2d26 Citations

Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of alpha1-proteinase inhibitor with porcine pancreatic elastase.

J Biol Chem 281 3452-7 (2006)
Cited: 101 times
EuropePMC logo PMID: 16321984

Abstract

We report here the x-ray structure of a covalent serpin-proteinase complex, alpha1-proteinase inhibitor (alpha1PI) with porcine pancreatic elastase (PPE), which differs from the only other x-ray structure of such a complex, that of alpha1PI with trypsin, in showing nearly complete definition of the proteinase. alpha1PI complexes with trypsin, PPE, and human neutrophil elastase (HNE) showed similar rates of deacylation and enhanced susceptibility to proteolysis by exogenous proteinases in solution. The differences between the two x-ray structures therefore cannot arise from intrinsic differences in the inhibition mechanism. However, self-proteolysis of purified complex resulted in rapid cleavage of the trypsin complex, slower cleavage of the PPE complex, and only minimal cleavage of the HNE complex. This suggests that the earlier alpha1 PI-trypsin complex may have been proteolyzed and that the present structure is more likely to be representative of serpin-proteinase complexes. The present structure shows that active site distortion alone is sufficient for inhibition and suggests that enhanced proteolysis is not necessarily exploited in vivo.

Reviews - 2d26 mentioned but not cited (2)

  1. A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. O'Brien ME, Murray G, Gogoi D, Yusuf A, McCarthy C, Wormald MR, Casey M, Gabillard-Lefort C, McElvaney NG, Reeves EP. Int J Mol Sci 23 2441 (2022)
  2. COVID-19 Pathology Sheds Further Light on Balance between Neutrophil Proteases and Their Inhibitors. Silva V, Radic M. Biomolecules 13 82 (2022)

Articles - 2d26 mentioned but not cited (20)

  1. A PCR primer bank for quantitative gene expression analysis. Wang X, Seed B. Nucleic Acids Res 31 e154 (2003)
  2. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM. J Proteome Res 7 5157-5166 (2008)
  3. Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2-Priming Protease TMPRSS2. Azouz NP, Klingler AM, Callahan V, Akhrymuk IV, Elez K, Raich L, Henry BM, Benoit JL, Benoit SW, Noé F, Kehn-Hall K, Rothenberg ME. Pathog Immun 6 55-74 (2021)
  4. Analysis of hepatic glycogen-associated proteins. Stapleton D, Nelson C, Parsawar K, McClain D, Gilbert-Wilson R, Barker E, Rudd B, Brown K, Hendrix W, O'Donnell P, Parker G. Proteomics 10 2320-2329 (2010)
  5. Serpin functions in host-pathogen interactions. Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. PeerJ 6 e4557 (2018)
  6. Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis. Khan SA, Wollaston-Hayden EE, Markowski TW, Higgins L, Mashek DG. J Lipid Res 56 2260-2272 (2015)
  7. A targeted proteomics approach for profiling murine cytochrome P450 expression. Hersman EM, Bumpus NN. J Pharmacol Exp Ther 349 221-228 (2014)
  8. Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library. Jensen JK, Malmendal A, Schiøtt B, Skeldal S, Pedersen KE, Celik L, Nielsen NC, Andreasen PA, Wind T. Biochem J 399 387-396 (2006)
  9. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin. Maddur AA, Swanson R, Izaguirre G, Gettins PG, Olson ST. J Biol Chem 288 32020-32035 (2013)
  10. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction. Bryant DH, Moll M, Chen BY, Fofanov VY, Kavraki LE. BMC Bioinformatics 11 242 (2010)
  11. PAX2 promotes epithelial ovarian cancer progression involving fatty acid metabolic reprogramming. Feng Y, Tang Y, Mao Y, Liu Y, Yao D, Yang L, Garson K, Vanderhyden BC, Wang Q. Int J Oncol 56 697-708 (2020)
  12. Mitochondrial depletion of glutaredoxin 2 induces metabolic dysfunction-associated fatty liver disease in mice. Scalcon V, Folda A, Lupo MG, Tonolo F, Pei N, Battisti I, Ferri N, Arrigoni G, Bindoli A, Holmgren A, Coppo L, Rigobello MP. Redox Biol 51 102277 (2022)
  13. Mass Spectrometry Reveals a Multifaceted Role of Glycosaminoglycan Chains in Factor Xa Inactivation by Antithrombin. Minsky BB, Abzalimov RR, Niu C, Zhao Y, Kirsch Z, Dubin PL, Savinov SN, Kaltashov IA. Biochemistry 57 4880-4890 (2018)
  14. Proteomic and bioinformatics analyses of mouse liver microsomes. Peng F, Zhan X, Li MY, Fang F, Li G, Li C, Zhang PF, Chen Z. Int J Proteomics 2012 832569 (2012)
  15. Capturing the conversion of the pathogenic alpha-1-antitrypsin fold by ATF6 enhanced proteostasis. Sun S, Wang C, Zhao P, Kline GM, Grandjean JMD, Jiang X, Labaudiniere R, Wiseman RL, Kelly JW, Balch WE. Cell Chem Biol 30 22-42.e5 (2023)
  16. Characterisation of a type II functionally-deficient variant of alpha-1-antitrypsin discovered in the general population. Laffranchi M, Elliston ELK, Gangemi F, Berardelli R, Lomas DA, Irving JA, Fra A. PLoS One 14 e0206955 (2019)
  17. Proteomic Identification and Quantification of Snake Venom Biomarkers in Venom and Plasma Extracellular Vesicles. Willard NK, Salazar E, Oyervides FA, Wiebe CS, Ocheltree JS, Cortez M, Perez RP, Markowitz H, Iliuk A, Sanchez EE, Suntravat M, Galan JA. Toxins (Basel) 13 654 (2021)
  18. The design of a new truncated and engineered alpha1-antitrypsin based on theoretical studies: an antiprotease therapeutics for pulmonary diseases. Pirooznia N, Hasannia S, Arab SS, Lotfi AS, Ghanei M, Shali A. Theor Biol Med Model 10 36 (2013)
  19. Role of the P2 residue of human alpha 1-antitrypsin in determining target protease specificity. Chung HS, Kim JS, Lee SM, Park SJ. PLoS One 12 e0185074 (2017)
  20. research-article Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2-Priming Protease TMPRSS2. Azouz NP, Klingler AM, Callahan V, Akhrymuk IV, Elez K, Raich L, Henry BM, Benoit JL, Benoit SW, Noé F, Kehn-Hall K, Rothenberg ME. bioRxiv 2020.05.04.077826 (2020)


