1974 (2017)
  86. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Wang Y, Reddy B, Thompson J, Wang H, Noma K, Yates JR, Jia S. Mol Cell 33 428-437 (2009)
  87. 53BP1 promotes ATM activity through direct interactions with the MRN complex. Lee JH, Goodarzi AA, Jeggo PA, Paull TT. EMBO J 29 574-585 (2010)
  88. H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nakamura K, Saredi G, Becker JR, Foster BM, Nguyen NV, Beyer TE, Cesa LC, Faull PA, Lukauskas S, Frimurer T, Chapman JR, Bartke T, Groth A. Nat Cell Biol 21 311-318 (2019)
  89. An oligomerized 53BP1 tudor domain suffices for recognition of DNA double-strand breaks. Zgheib O, Pataky K, Brugger J, Halazonetis TD. Mol Cell Biol 29 1050-1058 (2009)
  90. Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. Kim W, Kim R, Park G, Park JW, Kim JE. J Biol Chem 287 5588-5599 (2012)
  91. PRMT5 Regulates DNA Repair by Controlling the Alternative Splicing of Histone-Modifying Enzymes. Hamard PJ, Santiago GE, Liu F, Karl DL, Martinez C, Man N, Mookhtiar AK, Duffort S, Greenblatt S, Verdun RE, Nimer SD. Cell Rep 24 2643-2657 (2018)
  92. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA. Nucleic Acids Res 41 10298-10311 (2013)
  93. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. Bua DJ, Kuo AJ, Cheung P, Liu CL, Migliori V, Espejo A, Casadio F, Bassi C, Amati B, Bedford MT, Guccione E, Gozani O. PLoS One 4 e6789 (2009)
  94. A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. Gonzalez-Suarez I, Redwood AB, Grotsky DA, Neumann MA, Cheng EH, Stewart CL, Dusso A, Gonzalo S. EMBO J 30 3383-3396 (2011)
  95. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. Wakeman TP, Wang Q, Feng J, Wang XF. EMBO J 31 2169-2181 (2012)
  96. H4K20 methylation regulates quiescence and chromatin compaction. Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA. Mol Biol Cell 24 3025-3037 (2013)
  97. Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. Hirano Y, Hizume K, Kimura H, Takeyasu K, Haraguchi T, Hiraoka Y. J Biol Chem 287 42654-42663 (2012)
  98. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Lee DH, Acharya SS, Kwon M, Drane P, Guan Y, Adelmant G, Kalev P, Shah J, Pellman D, Marto JA, Chowdhury D. Mol Cell 54 512-525 (2014)
  99. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, Gianfelici V, Kalender Z, Wozniak A, Moerman P, Sciot R, Croce S, Amant F, Vandenberghe P, Cools J, Debiec-Rychter M. Int J Cancer 134 1112-1122 (2014)
  100. Structural and biochemical studies of the 5'→3' exoribonuclease Xrn1. Chang JH, Xiang S, Xiang K, Manley JL, Tong L. Nat Struct Mol Biol 18 270-276 (2011)
  101. Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage. Hajdu I, Ciccia A, Lewis SM, Elledge SJ. Proc Natl Acad Sci U S A 108 13130-13134 (2011)
  102. gammaH2A binds Brc1 to maintain genome integrity during S-phase. Williams JS, Williams RS, Dovey CL, Guenther G, Tainer JA, Russell P. EMBO J 29 1136-1148 (2010)
  103. Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Xu C, Cui G, Botuyan MV, Mer G. Structure 16 1740-1750 (2008)
  104. Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. Meier A, Fiegler H, Muñoz P, Ellis P, Rigler D, Langford C, Blasco MA, Carter N, Jackson SP. EMBO J 26 2707-2718 (2007)
  105. RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Bohgaki M, Bohgaki T, El Ghamrasni S, Srikumar T, Maire G, Panier S, Fradet-Turcotte A, Stewart GS, Raught B, Hakem A, Hakem R. Proc Natl Acad Sci U S A 110 20982-20987 (2013)
  106. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response. Kleiner RE, Verma P, Molloy KR, Chait BT, Kapoor TM. Nat Chem Biol 11 807-814 (2015)
  107. Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin. Pellegrino S, Michelena J, Teloni F, Imhof R, Altmeyer M. Cell Rep 19 1819-1831 (2017)
  108. The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. West LE, Roy S, Lachmi-Weiner K, Hayashi R, Shi X, Appella E, Kutateladze TG, Gozani O. J Biol Chem 285 37725-37732 (2010)
  109. PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53. Cui G, Park S, Badeaux AI, Kim D, Lee J, Thompson JR, Yan F, Kaneko S, Yuan Z, Botuyan MV, Bedford MT, Cheng JQ, Mer G. Nat Struct Mol Biol 19 916-924 (2012)
  110. Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. Kachirskaia I, Shi X, Yamaguchi H, Tanoue K, Wen H, Wang EW, Appella E, Gozani O. J Biol Chem 283 34660-34666 (2008)
  111. Functional interrogation of DNA damage response variants with base editing screens. Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A. Cell 184 1081-1097.e19 (2021)
  112. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS. Am J Cancer Res 2 249-268 (2012)
  113. Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Guo Y, Nady N, Qi C, Allali-Hassani A, Zhu H, Pan P, Adams-Cioaba MA, Amaya MF, Dong A, Vedadi M, Schapira M, Read RJ, Arrowsmith CH, Min J. Nucleic Acids Res 37 2204-2210 (2009)
  114. EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4. Chou RH, Wang YN, Hsieh YH, Li LY, Xia W, Chang WC, Chang LC, Cheng CC, Lai CC, Hsu JL, Chang WJ, Chiang SY, Lee HJ, Liao HW, Chuang PH, Chen HY, Wang HL, Kuo SC, Chen CH, Yu YL, Hung MC. Dev Cell 30 224-237 (2014)
  115. Chromatin structure and DNA damage repair. Dinant C, Houtsmuller AB, Vermeulen W. Epigenetics Chromatin 1 9 (2008)
  116. DNA double strand break repair pathway choice: a chromatin based decision? Clouaire T, Legube G. Nucleus 6 107-113 (2015)
  117. HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Lee YH, Kuo CY, Stark JM, Shih HM, Ann DK. Nucleic Acids Res 41 5784-5798 (2013)
  118. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, Dong MM, Cai Z, Lin H, Cai XJ, Xie AY. Genome Biol 19 170 (2018)
  119. Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Kilkenny ML, Doré AS, Roe SM, Nestoras K, Ho JC, Watts FZ, Pearl LH. Genes Dev 22 2034-2047 (2008)
  120. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Wier AD, Mayekar MK, Héroux A, Arndt KM, VanDemark AP. Proc Natl Acad Sci U S A 110 17290-17295 (2013)
  121. The multifunctional human p100 protein 'hooks' methylated ligands. Shaw N, Zhao M, Cheng C, Xu H, Saarikettu J, Li Y, Da Y, Yao Z, Silvennoinen O, Yang J, Liu ZJ, Wang BC, Rao Z. Nat Struct Mol Biol 14 779-784 (2007)
  122. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. Bock I, Kudithipudi S, Tamas R, Kungulovski G, Dhayalan A, Jeltsch A. BMC Biochem 12 48 (2011)
  123. BRD4 Promotes DNA Repair and Mediates the Formation of TMPRSS2-ERG Gene Rearrangements in Prostate Cancer. Li X, Baek G, Ramanand SG, Sharp A, Gao Y, Yuan W, Welti J, Rodrigues DN, Dolling D, Figueiredo I, Sumanasuriya S, Crespo M, Aslam A, Li R, Yin Y, Mukherjee B, Kanchwala M, Hughes AM, Halsey WS, Chiang CM, Xing C, Raj GV, Burma S, de Bono J, Mani RS. Cell Rep 22 796-808 (2018)
  124. Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining. Stanlie A, Yousif AS, Akiyama H, Honjo T, Begum NA. Mol Cell 55 97-110 (2014)
  125. ES cell cycle progression and differentiation require the action of the histone methyltransferase Dot1L. Barry ER, Krueger W, Jakuba CM, Veilleux E, Ambrosi DJ, Nelson CE, Rasmussen TP. Stem Cells 27 1538-1547 (2009)
