2fq1 Citations

Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain.

Chem Biol 13 409-19 (2006)

Abstract

Nonribosomal peptide synthetases are modular proteins that operate in an assembly line fashion to bind, modify, and link amino acids. In the E. coli enterobactin NRPS system, the EntE adenylation domain catalyzes the transfer of a molecule of 2,3-dihydroxybenzoic acid to the pantetheine cofactor of EntB. We present here the crystal structure of the EntB protein that contains an N-terminal isochorismate lyase domain that functions in the synthesis of 2,3-dihydroxybenzoate and a C-terminal carrier protein domain. Functional analysis showed that the EntB-EntE interaction was surprisingly tolerant of a number of point mutations on the surface of EntB and EntE. Mutational studies on EntE support our previous hypothesis that members of the adenylate-forming family of enzymes adopt two distinct conformations to catalyze the two-step reactions.

Reviews - 2fq1 mentioned but not cited (1)

Articles - 2fq1 mentioned but not cited (8)

  1. Structural Biology of Nonribosomal Peptide Synthetases. Miller BR, Gulick AM. Methods Mol Biol 1401 3-29 (2016)
  2. The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins. Lohman JR, Ma M, Cuff ME, Bigelow L, Bearden J, Babnigg G, Joachimiak A, Phillips GN, Shen B. Proteins 82 1210-1218 (2014)
  3. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes . French JB, Cen Y, Sauve AA, Ealick SE. Biochemistry 49 8803-8812 (2010)
  4. Crystal structure of a putative isochorismatase hydrolase from Oleispira antarctica. Goral AM, Tkaczuk KL, Chruszcz M, Kagan O, Savchenko A, Minor W. J Struct Funct Genomics 13 27-36 (2012)
  5. Acyl carrier protein structural classification and normal mode analysis. Cantu DC, Forrester MJ, Charov K, Reilly PJ. Protein Sci 21 655-666 (2012)
  6. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication. Goodrich AC, Meyers DJ, Frueh DP. J Biol Chem 292 10002-10013 (2017)
  7. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. Bauters L, Kyndt T, De Meyer T, Morreel K, Boerjan W, Lefevere H, Gheysen G. Mol Plant Pathol 21 1634-1646 (2020)
  8. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets. Uddin R, Sufian M. PLoS One 11 e0146796 (2016)


Reviews citing this publication (16)

  1. Siderophore-based iron acquisition and pathogen control. Miethke M, Marahiel MA. Microbiol Mol Biol Rev 71 413-451 (2007)
  2. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. Gulick AM. ACS Chem Biol 4 811-827 (2009)
  3. Structural insights into nonribosomal peptide enzymatic assembly lines. Koglin A, Walsh CT. Nat Prod Rep 26 987-1000 (2009)
  4. Protein-protein interactions in multienzyme megasynthetases. Weissman KJ, Müller R. Chembiochem 9 826-848 (2008)
  5. Of two make one: the biosynthesis of phenazines. Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W. Chembiochem 10 2295-2304 (2009)
  6. The ubiquitous carrier protein--a window to metabolite biosynthesis. Mercer AC, Burkart MD. Nat Prod Rep 24 750-773 (2007)
  7. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Izoré T, Cryle MJ. Nat Prod Rep 35 1120-1139 (2018)
  8. Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study. Ronnebaum TA, Lamb AL. Curr Opin Struct Biol 53 1-11 (2018)
  9. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Gulick AM. Nat Prod Rep 34 981-1009 (2017)
  10. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Gulick AM, Aldrich CC. Nat Prod Rep 35 1156-1184 (2018)
  11. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Gulick AM. Curr Opin Chem Biol 35 89-96 (2016)
  12. How to tailor non-ribosomal peptide products--new clues about the structures and mechanisms of modifying enzymes. Samel SA, Marahiel MA, Essen LO. Mol Biosyst 4 387-393 (2008)
  13. Refining and expanding nonribosomal peptide synthetase function and mechanism. McErlean M, Overbay J, Van Lanen S. J Ind Microbiol Biotechnol 46 493-513 (2019)
  14. Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. Kudo F, Miyanaga A, Eguchi T. J Ind Microbiol Biotechnol 46 515-536 (2019)
  15. Biosynthetic considerations of triscatechol siderophores framed on serine and threonine macrolactone scaffolds. Reitz ZL, Sandy M, Butler A. Metallomics 9 824-839 (2017)
  16. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Leitão AL, Enguita FJ. Microbiol Res 169 652-665 (2014)