Reviews citing this publication (21)

  1. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Pharmacol Rev 62 726-759 (2010)
  2. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Gooptu B, Lomas DA. Annu Rev Biochem 78 147-176 (2009)
  3. Serpin structure, function and dysfunction. Huntington JA. J Thromb Haemost 9 Suppl 1 26-34 (2011)
  4. Shape-shifting serpins--advantages of a mobile mechanism. Huntington JA. Trends Biochem Sci 31 427-435 (2006)
  5. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PG. Biochimie 92 1587-1596 (2010)
  6. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. Heiker JT. J Pept Sci 20 299-306 (2014)
  7. Exosite determinants of serpin specificity. Gettins PG, Olson ST. J Biol Chem 284 20441-20445 (2009)
  8. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  9. Structure and function of C1-inhibitor. Wagenaar-Bos IG, Hack CE. Immunol Allergy Clin North Am 26 615-632 (2006)
  10. Unravelling the twists and turns of the serpinopathies. Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordóñez A, Kruppa AJ, Duvoix A, Rashid ST, Crowther DC, Marciniak SJ, Lomas DA. FEBS J 278 3859-3867 (2011)
  11. Characterisation of serpin polymers in vitro and in vivo. Belorgey D, Irving JA, Ekeowa UI, Freeke J, Roussel BD, Miranda E, Pérez J, Robinson CV, Marciniak SJ, Crowther DC, Michel CH, Lomas DA. Methods 53 255-266 (2011)
  12. Protein misfolding and the serpinopathies. Belorgey D, Hägglöf P, Karlsson-Li S, Lomas DA. Prion 1 15-20 (2007)
  13. Serpins in T cell immunity. Bots M, Medema JP. J Leukoc Biol 84 1238-1247 (2008)
  14. Antithrombin deficiency and its laboratory diagnosis. Muszbek L, Bereczky Z, Kovács B, Komáromi I. Clin Chem Lab Med 48 Suppl 1 S67-78 (2010)
  15. Successes and challenges in simulating the folding of large proteins. Gershenson A, Gosavi S, Faccioli P, Wintrode PL. J Biol Chem 295 15-33 (2020)
  16. Serpin protease inhibitors in plant biology. Fluhr R, Lampl N, Roberts TH. Physiol Plant 145 95-102 (2012)
  17. Relevance of the mouse model as a therapeutic approach for neutrophil proteinase 3-associated human diseases. Korkmaz B, Jenne DE, Gauthier F. Int Immunopharmacol 17 1198-1205 (2013)
  18. The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Kelly-Robinson GA, Reihill JA, Lundy FT, McGarvey LP, Lockhart JC, Litherland GJ, Thornbury KD, Martin SL. Int J Mol Sci 22 6351 (2021)
  19. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Pharmacol Rev 68 603-630 (2016)
  20. Engineering the serpin α1 -antitrypsin: A diversity of goals and techniques. Scott BM, Sheffield WP. Protein Sci 29 856-871 (2020)
  21. Chemical ligation--an unusual paradigm in protease inhibition. Stennicke HR, Salvesen GS. Mol Cell 21 727-728 (2006)