  126. Nucleolar protein Spindlin1 recognizes H3K4 methylation and stimulates the expression of rRNA genes. Wang W, Chen Z, Mao Z, Zhang H, Ding X, Chen S, Zhang X, Xu R, Zhu B. EMBO Rep 12 1160-1166 (2011)
  127. Role of 53BP1 oligomerization in regulating double-strand break repair. Lottersberger F, Bothmer A, Robbiani DF, Nussenzweig MC, de Lange T. Proc Natl Acad Sci U S A 110 2146-2151 (2013)
  128. Concerted activities of distinct H4K20 methyltransferases at DNA double-strand breaks regulate 53BP1 nucleation and NHEJ-directed repair. Tuzon CT, Spektor T, Kong X, Congdon LM, Wu S, Schotta G, Yokomori K, Rice JC. Cell Rep 8 430-438 (2014)
  129. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30. Liu K, Guo Y, Liu H, Bian C, Lam R, Liu Y, Mackenzie F, Rojas LA, Reinberg D, Bedford MT, Xu RM, Min J. PLoS One 7 e30375 (2012)
  130. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. EMBO J 31 616-629 (2012)
  131. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX. Baldock RA, Day M, Wilkinson OJ, Cloney R, Jeggo PA, Oliver AW, Watts FZ, Pearl LH. Cell Rep 13 2081-2089 (2015)
  132. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Renaud E, Barascu A, Rosselli F. Nucleic Acids Res 44 648-656 (2016)
  133. The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Ramachandran S, Chahwan R, Nepal RM, Frieder D, Panier S, Roa S, Zaheen A, Durocher D, Scharff MD, Martin A. Proc Natl Acad Sci U S A 107 809-814 (2010)
  134. The many faces of ubiquitinated histone H2A: insights from the DUBs. Vissers JH, Nicassio F, van Lohuizen M, Di Fiore PP, Citterio E. Cell Div 3 8 (2008)
  135. Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL. J Biol Chem 283 33168-33174 (2008)
  136. LOTUS, a new domain associated with small RNA pathways in the germline. Callebaut I, Mornon JP. Bioinformatics 26 1140-1144 (2010)
  137. PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression. Congdon LM, Houston SI, Veerappan CS, Spektor TM, Rice JC. J Cell Biochem 110 609-619 (2010)
  138. USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Wang Z, Zhang H, Liu J, Cheruiyot A, Lee JH, Ordog T, Lou Z, You Z, Zhang Z. Genes Dev 30 946-959 (2016)
  139. Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Carneiro T, Khair L, Reis CC, Borges V, Moser BA, Nakamura TM, Ferreira MG. Nature 467 228-232 (2010)
  140. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18. Hu Q, Botuyan MV, Cui G, Zhao D, Mer G. Mol Cell 66 473-487.e9 (2017)
  141. RAD18 promotes DNA double-strand break repair during G1 phase through chromatin retention of 53BP1. Watanabe K, Iwabuchi K, Sun J, Tsuji Y, Tani T, Tokunaga K, Date T, Hashimoto M, Yamaizumi M, Tateishi S. Nucleic Acids Res 37 2176-2193 (2009)
  142. Dot1-dependent histone H3K79 methylation promotes activation of the Mek1 meiotic checkpoint effector kinase by regulating the Hop1 adaptor. Ontoso D, Acosta I, van Leeuwen F, Freire R, San-Segundo PA. PLoS Genet 9 e1003262 (2013)
  143. Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Lin YH, Kakadia PM, Chen Y, Li YQ, Deshpande AJ, Buske C, Zhang KL, Zhang Y, Xu GL, Bohlander SK. Blood 114 651-658 (2009)
  144. Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Usui T, Foster SS, Petrini JH. Mol Cell 33 147-159 (2009)
  145. Polo-like kinase 1 inhibits DNA damage response during mitosis. Benada J, Burdová K, Lidak T, von Morgen P, Macurek L. Cell Cycle 14 219-231 (2015)
  146. Deficiency in Bre1 impairs homologous recombination repair and cell cycle checkpoint response to radiation damage in mammalian cells. Chernikova SB, Dorth JA, Razorenova OV, Game JC, Brown JM. Radiat Res 174 558-565 (2010)
  147. Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks. Hartlerode AJ, Guan Y, Rajendran A, Ura K, Schotta G, Xie A, Shah JV, Scully R. PLoS One 7 e49211 (2012)
  148. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Gibbs-Seymour I, Markiewicz E, Bekker-Jensen S, Mailand N, Hutchison CJ. Aging Cell 14 162-169 (2015)
  149. Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. Kamps JJ, Huang J, Poater J, Xu C, Pieters BJ, Dong A, Min J, Sherman W, Beuming T, Matthias Bickelhaupt F, Li H, Mecinović J. Nat Commun 6 8911 (2015)
  150. Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. Granata M, Lazzaro F, Novarina D, Panigada D, Puddu F, Abreu CM, Kumar R, Grenon M, Lowndes NF, Plevani P, Muzi-Falconi M. PLoS Genet 6 e1001047 (2010)
  151. Characterization of the DOT1L network: implications of diverse roles for DOT1L. Park G, Gong Z, Chen J, Kim JE. Protein J 29 213-223 (2010)
  152. Prolonged Effects of Silver Nanoparticles on p53/p21 Pathway-Mediated Proliferation, DNA Damage Response, and Methylation Parameters in HT22 Hippocampal Neuronal Cells. Mytych J, Zebrowski J, Lewinska A, Wnuk M. Mol Neurobiol 54 1285-1300 (2017)
  153. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Yang Q, Zhu Q, Lu X, Du Y, Cao L, Shen C, Hou T, Li M, Li Z, Liu C, Wu D, Xu X, Wang L, Wang H, Zhao Y, Yang Y, Zhu WG. Proc Natl Acad Sci U S A 114 E6054-E6063 (2017)
  154. Histone recognition by human malignant brain tumor domains. Nady N, Krichevsky L, Zhong N, Duan S, Tempel W, Amaya MF, Ravichandran M, Arrowsmith CH. J Mol Biol 423 702-718 (2012)
  155. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. Friberg A, Corsini L, Mourão A, Sattler M. J Mol Biol 387 921-934 (2009)
  156. USP28 is recruited to sites of DNA damage by the tandem BRCT domains of 53BP1 but plays a minor role in double-strand break metabolism. Knobel PA, Belotserkovskaya R, Galanty Y, Schmidt CK, Jackson SP, Stracker TH. Mol Cell Biol 34 2062-2074 (2014)
  157. Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Yang N, Wang W, Wang Y, Wang M, Zhao Q, Rao Z, Zhu B, Xu RM. Proc Natl Acad Sci U S A 109 17954-17959 (2012)
  158. Human SFMBT is a transcriptional repressor protein that selectively binds the N-terminal tail of histone H3. Wu S, Trievel RC, Rice JC. FEBS Lett 581 3289-3296 (2007)
  159. Histone H3 Lys79 methylation is required for efficient nucleotide excision repair in a silenced locus of Saccharomyces cerevisiae. Chaudhuri S, Wyrick JJ, Smerdon MJ. Nucleic Acids Res 37 1690-1700 (2009)
  160. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Peng B, Wang J, Hu Y, Zhao H, Hou W, Zhao H, Wang H, Liao J, Xu X. Nucleic Acids Res 43 5936-5947 (2015)
  161. Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. Baltanás FC, Casafont I, Lafarga V, Weruaga E, Alonso JR, Berciano MT, Lafarga M. J Biol Chem 286 28287-28302 (2011)
  162. Regulation of p53 function by lysine methylation. West LE, Gozani O. Epigenomics 3 361-369 (2011)
  163. Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Qiu Y, Zhang W, Zhao C, Wang Y, Wang W, Zhang J, Zhang Z, Li G, Shi Y, Tu X, Wu J. Biochem J 442 527-538 (2012)
  164. The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Becker JR, Cuella-Martin R, Barazas M, Liu R, Oliveira C, Oliver AW, Bilham K, Holt AB, Blackford AN, Heierhorst J, Jonkers J, Rottenberg S, Chapman JR. Nat Commun 9 5406 (2018)
