2duo Citations

Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36.

J Biol Chem 282 28246-55 (2007)
Related entries: 2dup, 2duq, 2dur, 2e6v

Cited: 28 times
EuropePMC logo PMID: 17652092

Abstract

VIP36 functions as a transport lectin for trafficking certain high mannose type glycoproteins in the secretory pathway. Here we report the crystal structure of VIP36 exoplasmic/luminal domain comprising a carbohydrate recognition domain and a stalk domain. The structures of VIP36 in complex with Ca(2+) and mannosyl ligands are also described. The carbohydrate recognition domain is composed of a 17-stranded antiparallel beta-sandwich and binds one Ca(2+) adjoining the carbohydrate-binding site. The structure reveals that a coordinated Ca(2+) ion orients the side chains of Asp(131), Asn(166), and His(190) for carbohydrate binding. This result explains the Ca(2+)-dependent carbohydrate binding of this protein. The Man-alpha-1,2-Man-alpha-1,2-Man, which corresponds to the D1 arm of high mannose type glycan, is recognized by eight residues through extensive hydrogen bonds. The complex structures reveal the structural basis for high mannose type glycoprotein recognition by VIP36 in a Ca(2+)-dependent and D1 arm-specific manner.

Articles - 2duo mentioned but not cited (2)

  1. Predicting binding sites from unbound versus bound protein structures. Clark JJ, Orban ZJ, Carlson HA. Sci Rep 10 15856 (2020)
  2. Crystal structure of the legume lectin-like domain of an ERGIC-53-like protein from Entamoeba histolytica. Khan F, Suguna K. Acta Crystallogr F Struct Biol Commun 75 197-204 (2019)


Reviews citing this publication (7)

  1. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Vagin O, Kraut JA, Sachs G. Am J Physiol Renal Physiol 296 F459-69 (2009)
  2. Survey of the year 2007 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 21 355-400 (2008)
  3. Role of Protein Glycosylation in Host-Pathogen Interaction. Lin B, Qing X, Liao J, Zhuo K. Cells 9 E1022 (2020)
  4. Convergent and divergent mechanisms of sugar recognition across kingdoms. Taylor ME, Drickamer K. Curr Opin Struct Biol 28 14-22 (2014)
  5. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mar Drugs 17 E440 (2019)
  6. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum. Satoh T, Yamaguchi T, Kato K. Molecules 20 2475-2491 (2015)
  7. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Barre A, Damme EJMV, Simplicien M, Benoist H, Rougé P. Mar Drugs 18 E543 (2020)

Articles citing this publication (19)

  1. Aromatic-proline interactions: electronically tunable CH/π interactions. Zondlo NJ. Acc Chem Res 46 1039-1049 (2013)
  2. Structural basis of carbohydrate recognition by calreticulin. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, Gehring K. J Biol Chem 285 38612-38620 (2010)
  3. Onion-like glycodendrimersomes from sequence-defined Janus glycodendrimers and influence of architecture on reactivity to a lectin. Xiao Q, Zhang S, Wang Z, Sherman SE, Moussodia RO, Peterca M, Muncan A, Williams DR, Hammer DA, Vértesy S, André S, Gabius HJ, Klein ML, Percec V. Proc Natl Acad Sci U S A 113 1162-1167 (2016)
  4. Structural characterization of carbohydrate binding by LMAN1 protein provides new insight into the endoplasmic reticulum export of factors V (FV) and VIII (FVIII). Zheng C, Page RC, Das V, Nix JC, Wigren E, Misra S, Zhang B. J Biol Chem 288 20499-20509 (2013)
  5. Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency. Nishio M, Kamiya Y, Mizushima T, Wakatsuki S, Sasakawa H, Yamamoto K, Uchiyama S, Noda M, McKay AR, Fukui K, Hauri HP, Kato K. Proc Natl Acad Sci U S A 107 4034-4039 (2010)
  6. VIP36 protein is a target of ectodomain shedding and regulates phagocytosis in macrophage Raw 264.7 cells. Shirakabe K, Hattori S, Seiki M, Koyasu S, Okada Y. J Biol Chem 286 43154-43163 (2011)
  7. Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Reiterer V, Nyfeler B, Hauri HP. Traffic 11 1044-1055 (2010)
  8. XBP1s Links the Unfolded Protein Response to the Molecular Architecture of Mature N-Glycans. Dewal MB, DiChiara AS, Antonopoulos A, Taylor RJ, Harmon CJ, Haslam SM, Dell A, Shoulders MD. Chem Biol 22 1301-1312 (2015)
  9. Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36. Satoh T, Suzuki K, Yamaguchi T, Kato K. PLoS One 9 e87963 (2014)
  10. Intermolecular interactions of thrombospondins drive their accumulation in extracellular matrix. Kim DJ, Christofidou ED, Keene DR, Hassan Milde M, Adams JC. Mol Biol Cell 26 2640-2654 (2015)
  11. Intracellular lectins involved in folding and transport in the endoplasmic reticulum. Yamamoto K. Biol Pharm Bull 32 767-773 (2009)
  12. Parallel quantification of lectin-glycan interaction using ultrafiltration. Takeda Y, Seko A, Sakono M, Hachisu M, Koizumi A, Fujikawa K, Ito Y. Carbohydr Res 375 112-117 (2013)
  13. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii. Das SN, Wagenknecht M, Nareddy PK, Bhuvanachandra B, Niddana R, Balamurugan R, Swamy MJ, Moerschbacher BM, Podile AR. J Biol Chem 291 18977-18990 (2016)
  14. Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport. Satoh T, Nishio M, Suzuki K, Yagi-Utsumi M, Kamiya Y, Mizushima T, Kato K. Acta Crystallogr F Struct Biol Commun 76 216-221 (2020)
  15. Identification and characterization of a novel legume-like lectin cDNA sequence from the red marine algae Gracilaria fisheri. Suttisrisung S, Senapin S, Withyachumnarnkul B, Wongprasert K. J Biosci 36 833-843 (2011)
  16. Molecular characterization of transport lectin vesicular integral membrane protein 36 kDa (VIP36) in the life cycle of Schistosoma mansoni. Ornelas AMM, de Paula RG, Morais ER, Magalhães LG, da Silva AMB, Gomes MS, de Castro-Borges W, Rodrigues V. Parasitol Res 116 2765-2773 (2017)
  17. YesU from Bacillus subtilis preferentially binds fucosylated glycans. Tiralongo J, Cooper O, Litfin T, Yang Y, King R, Zhan J, Zhao H, Bovin N, Day CJ, Zhou Y. Sci Rep 8 13139 (2018)
  18. Heterologous expression, purification and characterization of L-type lectin homologue from Leishmania donovani. Singh V, Nair DN, Kaushal RS, Kumar M, Pappachan A, Singh DD. Biotechnol Rep (Amst) 8 81-87 (2015)
  19. The immunity priming effect of the Arabidopsis phyllosphere resident yeast Protomyces arabidopsidicola strain C29. Wang K, Auzane A, Overmyer K. Front Microbiol 13 956018 (2022)