Articles citing this publication (58)

  1. Energy landscapes of functional proteins are inherently risky. Gershenson A, Gierasch LM, Pastore A, Radford SE. Nat Chem Biol 10 884-891 (2014)
  2. Kinetic characterization of the protein Z-dependent protease inhibitor reaction with blood coagulation factor Xa. Huang X, Swanson R, Broze GJ, Olson ST. J Biol Chem 283 29770-29783 (2008)
  3. Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions. Loke I, Østergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M. Mol Cell Proteomics 16 1507-1527 (2017)
  4. Complementary structural mass spectrometry techniques reveal local dynamics in functionally important regions of a metastable serpin. Zheng X, Wintrode PL, Chance MR. Structure 16 38-51 (2008)
  5. Basis for the specificity and activation of the serpin protein Z-dependent proteinase inhibitor (ZPI) as an inhibitor of membrane-associated factor Xa. Huang X, Dementiev A, Olson ST, Gettins PG. J Biol Chem 285 20399-20409 (2010)
  6. Structural features of the interfaces in enzyme-inhibitor complexes. Nekrasov AN, Zinchenko AA. J Biomol Struct Dyn 28 85-96 (2010)
  7. The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation. Richard B, Swanson R, Olson ST. J Biol Chem 284 27054-27064 (2009)
  8. Mapping of conformational epitopes on human proteinase 3, the autoantigen of Wegener's granulomatosis. Kuhl A, Korkmaz B, Utecht B, Kniepert A, Schönermarck U, Specks U, Jenne DE. J Immunol 185 387-399 (2010)
  9. Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1. Li SH, Reinke AA, Sanders KL, Emal CD, Whisstock JC, Stuckey JA, Lawrence DA. Proc Natl Acad Sci U S A 110 E4941-9 (2013)
  10. How the serpin α1-proteinase inhibitor folds. Dolmer K, Gettins PG. J Biol Chem 287 12425-12432 (2012)
  11. Protein conformational change delayed by steric hindrance from an N-linked glycan. Bager R, Johansen JS, Jensen JK, Stensballe A, Jendroszek A, Buxbom L, Sørensen HP, Andreasen PA. J Mol Biol 425 2867-2877 (2013)
  12. Cellular folding pathway of a metastable serpin. Chandrasekhar K, Ke H, Wang N, Goodwin T, Gierasch LM, Gershenson A, Hebert DN. Proc Natl Acad Sci U S A 113 6484-6489 (2016)
  13. Thrombin inhibition by serpins disrupts exosite II. Li W, Johnson DJ, Adams TE, Pozzi N, De Filippis V, Huntington JA. J Biol Chem 285 38621-38629 (2010)
  14. Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis. Skeldal S, Larsen JV, Pedersen KE, Petersen HH, Egelund R, Christensen A, Jensen JK, Gliemann J, Andreasen PA. FEBS J 273 5143-5159 (2006)
  15. Cooperative unfolding of a metastable serpin to a molten globule suggests a link between functional and folding energy landscapes. Tsutsui Y, Wintrode PL. J Mol Biol 371 245-255 (2007)
  16. High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts. Nadai M, Bally J, Vitel M, Job C, Tissot G, Botterman J, Dubald M. Transgenic Res 18 173-183 (2009)
  17. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition. Thompson LC, Goswami S, Ginsberg DS, Day DE, Verhamme IM, Peterson CB. Protein Sci 20 353-365 (2011)
  18. Identification of SERPINB1 as a physiological inhibitor of human granzyme H. Wang L, Li Q, Wu L, Liu S, Zhang Y, Yang X, Zhu P, Zhang H, Zhang K, Lou J, Liu P, Tong L, Sun F, Fan Z. J Immunol 190 1319-1330 (2013)
  19. Structural differences between active forms of plasminogen activator inhibitor type 1 revealed by conformationally sensitive ligands. Li SH, Gorlatova NV, Lawrence DA, Schwartz BS. J Biol Chem 283 18147-18157 (2008)
  20. The Spn4 gene from Drosophila melanogaster is a multipurpose defence tool directed against proteases from three different peptidase families. Brüning M, Lummer M, Bentele C, Smolenaars MM, Rodenburg KW, Ragg H. Biochem J 401 325-331 (2007)