  165. Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis. Winter SF, Lukes L, Walker RC, Welch DR, Hunter KW. PLoS Genet 8 e1002735 (2012)
  166. BLM helicase-dependent and -independent roles of 53BP1 during replication stress-mediated homologous recombination. Tripathi V, Nagarjuna T, Sengupta S. J Cell Biol 178 9-14 (2007)
  167. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Lewinska A, Siwak J, Rzeszutek I, Wnuk M. Toxicol In Vitro 29 417-425 (2015)
  168. Mre11 nuclease activity and Ctp1 regulate Chk1 activation by Rad3ATR and Tel1ATM checkpoint kinases at double-strand breaks. Limbo O, Porter-Goff ME, Rhind N, Russell P. Mol Cell Biol 31 573-583 (2011)
  169. SET8 methyltransferase activity during the DNA double-strand break response is required for recruitment of 53BP1. Dulev S, Tkach J, Lin S, Batada NN. EMBO Rep 15 1163-1174 (2014)
  170. Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks. Harding SM, Bristow RG. Cell Cycle 11 1432-1444 (2012)
  171. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Zhang X, Peng D, Xi Y, Yuan C, Sagum CA, Klein BJ, Tanaka K, Wen H, Kutateladze TG, Li W, Bedford MT, Shi X. Nat Commun 7 10810 (2016)
  172. Lysine methylation-dependent binding of 53BP1 to the pRb tumor suppressor. Carr SM, Munro S, Zalmas LP, Fedorov O, Johansson C, Krojer T, Sagum CA, Bedford MT, Oppermann U, La Thangue NB. Proc Natl Acad Sci U S A 111 11341-11346 (2014)
  173. Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Al-Romaih K, Somers GR, Bayani J, Hughes S, Prasad M, Cutz JC, Xue H, Zielenska M, Wang Y, Squire JA. Cancer Cell Int 7 14 (2007)
  174. Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription. Shaw G, Gan J, Zhou YN, Zhi H, Subburaman P, Zhang R, Joachimiak A, Jin DJ, Ji X. Structure 16 1417-1427 (2008)
  175. The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target. Wong M, Polly P, Liu T. Am J Cancer Res 5 2823-2837 (2015)
  176. PTIP regulates 53BP1 and SMC1 at the DNA damage sites. Wu J, Prindle MJ, Dressler GR, Yu X. J Biol Chem 284 18078-18084 (2009)
  177. A lesson learned from the H3.3K27M mutation found in pediatric glioma: a new approach to the study of the function of histone modifications in vivo? Chan KM, Han J, Fang D, Gan H, Zhang Z. Cell Cycle 12 2546-2552 (2013)
  178. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, Hsu CH, Asara JM, Tibarewal P, Leslie NR, Shi Y, Pandolfi PP, Wei W. Cancer Discov 9 1306-1323 (2019)
  179. RNF8-dependent and RNF8-independent regulation of 53BP1 in response to DNA damage. Sakasai R, Tibbetts R. J Biol Chem 283 13549-13555 (2008)
  180. KAP1 Deacetylation by SIRT1 Promotes Non-Homologous End-Joining Repair. Lin YH, Yuan J, Pei H, Liu T, Ann DK, Lou Z. PLoS One 10 e0123935 (2015)
  181. Phosphorylation-dependent interactions of BLM and 53BP1 are required for their anti-recombinogenic roles during homologous recombination. Tripathi V, Kaur S, Sengupta S. Carcinogenesis 29 52-61 (2008)
  182. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. James LI, Korboukh VK, Krichevsky L, Baughman BM, Herold JM, Norris JL, Jin J, Kireev DB, Janzen WP, Arrowsmith CH, Frye SV. J Med Chem 56 7358-7371 (2013)
  183. microRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, Shang Y, Sun L. J Biol Chem 288 19633-19642 (2013)
  184. Linking Cancer Metabolism to DNA Repair and Accelerated Senescence. Efimova EV, Takahashi S, Shamsi NA, Wu D, Labay E, Ulanovskaya OA, Weichselbaum RR, Kozmin SA, Kron SJ. Mol Cancer Res 14 173-184 (2016)
  185. Monomethylation of lysine 20 on histone H4 facilitates chromatin maturation. Scharf AN, Meier K, Seitz V, Kremmer E, Brehm A, Imhof A. Mol Cell Biol 29 57-67 (2009)
  186. Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2. Wu H, Siarheyeva A, Zeng H, Lam R, Dong A, Wu XH, Li Y, Schapira M, Vedadi M, Min J. FEBS Lett 587 3859-3868 (2013)
  187. PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1. Belotserkovskaya R, Raga Gil E, Lawrence N, Butler R, Clifford G, Wilson MD, Jackson SP. Nat Commun 11 819 (2020)
  188. SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation. Kidder BL, Hu G, Cui K, Zhao K. Epigenetics Chromatin 10 8 (2017)
  189. The p53-binding protein 1-Tudor-interacting repair regulator complex participates in the DNA damage response. Zhang A, Peng B, Huang P, Chen J, Gong Z. J Biol Chem 292 6461-6467 (2017)
  190. USP11 acts as a histone deubiquitinase functioning in chromatin reorganization during DNA repair. Ting X, Xia L, Yang J, He L, Si W, Shang Y, Sun L. Nucleic Acids Res 47 9721-9740 (2019)
  191. Acetylation of H2AX on lysine 36 plays a key role in the DNA double-strand break repair pathway. Jiang X, Xu Y, Price BD. FEBS Lett 584 2926-2930 (2010)
  192. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Delgado-Díaz MR, Martín Y, Berg A, Freire R, Smits VA. Mol Oncol 8 884-893 (2014)
  193. Structural and biochemical studies on the chromo-barrel domain of male specific lethal 3 (MSL3) reveal a binding preference for mono- or dimethyllysine 20 on histone H4. Moore SA, Ferhatoglu Y, Jia Y, Al-Jiab RA, Scott MJ. J Biol Chem 285 40879-40890 (2010)
  194. Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9. Li J, Li Z, Ruan J, Xu C, Tong Y, Pan PW, Tempel W, Crombet L, Min J, Zang J. PLoS One 6 e25104 (2011)
  195. Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks. Rybak P, Hoang A, Bujnowicz L, Bernas T, Berniak K, Zarębski M, Darzynkiewicz Z, Dobrucki J. Oncotarget 7 49574-49587 (2016)
  196. Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation. Hu Q, Botuyan MV, Zhao D, Cui G, Mer E, Mer G. Nature 596 438-443 (2021)
  197. Regulation of the DNA damage response and gene expression by the Dot1L histone methyltransferase and the 53Bp1 tumour suppressor. FitzGerald J, Moureau S, Drogaris P, O'Connell E, Abshiru N, Verreault A, Thibault P, Grenon M, Lowndes NF. PLoS One 6 e14714 (2011)
  198. Degrees make all the difference: the multifunctionality of histone H4 lysine 20 methylation. Wang Y, Jia S. Epigenetics 4 273-276 (2009)
  199. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. Epigenetics Chromatin 10 12 (2017)
  200. KDM4C (GASC1) lysine demethylase is associated with mitotic chromatin and regulates chromosome segregation during mitosis. Kupershmit I, Khoury-Haddad H, Awwad SW, Guttmann-Raviv N, Ayoub N. Nucleic Acids Res 42 6168-6182 (2014)
  201. Loss of the methyl lysine effector protein PHF20 impacts the expression of genes regulated by the lysine acetyltransferase MOF. Badeaux AI, Yang Y, Cardenas K, Vemulapalli V, Chen K, Kusewitt D, Richie E, Li W, Bedford MT. J Biol Chem 287 429-437 (2012)
  202. Quantitative assessment of protein interaction with methyl-lysine analogues by hybrid computational and experimental approaches. Seeliger D, Soeroes S, Klingberg R, Schwarzer D, Grubmüller H, Fischle W. ACS Chem Biol 7 150-154 (2012)
  203. RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing repair. An L, Dong C, Li J, Chen J, Yuan J, Huang J, Chan KM, Yu CH, Huen MSY. Proc Natl Acad Sci U S A 115 E8286-E8295 (2018)