Articles citing this publication (47)

  1. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M, Gu L, Zhang B, Dou D. Nat Commun 5 4686 (2014)
  2. Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Tang Y, Chen AY, Kim CY, Cane DE, Khosla C. Chem Biol 14 931-943 (2007)
  3. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen LO. Structure 15 781-792 (2007)
  4. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM. Chem Biol 19 188-198 (2012)
  5. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Mitchell CA, Shi C, Aldrich CC, Gulick AM. Biochemistry 51 3252-3263 (2012)
  6. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Reger AS, Carney JM, Gulick AM. Biochemistry 46 6536-6546 (2007)
  7. Solution structure and proposed domain domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. Alekseyev VY, Liu CW, Cane DE, Puglisi JD, Khosla C. Protein Sci 16 2093-2107 (2007)
  8. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. Kochan G, Pilka ES, von Delft F, Oppermann U, Yue WW. J Mol Biol 388 997-1008 (2009)
  9. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture. Miller BR, Drake EJ, Shi C, Aldrich CC, Gulick AM. J Biol Chem 291 22559-22571 (2016)
  10. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. Tarry MJ, Haque AS, Bui KH, Schmeing TM. Structure 25 783-793.e4 (2017)
  11. The 1.8 A crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. Drake EJ, Cao J, Qu J, Shah MB, Straubinger RM, Gulick AM. J Biol Chem 282 20425-20434 (2007)
  12. The Acinetobacter baumannii entA gene located outside the acinetobactin cluster is critical for siderophore production, iron acquisition and virulence. Penwell WF, Arivett BA, Actis LA. PLoS One 7 e36493 (2012)
  13. A continuous kinetic assay for adenylation enzyme activity and inhibition. Wilson DJ, Aldrich CC. Anal Biochem 404 56-63 (2010)
  14. Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Drake EJ, Duckworth BP, Neres J, Aldrich CC, Gulick AM. Biochemistry 49 9292-9305 (2010)
  15. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Mocibob M, Ivic N, Bilokapic S, Maier T, Luic M, Ban N, Weygand-Durasevic I. Proc Natl Acad Sci U S A 107 14585-14590 (2010)
  16. Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. Davidsen JM, Bartley DM, Townsend CA. J Am Chem Soc 135 1749-1759 (2013)
  17. Directed evolution of aryl carrier proteins in the enterobactin synthetase. Zhou Z, Lai JR, Walsh CT. Proc Natl Acad Sci U S A 104 11621-11626 (2007)
  18. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Miller BR, Sundlov JA, Drake EJ, Makin TA, Gulick AM. Proteins 82 2691-2702 (2014)
  19. Aryl acid adenylating enzymes involved in siderophore biosynthesis: fluorescence polarization assay, ligand specificity, and discovery of non-nucleoside inhibitors via high-throughput screening. Neres J, Wilson DJ, Celia L, Beck BJ, Aldrich CC. Biochemistry 47 11735-11749 (2008)
  20. Interdomain communication between the thiolation and thioesterase domains of EntF explored by combinatorial mutagenesis and selection. Zhou Z, Lai JR, Walsh CT. Chem Biol 13 869-879 (2006)
  21. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. Goodrich AC, Harden BJ, Frueh DP. J Am Chem Soc 137 12100-12109 (2015)
  22. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. Sikora AL, Wilson DJ, Aldrich CC, Blanchard JS. Biochemistry 49 3648-3657 (2010)
  23. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Scott TA, Heine D, Qin Z, Wilkinson B. Nat Commun 8 15935 (2017)
  24. The hotdog thioesterase EntH (YbdB) plays a role in vivo in optimal enterobactin biosynthesis by interacting with the ArCP domain of EntB. Leduc D, Battesti A, Bouveret E. J Bacteriol 189 7112-7126 (2007)
  25. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. Engelhart CA, Aldrich CC. J Org Chem 78 7470-7481 (2013)
  26. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms. Zimmermann S, Pfennig S, Neumann P, Yonus H, Weininger U, Kovermann M, Balbach J, Stubbs MT. FEBS Lett 589 2283-2289 (2015)
