2eot Citations

Solution structure of eotaxin, a chemokine that selectively recruits eosinophils in allergic inflammation.

J Biol Chem 273 22471-9 (1998)
Cited: 57 times
EuropePMC logo PMID: 9712872

Abstract

The solution structure of the CCR3-specific chemokine, eotaxin, has been determined by NMR spectroscopy. The quaternary structure of eotaxin was investigated by ultracentrifugation and NMR, and it was found to be in equilibrium between monomer and dimer under a wide range of conditions. At pH

Reviews - 2eot mentioned but not cited (1)

  1. The marriage of chemokines and galectins as functional heterodimers. von Hundelshausen P, Wichapong K, Gabius HJ, Mayo KH. Cell Mol Life Sci 78 8073-8095 (2021)

Articles - 2eot mentioned but not cited (3)

  1. Human antimicrobial peptides and proteins. Wang G. Pharmaceuticals (Basel) 7 545-594 (2014)
  2. A Requirement for Metamorphic Interconversion in the Antimicrobial Activity of Chemokine XCL1. Nevins AM, Subramanian A, Tapia JL, Delgado DP, Tyler RC, Jensen DR, Ouellette AJ, Volkman BF. Biochemistry 55 3784-3793 (2016)
  3. Improving protein structure similarity searches using domain boundaries based on conserved sequence information. Thompson KE, Wang Y, Madej T, Bryant SH. BMC Struct Biol 9 33 (2009)


Reviews citing this publication (12)

  1. Chemokine: receptor structure, interactions, and antagonism. Allen SJ, Crown SE, Handel TM. Annu Rev Immunol 25 787-820 (2007)
  2. Structure, function, and inhibition of chemokines. Fernandez EJ, Lolis E. Annu Rev Pharmacol Toxicol 42 469-499 (2002)
  3. The MCP/eotaxin subfamily of CC chemokines. Van Coillie E, Van Damme J, Opdenakker G. Cytokine Growth Factor Rev 10 61-86 (1999)
  4. Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Rajagopalan L, Rajarathnam K. Biosci Rep 26 325-339 (2006)
  5. Chemokine receptor antagonists: a novel therapeutic approach in allergic diseases. Elsner J, Escher SE, Forssmann U. Allergy 59 1243-1258 (2004)
  6. Chemokines from a Structural Perspective. Miller MC, Mayo KH. Int J Mol Sci 18 (2017)
  7. Bias in chemokine receptor signalling. Zweemer AJ, Toraskar J, Heitman LH, IJzerman AP. Trends Immunol 35 243-252 (2014)
  8. Human immunodeficiency virus type-1 and chemokines: beyond competition for common cellular receptors. Stantchev TS, Broder CC. Cytokine Growth Factor Rev 12 219-243 (2001)
  9. Chemokine oligomerization in cell signaling and migration. Wang X, Sharp JS, Handel TM, Prestegard JH. Prog Mol Biol Transl Sci 117 531-578 (2013)
  10. Cross-Species Analysis of Glycosaminoglycan Binding Proteins Reveals Some Animal Models Are "More Equal" than Others. Boittier ED, Gandhi NS, Ferro V, Coombe DR. Molecules 24 (2019)
  11. Bioinformatic analysis of eosinophil activity and its implications for model and target species. Jenvey CJ, Alenizi D, Almasi F, Cairns C, Holmes A, Sloan S, Stear MJ. Parasitology 147 393-400 (2020)
  12. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Mayo KH. Int J Mol Sci 24 14083 (2023)

Articles citing this publication (41)