  204. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Meisenberg C, Ashour ME, El-Shafie L, Liao C, Hodgson A, Pilborough A, Khurram SA, Downs JA, Ward SE, El-Khamisy SF. Nucleic Acids Res 45 1159-1176 (2017)
  205. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Gursoy-Yuzugullu O, Carman C, Serafim RB, Myronakis M, Valente V, Price BD. Oncotarget 8 24518-24532 (2017)
  206. H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL. Cell Cycle 17 124-136 (2018)
  207. Identification and characterization of nardilysin as a novel dimethyl H3K4-binding protein involved in transcriptional regulation. Li J, Chu M, Wang S, Chan D, Qi S, Wu M, Zhou Z, Li J, Nishi E, Qin J, Wong J. J Biol Chem 287 10089-10098 (2012)
  208. Identification of a fragment-like small molecule ligand for the methyl-lysine binding protein, 53BP1. Perfetti MT, Baughman BM, Dickson BM, Mu Y, Cui G, Mader P, Dong A, Norris JL, Rothbart SB, Strahl BD, Brown PJ, Janzen WP, Arrowsmith CH, Mer G, McBride KM, James LI, Frye SV. ACS Chem Biol 10 1072-1081 (2015)
  209. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M, Pennaneach V. Nucleic Acids Res 45 12325-12339 (2017)
  210. Primers on chromatin. Lall S. Nat Struct Mol Biol 14 1110-1115 (2007)
  211. Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Guerra B, Iwabuchi K, Issinger OG. Cancer Lett 345 115-123 (2014)
  212. Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage. Kang Y, Lee JH, Hoan NN, Sohn HM, Chang IY, You HJ. J Biol Chem 284 9845-9853 (2009)
  213. Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites. Bartocci C, Denchi EL. Front Genet 4 128 (2013)
  214. Alterations of global histone H4K20 methylation during prostate carcinogenesis. Behbahani TE, Kahl P, von der Gathen J, Heukamp LC, Baumann C, Gütgemann I, Walter B, Hofstädter F, Bastian PJ, von Ruecker A, Müller SC, Rogenhofer S, Ellinger J. BMC Urol 12 5 (2012)
  215. BRCT domain interactions with phospho-histone H2A target Crb2 to chromatin at double-strand breaks and maintain the DNA damage checkpoint. Sofueva S, Du LL, Limbo O, Williams JS, Russell P. Mol Cell Biol 30 4732-4743 (2010)
  216. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Wagner T, Greschik H, Burgahn T, Schmidtkunz K, Schott AK, McMillan J, Baranauskienė L, Xiong Y, Fedorov O, Jin J, Oppermann U, Matulis D, Schüle R, Jung M. Nucleic Acids Res 44 e88 (2016)
  217. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Hu CE, Liu YC, Zhang HD, Huang GJ. Biochem Biophys Res Commun 449 1-7 (2014)
  218. K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites. Mallette FA, Richard S. Cell Res 22 1221-1223 (2012)
  219. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress. Bleuyard JY, Fournier M, Nakato R, Couturier AM, Katou Y, Ralf C, Hester SS, Dominguez D, Rhodes D, Humphrey TC, Shirahige K, Esashi F. Proc Natl Acad Sci U S A 114 7671-7676 (2017)
  220. Regulation of 53BP1 protein stability by RNF8 and RNF168 is important for efficient DNA double-strand break repair. Hu Y, Wang C, Huang K, Xia F, Parvin JD, Mondal N. PLoS One 9 e110522 (2014)
  221. Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Tong Q, Cui G, Botuyan MV, Rothbart SB, Hayashi R, Musselman CA, Singh N, Appella E, Strahl BD, Mer G, Kutateladze TG. Structure 23 312-321 (2015)
  222. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence. Ohsawa R, Seol JH, Tyler JK. Front Genet 4 136 (2013)
  223. CRL4(Wdr70) regulates H2B monoubiquitination and facilitates Exo1-dependent resection. Zeng M, Ren L, Mizuno K, Nestoras K, Wang H, Tang Z, Guo L, Kong D, Hu Q, He Q, Du L, Carr AM, Liu C. Nat Commun 7 11364 (2016)
  224. Ubiquitin Phosphorylation at Thr12 Modulates the DNA Damage Response. Walser F, Mulder MPC, Bragantini B, Burger S, Gubser T, Gatti M, Botuyan MV, Villa A, Altmeyer M, Neri D, Ovaa H, Mer G, Penengo L. Mol Cell 80 423-436.e9 (2020)
  225. DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites. Chitale S, Richly H. J Cell Biol 217 527-540 (2018)
  226. LC8/DYNLL1 is a 53BP1 effector and regulates checkpoint activation. West KL, Kelliher JL, Xu Z, An L, Reed MR, Eoff RL, Wang J, Huen MSY, Leung JWC. Nucleic Acids Res 47 6236-6249 (2019)
  227. The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair. Salvador Moreno N, Liu J, Haas KM, Parker LL, Chakraborty C, Kron SJ, Hodges K, Miller LD, Langefeld C, Robinson PJ, Lelièvre SA, Vidi PA. Nucleic Acids Res 47 2703-2715 (2019)
  228. Transcription factor effector domains. Frietze S, Farnham PJ. Subcell Biochem 52 261-277 (2011)
  229. Tumors overexpressing RNF168 show altered DNA repair and responses to genotoxic treatments, genomic instability and resistance to proteotoxic stress. Chroma K, Mistrik M, Moudry P, Gursky J, Liptay M, Strauss R, Skrott Z, Vrtel R, Bartkova J, Kramara J, Bartek J. Oncogene 36 2405-2422 (2017)
  230. ASF1a Promotes Non-homologous End Joining Repair by Facilitating Phosphorylation of MDC1 by ATM at Double-Strand Breaks. Lee KY, Im JS, Shibata E, Dutta A. Mol Cell 68 61-75.e5 (2017)
  231. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells. Lewinska A, Jarosz P, Czech J, Rzeszutek I, Bielak-Zmijewska A, Grabowska W, Wnuk M. Mutat Res Genet Toxicol Environ Mutagen 779 23-34 (2015)
  232. Competition effect in DNA damage response. Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krücken R, Cremer T, Dollinger G, Friedl AA. Radiat Environ Biophys 47 423-429 (2008)
  233. Crystal structures of the Tudor domains of human PHF20 reveal novel structural variations on the Royal Family of proteins. Adams-Cioaba MA, Li Z, Tempel W, Guo Y, Bian C, Li Y, Lam R, Min J. FEBS Lett 586 859-865 (2012)
  234. Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH. Elife 8 e44353 (2019)
  235. Solution NMR structure and histone binding of the PHD domain of human MLL5. Lemak A, Yee A, Wu H, Yap D, Zeng H, Dombrovski L, Houliston S, Aparicio S, Arrowsmith CH. PLoS One 8 e77020 (2013)
  236. 53BP1 Contributes to Igh Locus Chromatin Topology during Class Switch Recombination. Feldman S, Wuerffel R, Achour I, Wang L, Carpenter PB, Kenter AL. J Immunol 198 2434-2444 (2017)
  237. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Southall SM, Cronin NB, Wilson JR. Nucleic Acids Res 42 661-671 (2014)
  238. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. Roobol SJ, van den Bent I, van Cappellen WA, Abraham TE, Paul MW, Kanaar R, Houtsmuller AB, van Gent DC, Essers J. Int J Mol Sci 21 E6602 (2020)
  239. Inhibition of the Histone H3K27 Demethylase UTX Enhances Tumor Cell Radiosensitivity. Rath BH, Waung I, Camphausen K, Tofilon PJ. Mol Cancer Ther 17 1070-1078 (2018)
  240. PATZ1 Is a DNA Damage-Responsive Transcription Factor That Inhibits p53 Function. Keskin N, Deniz E, Eryilmaz J, Un M, Batur T, Ersahin T, Cetin Atalay R, Sakaguchi S, Ellmeier W, Erman B. Mol Cell Biol 35 1741-1753 (2015)
  241. Spatially restricted loading of BRD2 at DNA double-strand breaks protects H4 acetylation domains and promotes DNA repair. Gursoy-Yuzugullu O, Carman C, Price BD. Sci Rep 7 12921 (2017)
  242. Time to bloom. Tikoo S, Sengupta S. Genome Integr 1 14 (2010)