  21. A monoclonal antibody (MCPR3-7) interfering with the activity of proteinase 3 by an allosteric mechanism. Hinkofer LC, Seidel SA, Korkmaz B, Silva F, Hummel AM, Braun D, Jenne DE, Specks U. J Biol Chem 288 26635-26648 (2013)
  22. Analysis of mutually exclusive alternatively spliced serpin-1 isoforms and identification of serpin-1 proteinase complexes in Manduca sexta hemolymph. Ragan EJ, An C, Yang CT, Kanost MR. J Biol Chem 285 29642-29650 (2010)
  23. Protease inhibitors in bacteria: an emerging concept for the regulation of bacterial protein complexes? Schwarz WH, Zverlov VV. Mol Microbiol 60 1323-1326 (2006)
  24. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1. Jensen JK, Dolmer K, Gettins PG. J Biol Chem 284 17989-17997 (2009)
  25. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases. Guarino C, Hamon Y, Croix C, Lamort AS, Lamort AS, Dallet-Choisy S, Marchand-Adam S, Lesner A, Baranek T, Viaud-Massuard MC, Lauritzen C, Pedersen J, Heuzé-Vourc'h N, Si-Tahar M, Fıratlı E, Jenne DE, Gauthier F, Horwitz MS, Borregaard N, Korkmaz B. Biochem Pharmacol 131 52-67 (2017)
  26. Engineering functional antithrombin exosites in alpha1-proteinase inhibitor that specifically promote the inhibition of factor Xa and factor IXa. Izaguirre G, Rezaie AR, Olson ST. J Biol Chem 284 1550-1558 (2009)
  27. Maspin binds to urokinase-type and tissue-type plasminogen activator through exosite-exosite interactions. Al-Ayyoubi M, Schwartz BS, Gettins PG. J Biol Chem 282 19502-19509 (2007)
  28. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin. Scott BM, Matochko WL, Gierczak RF, Bhakta V, Derda R, Sheffield WP. PLoS One 9 e84491 (2014)
  29. Rezymogenation of active urokinase induced by an inhibitory antibody. Jiang L, Botkjaer KA, Andersen LM, Yuan C, Andreasen PA, Huang M. Biochem J 449 161-166 (2013)
  30. SerpinB1 in cystic fibrosis airway fluids: quantity, molecular form and mechanism of elastase inhibition. Cooley J, Sontag MK, Accurso FJ, Remold-O'Donnell E. Eur Respir J 37 1083-1090 (2011)
  31. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues. Gettins PG, Dolmer K. J Biol Chem 291 800-812 (2016)
  32. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin. Richard B, Swanson R, Schedin-Weiss S, Ramirez B, Izaguirre G, Gettins PG, Olson ST. J Biol Chem 283 14417-14429 (2008)
  33. Serpins in rice: protein sequence analysis, phylogeny and gene expression during development. Francis SE, Ersoy RA, Ahn JW, Atwell BJ, Roberts TH. BMC Genomics 13 449 (2012)
  34. Short-lived protease serpin complexes: partial disruption of the rat trypsin active site. Liu L, Mushero N, Hedstrom L, Gershenson A. Protein Sci 16 2403-2411 (2007)
  35. Understanding the specificity of serpin-protease complexes through interface analysis. Rashid Q, Kapil C, Singh P, Kumari V, Jairajpuri MA. J Biomol Struct Dyn 33 1352-1362 (2015)
  36. Molecular bases of neuroserpin function and pathology. Caccia S, Ricagno S, Bolognesi M. Biomol Concepts 1 117-130 (2010)
  37. Characterization of a novel serine protease inhibitor gene from a marine metagenome. Jiang CJ, Hao ZY, Zeng R, Shen PH, Li JF, Wu B. Mar Drugs 9 1487-1501 (2011)
  38. Engineering D-helix of antithrombin in alpha-1-proteinase inhibitor confers antiinflammatory properties on the chimeric serpin. Yang L, Dinarvand P, Qureshi SH, Rezaie AR. Thromb Haemost 112 164-175 (2014)
  39. The role of SERPIN citrullination in thrombosis. Tilvawala R, Nemmara VV, Reyes AC, Sorvillo N, Salinger AJ, Cherpokova D, Fukui S, Gutch S, Wagner D, Thompson PR. Cell Chem Biol 28 1728-1739.e5 (2021)