  1. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TN, Kosco-Vilbois MH. Proc Natl Acad Sci U S A 100 1885-1890 (2003)
  2. Eotaxin selectively binds heparin. An interaction that protects eotaxin from proteolysis and potentiates chemotactic activity in vivo. Ellyard JI, Simson L, Bezos A, Johnston K, Freeman C, Parish CR. J Biol Chem 282 15238-15247 (2007)
  3. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. Casarosa P, Waldhoer M, LiWang PJ, Vischer HF, Kledal T, Timmerman H, Schwartz TW, Smit MJ, Leurs R. J Biol Chem 280 3275-3285 (2005)
  4. Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2. Oberthür D, Achenbach J, Gabdulkhakov A, Buchner K, Maasch C, Falke S, Rehders D, Klussmann S, Betzel C. Nat Commun 6 6923 (2015)
  5. Regulation of chemokine recognition by site-specific tyrosine sulfation of receptor peptides. Simpson LS, Zhu JZ, Widlanski TS, Stone MJ. Chem Biol 16 153-161 (2009)
  6. The role of CXCR4 signaling in the migration of transplanted oligodendrocyte progenitors into the cerebral white matter. Banisadr G, Frederick TJ, Freitag C, Ren D, Jung H, Miller SD, Miller RJ. Neurobiol Dis 44 19-27 (2011)
  7. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin. Kuloglu ES, McCaslin DR, Kitabwalla M, Pauza CD, Markley JL, Volkman BF. Biochemistry 40 12486-12496 (2001)
  8. Molecular determinants for CC-chemokine recognition by a poxvirus CC-chemokine inhibitor. Seet BT, Singh R, Paavola C, Lau EK, Handel TM, McFadden G. Proc Natl Acad Sci U S A 98 9008-9013 (2001)
  9. Small molecule receptor agonists and antagonists of CCR3 provide insight into mechanisms of chemokine receptor activation. Wise EL, Duchesnes C, da Fonseca PC, Allen RA, Williams TJ, Pease JE. J Biol Chem 282 27935-27943 (2007)
  10. Differential chemokine activation of CC chemokine receptor 1-regulated pathways: ligand selective activation of Galpha 14-coupled pathways. Tian Y, New DC, Yung LY, Allen RA, Slocombe PM, Twomey BM, Lee MMK, Wong YH. Eur J Immunol 34 785-795 (2004)
  11. Backbone dynamics of the human CC chemokine eotaxin: fast motions, slow motions, and implications for receptor binding. Crump MP, Spyracopoulos L, Lavigne P, Kim KS, Clark-lewis I, Sykes BD. Protein Sci 8 2041-2054 (1999)
  12. The solution structure of the anti-HIV chemokine vMIP-II. Liwang AC, Wang ZX, Sun Y, Peiper SC, Liwang PJ. Protein Sci 8 2270-2280 (1999)
  13. Backbone dynamics of the human CC-chemokine eotaxin. Ye J, Mayer KL, Stone MJ. J Biomol NMR 15 115-124 (1999)
  14. The analysis of immune responses of a novel CC-chemokine gene from Japanese flounder Paralichthys olivaceus. Kono T, Kusuda R, Kawahara E, Sakai M. Vaccine 21 446-457 (2003)
  15. Elucidating the structural mechanisms for biological activity of the chemokine family. Baysal C, Atilgan AR. Proteins 43 150-160 (2001)
  16. Identification of receptor binding and activation determinants in the N-terminal and N-loop regions of the CC chemokine eotaxin. Mayer MR, Stone MJ. J Biol Chem 276 13911-13916 (2001)
  17. Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases. Gela A, Kasetty G, Jovic S, Ekoff M, Nilsson G, Mörgelin M, Kjellström S, Pease JE, Schmidtchen A, Egesten A. Allergy 70 161-170 (2015)
  18. Characterization of the interactions of vMIP-II, and a dimeric variant of vMIP-II, with glycosaminoglycans. Zhao B, Liwang PJ. Biochemistry 49 7012-7022 (2010)
  19. Eotaxin/CCL11 is involved in acute, but not chronic, allergic airway responses to Aspergillus fumigatus. Schuh JM, Blease K, Kunkel SL, Hogaboam CM. Am J Physiol Lung Cell Mol Physiol 283 L198-204 (2002)
  20. Measurement of eotaxin (CCL11) in induced sputum supernatants: validation and detection in asthma. Hadjicharalambous C, Dent G, May RD, Handy RL, Anderson IK, Davies DE, Djukanovic R. J Allergy Clin Immunol 113 657-662 (2004)