  243. 53BP1 deficiency combined with telomere dysfunction activates ATR-dependent DNA damage response. Martínez P, Flores JM, Blasco MA. J Cell Biol 197 283-300 (2012)
  244. A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly. Zhang S, Pondarre C, Pennarun G, Labussiere-Wallet H, Vera G, France B, Chansel M, Rouvet I, Revy P, Lopez B, Soulier J, Bertrand P, Callebaut I, de Villartay JP. J Exp Med 213 1011-1028 (2016)
  245. CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Rother MB, Pellegrino S, Smith R, Gatti M, Meisenberg C, Wiegant WW, Luijsterburg MS, Imhof R, Downs JA, Vertegaal ACO, Huet S, Altmeyer M, van Attikum H. Nat Commun 11 5775 (2020)
  246. Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage. Simoneau A, Delgoshaie N, Celic I, Dai J, Abshiru N, Costantino S, Thibault P, Boeke JD, Verreault A, Wurtele H. Genetics 200 185-205 (2015)
  247. PHRF1 promotes genome integrity by modulating non-homologous end-joining. Chang CF, Chu PC, Wu PY, Yu MY, Lee JY, Tsai MD, Chang MS. Cell Death Dis 6 e1716 (2015)
  248. Protein phosphatase 5 is necessary for ATR-mediated DNA repair. Kang Y, Cheong HM, Lee JH, Song PI, Lee KH, Kim SY, Jun JY, You HJ. Biochem Biophys Res Commun 404 476-481 (2011)
  249. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines. Maroschik B, Gürtler A, Krämer A, Rößler U, Gomolka M, Hornhardt S, Mörtl S, Friedl AA. Radiat Oncol 9 15 (2014)
  250. Structure of an atypical Tudor domain in the Drosophila Polycomblike protein. Friberg A, Oddone A, Klymenko T, Müller J, Sattler M. Protein Sci 19 1906-1916 (2010)
  251. A Damage-Independent Role for 53BP1 that Impacts Break Order and Igh Architecture during Class Switch Recombination. Rocha PP, Raviram R, Fu Y, Kim J, Luo VM, Aljoufi A, Swanzey E, Pasquarella A, Balestrini A, Miraldi ER, Bonneau R, Petrini J, Schotta G, Skok JA. Cell Rep 16 48-55 (2016)
  252. Akt/PKB interacts with the histone H3 methyltransferase SETDB1 and coordinates to silence gene expression. Gao H, Yu Z, Bi D, Jiang L, Cui Y, Sun J, Ma R. Mol Cell Biochem 305 35-44 (2007)
  253. Double duty: ZMYND8 in the DNA damage response and cancer. Gong F, Miller KM. Cell Cycle 17 414-420 (2018)
  254. Drug discovery toward antagonists of methyl-lysine binding proteins. Herold JM, Ingerman LA, Gao C, Frye SV. Curr Chem Genomics 5 51-61 (2011)
  255. Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos. Bohrer RC, Duggavathi R, Bordignon V. Cell Cycle 13 2138-2148 (2014)
  256. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Oberle C, Blattner C. Curr Genomics 11 184-198 (2010)
  257. Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break. Lou J, Priest DG, Solano A, Kerjouan A, Hinde E. Nat Commun 11 5776 (2020)
  258. An acetyl-methyl switch drives a conformational change in p53. Tong Q, Mazur SJ, Rincon-Arano H, Rothbart SB, Kuznetsov DM, Cui G, Liu WH, Gete Y, Klein BJ, Jenkins L, Mer G, Kutateladze AG, Strahl BD, Groudine M, Appella E, Kutateladze TG. Structure 23 322-331 (2015)
  259. Identification and characterization of posttranslational modification-specific binding proteins in vivo by mammalian tethered catalysis. Spektor TM, Rice JC. Proc Natl Acad Sci U S A 106 14808-14813 (2009)
  260. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Li Y, Armstrong RL, Duronio RJ, MacAlpine DM. Nucleic Acids Res 44 7204-7218 (2016)
  261. Phosphorylation-dependent interactions between Crb2 and Chk1 are essential for DNA damage checkpoint. Qu M, Yang B, Tao L, Yates JR, Russell P, Dong MQ, Du LL. PLoS Genet 8 e1002817 (2012)
  262. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles. Weng L, Greenberg MM. J Am Chem Soc 137 11022-11031 (2015)
  263. 53BP1 regulates heterochromatin through liquid phase separation. Zhang L, Geng X, Wang F, Tang J, Ichida Y, Sharma A, Jin S, Chen M, Tang M, Pozo FM, Wang W, Wang J, Wozniak M, Guo X, Miyagi M, Jin F, Xu Y, Yao X, Zhang Y. Nat Commun 13 360 (2022)
  264. A new method to efficiently induce a site-specific double-strand break in the fission yeast Schizosaccharomyces pombe. Sunder S, Greeson-Lott NT, Runge KW, Sanders SL. Yeast 29 275-291 (2012)
  265. A role for the p53 tumour suppressor in regulating the balance between homologous recombination and non-homologous end joining. Moureau S, Luessing J, Harte EC, Voisin M, Lowndes NF. Open Biol 6 160225 (2016)
  266. Contradictory effects of mitochondria- and non-mitochondria-targeted antioxidants on hepatocarcinogenesis by altering DNA repair in mice. Wang B, Fu J, Yu T, Xu A, Qin W, Yang Z, Chen Y, Wang H. Hepatology 67 623-635 (2018)
  267. Distinct mechanisms of inadequate erythropoiesis induced by tumor necrosis factor alpha or malarial pigment. Lamikanra AA, Merryweather-Clarke AT, Tipping AJ, Roberts DJ. PLoS One 10 e0119836 (2015)
  268. Force field parameters for the simulation of modified histone tails. Grauffel C, Stote RH, Dejaegere A. J Comput Chem 31 2434-2451 (2010)
  269. H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Svobodová Kovaříková A, Legartová S, Krejčí J, Bártová E. Aging (Albany NY) 10 2585-2605 (2018)
  270. Induction of DNA double-strand breaks and cellular migration through bystander effects in cells irradiated with the slit-type microplanar beam of the spring-8 synchrotron. Kashino G, Kondoh T, Nariyama N, Umetani K, Ohigashi T, Shinohara K, Kurihara A, Fukumoto M, Tanaka H, Maruhashi A, Suzuki M, Kinashi Y, Liu Y, Masunaga S, Watanabe M, Ono K. Int J Radiat Oncol Biol Phys 74 229-236 (2009)
  271. Is adult stem cell aging driven by conflicting modes of chromatin remodeling? Przybilla J, Galle J, Rohlf T. Bioessays 34 841-848 (2012)
  272. Mdb1, a fission yeast homolog of human MDC1, modulates DNA damage response and mitotic spindle function. Wei Y, Wang HT, Zhai Y, Russell P, Du LL. PLoS One 9 e97028 (2014)
  273. Multimethylation of Rickettsia OmpB catalyzed by lysine methyltransferases. Abeykoon A, Wang G, Chao CC, Chock PB, Gucek M, Ching WM, Yang DC. J Biol Chem 289 7691-7701 (2014)
  274. Nudix Hydrolase NUDT16 Regulates 53BP1 Protein by Reversing 53BP1 ADP-Ribosylation. Zhang F, Lou L, Peng B, Song X, Reizes O, Almasan A, Gong Z. Cancer Res 80 999-1010 (2020)
  275. PRMT5 promotes DNA repair through methylation of 53BP1 and is regulated by Src-mediated phosphorylation. Hwang JW, Kim SN, Myung N, Song D, Han G, Bae GU, Bedford MT, Kim YK. Commun Biol 3 428 (2020)
  276. STK31/TDRD8, a germ cell-specific factor, is dispensable for reproduction in mice. Zhou J, Leu NA, Eckardt S, McLaughlin KJ, Wang PJ. PLoS One 9 e89471 (2014)
  277. Solution structure of the carboxy-terminal Tudor domain from human Coilin. Shanbhag R, Kurabi A, Kwan JJ, Donaldson LW. FEBS Lett 584 4351-4356 (2010)
  278. Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1. Qin S, Liu Y, Tempel W, Eram MS, Bian C, Liu K, Senisterra G, Crombet L, Vedadi M, Min J. Nat Commun 5 3952 (2014)
  279. Letter A systematic evaluation of the compatibility of histones containing methyl-lysine analogues with biochemical reactions. Jia G, Wang W, Li H, Mao Z, Cai G, Sun J, Wu H, Xu M, Yang P, Yuan W, Chen S, Zhu B. Cell Res 19 1217-1220 (2009)