  40. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation. Kousted TM, Skjoedt K, Petersen SV, Koch C, Vitved L, Sochalska M, Lacroix C, Andersen LM, Wind T, Andreasen PA, Jensen JK. Thromb Haemost 111 29-40 (2014)
  41. Collapse of a long axis: single-molecule Förster resonance energy transfer and serpin equilibrium unfolding. Liu L, Werner M, Gershenson A. Biochemistry 53 2903-2914 (2014)
  42. Expression and Purification of Active Recombinant Human Alpha-1 Antitrypsin (AAT) from Escherichia coli. Krishnan B, Hedstrom L, Hebert DN, Gierasch LM, Gershenson A. Methods Mol Biol 1639 195-209 (2017)
  43. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity. Bhakta V, Gierczak RF, Sheffield WP. J Biotechnol 168 373-381 (2013)
  44. Neuroserpin Differentiates Between Forms of Tissue Type Plasminogen Activator via pH Dependent Deacylation. Carlson KS, Nguyen L, Schwartz K, Lawrence DA, Schwartz BS. Front Cell Neurosci 10 154 (2016)
  45. Proper secretion of the serpin antithrombin relies strictly on thiol-dependent quality control. Adams BM, Ke H, Gierasch LM, Gershenson A, Hebert DN. J Biol Chem 294 18992-19011 (2019)
  46. SepA Enhances Shigella Invasion of Epithelial Cells by Degrading Alpha-1 Antitrypsin and Producing a Neutrophil Chemoattractant. Meza-Segura M, Birtley JR, Maldonado-Contreras A, Mueller C, Simin KJ, Stern LJ, McCormick BA. mBio 12 e0283321 (2021)
  47. Local environment perturbations in alpha1-antitrypsin monitored by a ratiometric fluorescent label. Boudier C, Klymchenko AS, Mely Y, Follenius-Wund A. Photochem Photobiol Sci 8 814-821 (2009)
  48. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand. Boyle AJ, Roddick LA, Bhakta V, Lambourne MD, Junop MS, Liaw PC, Weitz JI, Sheffield WP. BMC Biochem 14 6 (2013)
  49. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition. Roddick LA, Bhakta V, Sheffield WP. BMC Biochem 14 31 (2013)
  50. The crystal structure of a trypsin-like mutant chymotrypsin: the role of position 226 in the activity and specificity of S189D chymotrypsin. Jelinek B, Katona G, Fodor K, Venekei I, Gráf L. Protein J 27 79-87 (2008)
  51. A novel antithrombin domain dictates the journey's end of a proteinase. Verhamme IM. J Biol Chem 292 16521-16522 (2017)
  52. Determining serpin conformational distributions with single molecule fluorescence. Mushero N, Gershenson A. Methods Enzymol 501 351-377 (2011)
  53. Stepwise Reversion of Multiply Mutated Recombinant Antitrypsin Reveals a Selective Inhibitor of Coagulation Factor XIa as Active as the M358R Variant. Hamada M, Bhakta V, Andres SN, Sheffield WP. Front Cardiovasc Med 8 647405 (2021)
  54. Comparison of mammalian and bacterial expression library screening to detect recombinant alpha-1 proteinase inhibitor variants with enhanced thrombin inhibitory capacity. Gierczak RF, Bhakta V, Xie M, Sheffield WP. J Biotechnol 208 54-62 (2015)
  55. Defensin Interactions in Relation to Monoclonal and Disease-Related Proteinase 3 Antibodies Binding at the Catalytic Site. Zoega M, Trier NH, Nejrup RG, Chailyan A, Friis T, Højrup P, Houen G. Antibodies (Basel) 12 23 (2023)
  56. ER chaperones use a protein folding and quality control glyco-code. Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, Contessa JN, Gershenson A, Gierasch LM, Hebert DN. Mol Cell 83 4524-4537.e5 (2023)
  57. Monitoring the Secretion and Activity of Alpha-1 Antitrypsin in Various Mammalian Cell Types. Guay KP, Ke H, Gierasch LM, Gershenson A, Hebert DN. Methods Mol Biol 2750 143-163 (2024)
  58. Probing of the reactive center loop region of alpha-1-antitrypsin by mutagenesis predicts new type-2 dysfunctional variants. Denardo A, Ben Khlifa E, Bignotti M, Giuliani R, D'Acunto E, Miranda E, Irving JA, Fra A. Cell Mol Life Sci 81 6 (2023)