  21. Alanine scanning mutagenesis of the chemokine receptor CCR3 reveals distinct extracellular residues involved in recognition of the eotaxin family of chemokines. Duchesnes CE, Murphy PM, Williams TJ, Pease JE. Mol Immunol 43 1221-1231 (2006)
  22. Effects of reactive oxygen and nitrogen metabolites on eotaxin-induced eosinophil chemotactic activity in vitro. Sato E, Simpson KL, Grisham MB, Koyama S, Robbins RA. Am J Respir Cell Mol Biol 22 61-67 (2000)
  23. Receptor-binding conformation of the "ELR" motif of IL-8: X-ray structure of the L5C/H33C variant at 2.35 A resolution. Gerber N, Lowman H, Artis DR, Eigenbrot C. Proteins 38 361-367 (2000)
  24. Eotaxin and monocyte chemotactic protein-3 use different modes of action. Chung IY, Kim YH, Choi MK, Noh YJ, Park CS, Kwon DY, Lee DY, Lee YS, Chang HS, Kim KS. Biochem Biophys Res Commun 314 646-653 (2004)
  25. A 3D model of Reelin subrepeat regions predicts Reelin binding to carbohydrates. Panteri R, Paiardini A, Keller F. Brain Res 1116 222-230 (2006)
  26. Dynamics and thermodynamic properties of CXCL7 chemokine. Herring CA, Singer CM, Ermakova EA, Khairutdinov BI, Zuev YF, Jacobs DJ, Nesmelova IV. Proteins 83 1987-2007 (2015)
  27. Backbone dynamics of the CC-chemokine eotaxin-2 and comparison among the eotaxin group chemokines. Mayer KL, Stone MJ. Proteins 50 184-191 (2003)
  28. CCR2 and CCR5 receptor-binding properties of herpesvirus-8 vMIP-II based on sequence analysis and its solution structure. Shao W, Fernandez E, Sachpatzidis A, Wilken J, Thompson DA, Schweitzer BI, Lolis E. Eur J Biochem 268 2948-2959 (2001)
  29. Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals. Neves F, Abrantes J, Esteves PJ. Innate Immun 22 336-343 (2016)
  30. Structural insights into the interaction between a potent anti-inflammatory protein, viral CC chemokine inhibitor (vCCI), and the human CC chemokine, Eotaxin-1. Kuo NW, Gao YG, Schill MS, Isern N, Dupureur CM, LiWang PJ. J Biol Chem 289 6592-6603 (2014)
  31. A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. Semba RD, Zhang P, Zhu M, Fabbri E, Gonzalez-Freire M, Moaddel R, Geng-Spyropoulos M, Ferrucci L. Proteomics 17 (2017)
  32. N-terminal domain of eotaxin-3 is important for activation of CC chemokine receptor 3. Shinkai A, Komuta-Kunitomo M, Sato-Nakamura N, Anazawa H. Protein Eng 15 923-929 (2002)
  33. Osteopontin binds and modulates functions of eosinophil-recruiting chemokines. Gela A, Kasetty G, Mörgelin M, Bergqvist A, Erjefält JS, Pease JE, Egesten A. Allergy 71 58-67 (2016)
  34. Aggregation-independent modulation of proteoglycan binding by neutralization of C-terminal acidic residues in the chemokine macrophage inflammatory protein 1alpha. Ottersbach K, Graham GJ. Biochem J 354 447-453 (2001)
  35. Ion mobility mass spectrometry coupled with rapid protein threading predictor structure prediction and collision-induced dissociation for probing chemokine conformation and stability. Niñonuevo MR, Leary JA. Anal Chem 84 3208-3214 (2012)
  36. Specificity determinants for chemokine recognition identified using eotaxin-MCP-1 chimeras. Mayer MR, Parody TR, Datta-Mannan A, Stone MJ. FEBS Lett 571 166-170 (2004)
  37. Homology modeling and molecular dynamics simulations of lymphotactin. Buyong, Xiong J, Lubkowski J, Nussinov R. Protein Sci 9 2192-2199 (2000)
  38. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™. Dykstra AB, Sweeney MD, Leary JA. Biomolecules 3 905-922 (2013)
  39. Cholesterol Biases the Conformational Landscape of the Chemokine Receptor CCR3: A MAS SSNMR-Filtered Molecular Dynamics Study. van Aalst EJ, McDonald CJ, Wylie BJ. J Chem Inf Model 63 3068-3085 (2023)
  40. Cholesterol Is a Dose-Dependent Positive Allosteric Modulator of CCR3 Ligand Affinity and G Protein Coupling. van Aalst E, Wylie BJ. Front Mol Biosci 8 724603 (2021)
  41. Kinetic and thermodynamic studies reveal chemokine homologues CC11 and CC24 with an almost identical tertiary structure have different folding pathways. Ge B, Jiang X, Chen Y, Sun T, Yang Q, Huang F. BMC Biophys 10 7 (2017)