  280. DNA-damage checkpoints: location, location, location. Wood JL, Chen J. Trends Cell Biol 18 451-455 (2008)
  281. Histone H4 lysine 20 of Saccharomyces cerevisiae is monomethylated and functions in subtelomeric silencing. Edwards CR, Dang W, Berger SL. Biochemistry 50 10473-10483 (2011)
  282. New perspectives for the regulation of acetyltransferase MOF. Li X, Dou Y. Epigenetics 5 185-188 (2010)
  283. SMYD5 Controls Heterochromatin and Chromosome Integrity during Embryonic Stem Cell Differentiation. Kidder BL, He R, Wangsa D, Padilla-Nash HM, Bernardo MM, Sheng S, Ried T, Zhao K. Cancer Res 77 6729-6745 (2017)
  284. Solution structure and molecular interactions of lamin B receptor Tudor domain. Liokatis S, Edlich C, Soupsana K, Giannios I, Panagiotidou P, Tripsianes K, Sattler M, Georgatos SD, Politou AS. J Biol Chem 287 1032-1042 (2012)
  285. 53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Sundaravinayagam D, Rahjouei A, Andreani M, Tupiņa D, Balasubramanian S, Saha T, Delgado-Benito V, Coralluzzo V, Daumke O, Di Virgilio M. Cell Rep 28 1389-1399.e6 (2019)
  286. GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival. Lu X, Tang M, Zhu Q, Yang Q, Li Z, Bao Y, Liu G, Hou T, Lv Y, Zhao Y, Wang H, Yang Y, Cheng Z, Wen H, Liu B, Xu X, Gu L, Zhu WG. Nucleic Acids Res 47 10977-10993 (2019)
  287. Inhibition of Serine Metabolism Promotes Resistance to Cisplatin in Gastric Cancer. Zhao X, Fu J, Tang W, Yu L, Xu W. Onco Targets Ther 13 4833-4842 (2020)
  288. Lanatoside C suppressed colorectal cancer cell growth by inducing mitochondrial dysfunction and increased radiation sensitivity by impairing DNA damage repair. Kang MA, Kim MS, Kim W, Um JH, Shin YJ, Song JY, Jeong JH. Oncotarget 7 6074-6087 (2016)
  289. Requirement for the phospho-H2AX binding module of Crb2 in double-strand break targeting and checkpoint activation. Sanders SL, Arida AR, Phan FP. Mol Cell Biol 30 4722-4731 (2010)
  290. 53BP1/RIF1 signaling promotes cell survival after multifractionated radiotherapy. Eke I, Zong D, Aryankalayil MJ, Sandfort V, Bylicky MA, Rath BH, Graves EE, Nussenzweig A, Coleman CN. Nucleic Acids Res 48 1314-1326 (2020)
  291. ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Wang D, Ma J, Botuyan MV, Cui G, Yan Y, Ding D, Zhou Y, Krueger EW, Pei J, Wu X, Wang L, Pei H, McNiven MA, Ye D, Mer G, Huang H. Sci Adv 7 eabd9208 (2021)
  292. Comment Ankyrin for methylated lysines. Brent MM, Marmorstein R. Nat Struct Mol Biol 15 221-222 (2008)
  293. Autism risk gene KMT5B deficiency in prefrontal cortex induces synaptic dysfunction and social deficits via alterations of DNA repair and gene transcription. Wang ZJ, Rein B, Zhong P, Williams J, Cao Q, Yang F, Zhang F, Ma K, Yan Z. Neuropsychopharmacology 46 1617-1626 (2021)
  294. Dissection of Rad9 BRCT domain function in the mitotic checkpoint response to telomere uncapping. Nnakwe CC, Altaf M, Côté J, Kron SJ. DNA Repair (Amst) 8 1452-1461 (2009)
  295. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition. Ogunbolude Y, Dai C, Bagu ET, Goel RK, Miah S, MacAusland-Berg J, Ng CY, Chibbar R, Napper S, Raptis L, Vizeacoumar F, Vizeacoumar F, Bonham K, Lukong KE. Oncotarget 8 113034-113065 (2017)
  296. PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Alonso-de Vega I, Paz-Cabrera MC, Rother MB, Wiegant WW, Checa-Rodríguez C, Hernández-Fernaud JR, Huertas P, Freire R, van Attikum H, Smits VAJ. Nucleic Acids Res 48 4915-4927 (2020)
  297. SUV4-20 activity in the preimplantation mouse embryo controls timely replication. Eid A, Rodriguez-Terrones D, Burton A, Torres-Padilla ME. Genes Dev 30 2513-2526 (2016)
  298. The 53BP1 homolog in C. elegans influences DNA repair and promotes apoptosis in response to ionizing radiation. Ryu JS, Kang SJ, Koo HS. PLoS One 8 e64028 (2013)
  299. News Tudor hooks up with DNA repair. Corsini L, Sattler M. Nat Struct Mol Biol 14 98-99 (2007)
  300. Cation-π interactions of methylated ammonium ions: a quantum mechanical study. Rapp C, Goldberger E, Tishbi N, Kirshenbaum R. Proteins 82 1494-1502 (2014)
  301. Ser1778 of 53BP1 Plays a Role in DNA Double-strand Break Repairs. Lee JH, Cheong HM, Kang MY, Kim SY, Kang Y. Korean J Physiol Pharmacol 13 343-348 (2009)
  302. The ankyrin repeat domain of Huntingtin interacting protein 14 contains a surface aromatic cage, a potential site for methyl-lysine binding. Gao T, Collins RE, Horton JR, Zhang X, Zhang R, Dhayalan A, Tamas R, Jeltsch A, Cheng X. Proteins 76 772-777 (2009)
  303. Crystal structure of the C-terminal domain of a flagellar hook-capping protein from Xanthomonas campestris. Kuo WT, Chin KH, Lo WT, Wang AH, Chou SH. J Mol Biol 381 189-199 (2008)
  304. Gold Nanoparticles Promote Oxidant-Mediated Activation of NF-κB and 53BP1 Recruitment-Based Adaptive Response in Human Astrocytes. Mytych J, Lewinska A, Zebrowski J, Wnuk M. Biomed Res Int 2015 304575 (2015)
  305. Lamin B1 sequesters 53BP1 to control its recruitment to DNA damage. Etourneaud L, Moussa A, Rass E, Genet D, Willaume S, Chabance-Okumura C, Wanschoor P, Picotto J, Thézé B, Dépagne J, Veaute X, Dizet E, Busso D, Barascu A, Irbah L, Kortulewski T, Campalans A, Le Chalony C, Zinn-Justin S, Scully R, Pennarun G, Bertrand P. Sci Adv 7 eabb3799 (2021)
  306. Mediator of DNA Damage Checkpoint Protein 1 Facilitates V(D)J Recombination in Cells Lacking DNA Repair Factor XLF. Beck C, Castañeda-Zegarra S, Huse C, Xing M, Oksenych V. Biomolecules 10 E60 (2019)
  307. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects. Friedl AA, Mazurek B, Seiler DM. Front Oncol 2 117 (2012)
  308. Regulation of the BRCA1 gene by an SRC3/53BP1 complex. Corkery D, Thillainadesan G, Coughlan N, Mohan RD, Isovic M, Tini M, Torchia J. BMC Biochem 12 50 (2011)
  309. Structural insights into the sequence-specific recognition of Piwi by Drosophila Papi. Zhang Y, Liu W, Li R, Gu J, Wu P, Peng C, Ma J, Wu L, Yu Y, Huang Y. Proc Natl Acad Sci U S A 115 3374-3379 (2018)
  310. TIRR inhibits the 53BP1-p53 complex to alter cell-fate programs. Parnandi N, Rendo V, Cui G, Botuyan MV, Remisova M, Nguyen H, Drané P, Beroukhim R, Altmeyer M, Mer G, Chowdhury D. Mol Cell 81 2583-2595.e6 (2021)
  311. Ubiquitin-H2AX fusions render 53BP1 recruitment to DNA damage sites independent of RNF8 or RNF168. Kocyłowski MK, Rey AJ, Stewart GS, Halazonetis TD. Cell Cycle 14 1748-1758 (2015)
  312. When cleavage is not attractive: non-catalytic inhibition of ubiquitin chains at DNA double-strand breaks by OTUB1. Blackford AN, Stewart GS. DNA Repair (Amst) 10 245-249 (2011)
  313. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging. Zane L, Chapus F, Pegoraro G, Misteli T. Mol Biol Cell 28 2290-2302 (2017)
  314. Preparation of recombinant peptides with site- and degree-specific lysine (13)C-methylation. Cui G, Botuyan MV, Mer G. Biochemistry 48 3798-3800 (2009)
  315. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity. Gong W, Wang J, Perrett S, Feng Y. J Biol Chem 289 4882-4895 (2014)