  27. A double TROSY hNCAnH experiment for efficient assignment of large and challenging proteins. Frueh DP, Arthanari H, Koglin A, Walsh CT, Wagner G. J Am Chem Soc 131 12880-12881 (2009)
  28. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Knudsen M, Søndergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CN. Bioinformatics 32 325-329 (2016)
  29. Quantitative three dimensional structure linear interaction energy model of 5'-O-[N-(salicyl)sulfamoyl]adenosine and the aryl acid adenylating enzyme MbtA. Labello NP, Bennett EM, Ferguson DM, Aldrich CC. J Med Chem 51 7154-7160 (2008)
  30. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. Chen Y, Sun Y, Song H, Guo Z. J Biol Chem 290 23971-23983 (2015)
  31. Ligand-induced conformational rearrangements promote interaction between the Escherichia coli enterobactin biosynthetic proteins EntE and EntB. Khalil S, Pawelek PD. J Mol Biol 393 658-671 (2009)
  32. Mechanistic implications for the chorismatase FkbO based on the crystal structure. Juneja P, Hubrich F, Diederichs K, Welte W, Andexer JN. J Mol Biol 426 105-115 (2014)
  33. SanT, a bidomain protein, is essential for nikkomycin biosynthesis of Streptomyces ansochromogenes. Jia L, Tian Y, Tan H. Biochem Biophys Res Commun 362 1031-1036 (2007)
  34. Cinnamic acid derivatives as inhibitors for chorismatases and isochorismatases. Hubrich F, Mordhorst S, Andexer JN. Bioorg Med Chem Lett 23 1477-1481 (2013)
  35. Design, Synthesis, and Biophysical Evaluation of Mechanism-Based Probes for Condensation Domains of Nonribosomal Peptide Synthetases. Shi C, Miller BR, Alexander EM, Gulick AM, Aldrich CC. ACS Chem Biol 15 1813-1819 (2020)
  36. Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrio anguillarum strain 775. Di Lorenzo M, Stork M, Crosa JH. Biometals 24 629-643 (2011)
  37. The A9 core sequence from NRPS adenylation domain is relevant for thioester formation. Bučević-Popović V, Sprung M, Soldo B, Pavela-Vrančič M. Chembiochem 13 1913-1920 (2012)
  38. Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. Chen Y, Li TL, Lin X, Li X, Li XD, Guo Z. J Biol Chem 292 12296-12310 (2017)
  39. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily. Robinson SL, Badalamenti JP, Dodge AG, Tassoulas LJ, Wackett LP. Environ Microbiol 20 2099-2111 (2018)
  40. In silico analysis of class I adenylate-forming enzymes reveals family and group-specific conservations. Clark L, Leatherby D, Krilich E, Ropelewski AJ, Perozich J. PLoS One 13 e0203218 (2018)
  41. Structural insight into the ISC domain of VibB from Vibrio cholerae at atomic resolution: a snapshot just before the enzymatic reaction. Liu S, Zhang C, Li N, Niu B, Liu M, Liu X, Wei T, Zhu D, Huang Y, Xu S, Gu L. Acta Crystallogr D Biol Crystallogr 68 1329-1338 (2012)
  42. Stuffed Methyltransferase Catalyzes the Penultimate Step of Pyochelin Biosynthesis. Ronnebaum TA, McFarlane JS, Prisinzano TE, Booker SJ, Lamb AL. Biochemistry 58 665-678 (2019)
  43. An unconventionally secreted effector from the root knot nematode Meloidogyne incognita, Mi-ISC-1, promotes parasitism by disrupting salicylic acid biosynthesis in host plants. Qin X, Xue B, Tian H, Fang C, Yu J, Chen C, Xue Q, Jones J, Wang X. Mol Plant Pathol 23 516-529 (2022)
  44. Crystal structures of the isochorismatase domains from Vibrio anguillarum. Du J, Deng T, Ma Q. Biochem Biophys Res Commun 490 827-833 (2017)
  45. Enterobactin synthetase-catalyzed formation of P(1),P(3)-diadenosine-5'-tetraphosphate. Sikora AL, Cahill SM, Blanchard JS. Biochemistry 48 10827-10829 (2009)
  46. Identification of a surface glutamine residue (Q64) of Escherichia coli EntA required for interaction with EntE. Khalil S, Jaworski I, Pawelek PD. Biochem Biophys Res Commun 453 625-630 (2014)
  47. Structural Studies of Modular Nonribosomal Peptide Synthetases. Patel KD, Ahmed SF, MacDonald MR, Gulick AM. Methods Mol Biol 2670 17-46 (2023)