  316. Tuning HP1α chromodomain selectivity for di- and trimethyllysine. Eisert RJ, Waters ML. Chembiochem 12 2786-2790 (2011)
  317. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1. Nielsen I, Bentsen IB, Andersen AH, Gasser SM, Bjergbaek L. PLoS One 8 e81015 (2013)
  318. A cell cycle-independent mode of the Rad9-Dpb11 interaction is induced by DNA damage. di Cicco G, Bantele SCS, Reusswig KU, Pfander B. Sci Rep 7 11650 (2017)
  319. An autonomous chromatin/DNA-PK mechanism for localized DNA damage signaling in mammalian cells. Muñoz DP, Kawahara M, Yannone SM. Nucleic Acids Res 41 2894-2906 (2013)
  320. Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin. Bártová E, Legartová S, Krejčí J, Řezníčková P, Kovaříková AS, Suchánková J, Fedr R, Smirnov E, Hornáček M, Raška I. J Cell Biochem 119 8146-8162 (2018)
  321. H3K36 dimethylation by MMSET promotes classical non-homologous end-joining at unprotected telomeres. de Krijger I, van der Torre J, Peuscher MH, Eder M, Jacobs JJL. Oncogene 39 4814-4827 (2020)
  322. H4K20me3 methyltransferase SUV420H2 shapes the chromatin landscape of pluripotent embryonic stem cells. Kurup JT, Han Z, Jin W, Kidder BL. Development 147 dev188516 (2020)
  323. Predictive QM/MM Modeling of Modulations in Protein-Protein Binding by Lysine Methylation. Rahman S, Wineman-Fisher V, Al-Hamdani Y, Tkatchenko A, Varma S. J Mol Biol 433 166745 (2021)
  324. RNAi silencing targeting RNF8 enhances radiosensitivity of a non-small cell lung cancer cell line A549. Zhou H, Mu X, Chen J, Liu H, Shi W, Xing E, Yang K, Wu G. Int J Radiat Biol 89 708-715 (2013)
  325. The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer. Baughman BM, Pattenden SG, Norris JL, James LI, Frye SV. ACS Chem Biol 11 722-728 (2016)
  326. Characterization of a cancer cell line that expresses a splicing variant form of 53BP1: separation of checkpoint and repair functions in 53BP1. Iwabuchi K, Matsui T, Hashimoto M, Matsumoto Y, Kurihara T, Date T. Biochem Biophys Res Commun 376 509-513 (2008)
  327. DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans. Lascarez-Lagunas LI, Herruzo E, Grishok A, San-Segundo PA, Colaiácovo MP. PLoS Genet 16 e1009171 (2020)
  328. The in vivo dynamic interplay of MDC1 and 53BP1 at DNA damage-induced nuclear foci. Mok MT, Henderson BR. Int J Biochem Cell Biol 44 1398-1409 (2012)
  329. Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair. Dey M, Patra S, Su LY, Segall AM. PLoS One 8 e78751 (2013)
  330. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Anglada T, Genescà A, Martín M. Aging (Albany NY) 12 24872-24893 (2020)
  331. Controlling the supramolecular assembly of nucleosomes asymmetrically modified on H4. Guidotti N, Lechner CC, Fierz B. Chem Commun (Camb) 53 10267-10270 (2017)
  332. DNA repair and cell cycle checkpoint defects in a mouse model of 'BRCAness' are partially rescued by 53BP1 deletion. Misenko SM, Patel DS, Her J, Bunting SF. Cell Cycle 17 881-891 (2018)
  333. Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors. Sato L, Noguchi S, Hayashi Y, Sakamoto M, Horikoshi M. Genes Cells 15 553-594 (2010)
  334. Nuclear localisation of 53BP1 is regulated by phosphorylation of the nuclear localisation signal. von Morgen P, Lidak T, Horejsi Z, Macurek L. Biol Cell 110 137-146 (2018)
  335. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Nucleic Acids Res 49 11728-11745 (2021)
  336. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, Miller KM. Nucleic Acids Res 50 3922-3943 (2022)
  337. Chrysin impairs genomic stability by suppressing DNA double-strand break repair in breast cancer cells. Geng A, Xu S, Yao Y, Qian Z, Wang X, Sun J, Zhang J, Shi F, Chen Z, Zhang W, Mao Z, Lu W, Jiang Y. Cell Cycle 21 379-391 (2022)
  338. DNA repair: a riddle at a double-strand break. Hiom K. Curr Biol 19 R331-3 (2009)
  339. Epigenetic control of cellular senescence in disease: opportunities for therapeutic intervention. Atkinson SP, Keith WN. Expert Rev Mol Med 9 1-26 (2007)
  340. Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF. Front Oncol 11 735940 (2021)
  341. FANCD2 Binding to H4K20me2 via a Methyl-Binding Domain Is Essential for Efficient DNA Cross-Link Repair. Paquin KL, Mamrak NE, Garzon JL, Cantres-Velez JA, Azzinaro PA, Vuono EA, Lima KE, Camberg JL, Howlett NG. Mol Cell Biol 39 e00194-19 (2019)
  342. Identification of H4K20me3- and H3K4me3-associated RNAs using CARIP-Seq expands the transcriptional and epigenetic networks of embryonic stem cells. Kurup JT, Kidder BL. J Biol Chem 293 15120-15135 (2018)
  343. Launching a ubiquitination cascade at DNA breaks. Yang XH, Zou L. Proc Natl Acad Sci U S A 104 20645-20646 (2007)
  344. RIF1 acts in DNA repair through phosphopeptide recognition of 53BP1. Setiaputra D, Escribano-Díaz C, Reinert JK, Sadana P, Zong D, Callen E, Sifri C, Seebacher J, Nussenzweig A, Thomä NH, Durocher D. Mol Cell 82 1359-1371.e9 (2022)
  345. Ubiquitylation in DNA double-strand break repair. Tang M, Li S, Chen J. DNA Repair (Amst) 103 103129 (2021)
  346. (1)H, (15)N and (13)C resonance assignments for the three LOTUS RNA binding domains of Tudor domain-containing protein TDRD7. Cui G, Botuyan MV, Mer G. Biomol NMR Assign 7 79-83 (2013)
  347. H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ. Bayley R, Borel V, Moss RJ, Sweatman E, Ruis P, Ormrod A, Goula A, Mottram RMA, Stanage T, Hewitt G, Saponaro M, Stewart GS, Boulton SJ, Higgs MR. Mol Cell 82 1924-1939.e10 (2022)
  348. Lysine Methyltransferase Inhibitors Impair H4K20me2 and 53BP1 Foci in Response to DNA Damage in Sarcomas, a Synthetic Lethality Strategy. Campillo-Marcos I, Monte-Serrano E, Navarro-Carrasco E, García-González R, Lazo PA. Front Cell Dev Biol 9 715126 (2021)
  349. Methyl-Induced Polarization Destabilizes the Noncovalent Interactions of N-Methylated Lysines. Rahman S, Wineman-Fisher V, Nagy PR, Al-Hamdani Y, Tkatchenko A, Varma S. Chemistry 27 11005-11014 (2021)
  350. Msl2 is a novel component of the vertebrate DNA damage response. Lai Z, Moravcová S, Canitrot Y, Andrzejewski LP, Walshe DM, Rea S. PLoS One 8 e68549 (2013)
  351. Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Usui T, Shinohara A. Front Cell Dev Biol 9 635383 (2021)
  352. Role of H3K9 demethylases in DNA double-strand break repair. Jeon HY, Hussain A, Qi J. J Cancer Biol 1 10-15 (2020)
  353. Comment Simplifying a complex code. Turner BM. Nat Struct Mol Biol 15 542-544 (2008)
  354. Editorial The fight of the Tudor domain "Royal family" for a broken DNA throne. Mallette FA, Richard S. Cell Cycle 11 1483-1484 (2012)
  355. The relationship between histone posttranslational modification and DNA damage signaling and repair. Sharma AK, Hendzel MJ. Int J Radiat Biol 95 382-393 (2019)
  356. UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Stixová L, Komůrková D, Svobodová Kovaříková A, Bártová E. Chromosome Res 27 41-55 (2019)
  357. A chromatin-based signalling mechanism directs the switch from mutagenic to error-free repair of DNA double strand breaks. Bartke T, Groth A. Mol Cell Oncol 6 1605820 (2019)
  358. Assessing kinetics and recruitment of DNA repair factors using high content screens. Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R. Cell Rep 37 110176 (2021)
  359. research-article Conversations between chromatin modifications and DNA double strand break repair: a commentary. Hendzel MJ, Greenberg RA. Mutat Res 750 1-4 (2013)
  360. HDGFRP3 interaction with 53BP1 promotes DNA double-strand break repair. Zhang Z, Samsa WE, De Y, Zhang F, Reizes O, Almasan A, Gong Z. Nucleic Acids Res 51 2238-2256 (2023)
  361. Optimization of a synthetic receptor for dimethyllysine using a biphenyl-2,6-dicarboxylic acid scaffold: insights into selective recognition of hydrophilic guests in water. Gober IN, Waters ML. Org Biomol Chem 15 7789-7795 (2017)
  362. POGZ promotes homology-directed DNA repair in an HP1-dependent manner. Heath J, Cheyou ES, Findlay S, Luo VM, Carpio EP, Lee J, Djerir B, Chen X, Morin T, Lebeau B, Karam M, Bagci H, Grapton D, Ursini-Siegel J, Côté JF, Witcher M, Richard S, Maréchal A, Orthwein A. EMBO Rep 23 e51041 (2022)
  363. Comment TIRR and 53BP1- partners in arms. Drané P, Chowdhury D. Cell Cycle 16 1235-1236 (2017)
  364. Targeting Enox1 in tumor stroma increases the efficacy of fractionated radiotherapy. Smith CA, Mont S, Traver G, Sekhar KR, Crooks PA, Freeman ML. Oncotarget 7 77926-77936 (2016)
  365. The demise of a TUDOR under stress opens a chromatin link to 53BP1. Stewart GS. EMBO J 31 1847-1849 (2012)
  366. Two- and three-dimensional live cell imaging of DNA damage response proteins. Beckta JM, Henderson SC, Valerie K. J Vis Exp 4251 (2012)
  367. UBQLN4 is an ATM substrate that stabilizes the anti-apoptotic proteins BCL2A1 and BCL2L10 in mesothelioma. Liu F, Pan R, Ding H, Gu L, Yang Y, Li C, Xu Y, Hu R, Chen H, Zhang X, Nie Y. Mol Oncol 15 3738-3752 (2021)
  368. A Degenerate Peptide Library Approach to Reveal Sequence Determinants of Methyllysine-Driven Protein Interactions. Kupai A, Vaughan RM, Dickson BM, Rothbart SB. Front Cell Dev Biol 8 241 (2020)
  369. Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Crain AT, Klusza S, Armstrong RL, Santa Rosa P, Temple BRS, Strahl BD, McKay DJ, Matera AG, Duronio RJ. Genetics 221 iyac054 (2022)
  370. Dynamic recruitment of UFM1-specific peptidase 2 to the DNA double-strand breaks regulated by WIP1. Qin B, Yu J, Zhao F, Huang J, Zhou Q, Lou Z. Genome Instab Dis 3 217-226 (2022)
  371. Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair. Sigismondo G, Arseni L, Palacio-Escat N, Hofmann TG, Seiffert M, Krijgsveld J. Nucleic Acids Res 51 687-711 (2023)
  372. Multivalent binding of the hub protein LC8 at a newly discovered site in 53BP1. Howe J, Weeks A, Reardon P, Barbar E. Biophys J 121 4433-4442 (2022)
  373. On form and function: does chromatin packing regulate the cell cycle? Corney DC, Coller HA. Physiol Genomics 46 191-194 (2014)
  374. Protocol for automated multivariate quantitative-image-based cytometry analysis by fluorescence microscopy of asynchronous adherent cells. Besse L, Rumiac T, Reynaud-Angelin A, Messaoudi C, Soler MN, Lambert SAE, Pennaneach V. STAR Protoc 4 102446 (2023)
  375. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. Methods Mol Biol 2458 231-255 (2022)
  376. 53BP1-ACLY-SLBP-coordinated activation of replication-dependent histone biogenesis maintains genomic integrity. Wu T, Jun S, Choi EJ, Sun J, Yang EB, Lee HS, Kim SY, Fahmi NA, Jiang Q, Zhang W, Yong J, Lee JH, You HJ. Nucleic Acids Res 50 1465-1483 (2022)
  377. A complete methyl-lysine binding aromatic cage constructed by two domains of PHF2. Horton JR, Zhou J, Chen Q, Zhang X, Bedford MT, Cheng X. J Biol Chem 299 102862 (2023)
  378. Discovery of a 53BP1 Small Molecule Antagonist Using a Focused DNA-Encoded Library Screen. Shell DJ, Foley CA, Wang Q, Smith CM, Guduru SKR, Zeng H, Dong A, Norris-Drouin JL, Axtman M, Hardy PB, Gupta G, Halabelian L, Frye SV, James LI, Pearce KH. J Med Chem 66 14133-14149 (2023)
  379. Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition. Parkinson J, Hard R, Ainsworth R, Wang W. Proteins 91 32-46 (2023)
  380. Genome homeostasis defects drive enlarged cells into senescence. Manohar S, Estrada ME, Uliana F, Vuina K, Alvarez PM, de Bruin RAM, Neurohr GE. Mol Cell 83 4032-4046.e6 (2023)
  381. Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair. Parisis N, Dans PD, Jbara M, Singh B, Schausi-Tiffoche D, Molina-Serrano D, Brun-Heath I, Hendrychová D, Maity SK, Buitrago D, Lema R, Nait Achour T, Giunta S, Girardot M, Talarek N, Rofidal V, Danezi K, Coudreuse D, Prioleau MN, Feil R, Orozco M, Brik A, Wu PJ, Krasinska L, Fisher D. Nat Commun 14 5104 (2023)
  382. Identification of a novel GR-ARID1a-P53BP1 protein complex involved in DNA damage repair and cell cycle regulation. Stubbs FE, Flynn BP, Rivers CA, Birnie MT, Herman A, Swinstead EE, Baek S, Fang H, Temple J, Carroll JS, Hager GL, Lightman SL, Conway-Campbell BL. Oncogene 41 5347-5360 (2022)
  383. New perspectives on epigenetic modifications and PARP inhibitor resistance in HR-deficient cancers. Bayley R, Sweatman E, Higgs MR. Cancer Drug Resist 6 35-44 (2023)
  384. Nonhistone Lysine Methylation as a Protein Degradation Signal. Lehning NA, Morrison BE. J Chem 2022 1969299 (2022)
  385. Pulse-SILAC and Interactomics Reveal Distinct DDB1-CUL4-Associated Factors, Cellular Functions, and Protein Substrates. Raisch J, Dubois ML, Groleau M, Lévesque D, Burger T, Jurkovic CM, Brailly R, Marbach G, McKenna A, Barrette C, Jacques PÉ, Boisvert FM. Mol Cell Proteomics 22 100644 (2023)
  386. Role of H4K16 acetylation in 53BP1 recruitment to double-strand break sites in in vitro aged cells. González-Bermúdez L, Genescà A, Terradas M, Martín M. Biogerontology 23 499-514 (2022)
  387. Searching for methyllysine-binding aromatic cages. Vann KR, Vishweshwaraiah YL, Dokholyan NV, Kutateladze TG. Biochem J 478 3613-3619 (2021)
  388. Structural basis of nucleosomal H4K20 recognition and methylation by SUV420H1 methyltransferase. Lin F, Zhang R, Shao W, Lei C, Ma M, Zhang Y, Wen Z, Li W. Cell Discov 9 120 (2023)
  389. News Switching 53BP1 on and off via Tudors. Zhang Y, Kutateladze TG. Nat Struct Mol Biol 25 646-647 (2018)
  390. TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks. Ma J, Zhou Y, Pan P, Yu H, Wang Z, Li LL, Wang B, Yan Y, Pan Y, Ye Q, Liu T, Feng X, Xu S, Wang K, Wang X, Jian Y, Ma B, Fan Y, Gao Y, Huang H, Li L. Nat Commun 14 1810 (2023)
  391. The TUDOR domain of SMN is an H3K79me1 histone mark reader. Binda O, Kimenyi Ishimwe AB, Galloy M, Jacquet K, Corpet A, Fradet-Turcotte A, Côté J, Lomonte P. Life Sci Alliance 6 e202201752 (2023)
  392. USP29 Deubiquitinates SETD8 and Regulates DNA Damage-Induced H4K20 Monomethylation and 53BP1 Focus Formation. Hernández-Reyes Y, Paz-Cabrera MC, Freire R, Smits VAJ. Cells 11 2492 (2022)
  393. News When loose ends finally meet. Huen MS, Chen J. Nat Struct Mol Biol 15 1241-1242 (2008)
  394. p53 and the PWWP domain containing effector proteins in chromatin damage repair. Hu J, Wang Y. Cell Dev Biol 2 112 (2013)