2c8k Citations

Modulatory and catalytic modes of ATP binding by the calcium pump.

EMBO J 25 2305-14 (2006)
Related entries: 2c88, 2c8l, 2c9m

Cited: 115 times
EuropePMC logo PMID: 16710301

Abstract

We present crystal structures of the calcium-free E2 state of the sarcoplasmic reticulum Ca2+ -ATPase, stabilized by the inhibitor thapsigargin and the ATP analog AMPPCP. The structures allow us to describe the ATP binding site in a modulatory mode uncoupled from the Asp351 phosphorylation site. The Glu439 side chain interacts with AMPPCP via an Mg2+ ion in accordance with previous Fe2+ -cleavage studies implicating this residue in the ATPase cycle and in magnesium binding. Functional data on Ca2+ mediated activation indicate that the crystallized state represents an initial stage of ATP modulated deprotonation of E2, preceding the binding of Ca2+ ions in the membrane from the cytoplasmic side. We propose a mechanism of Ca2+ activation of phosphorylation leading directly from the compact E2-ATP form to the Ca2E1-ATP state. In addition, a role of Glu439 in ATP modulation of other steps of the functional cycle is suggested.

Reviews - 2c8k mentioned but not cited (1)

Articles - 2c8k mentioned but not cited (10)

  1. Modulatory and catalytic modes of ATP binding by the calcium pump. Jensen AM, Sørensen TL, Olesen C, Møller JV, Nissen P. EMBO J 25 2305-2314 (2006)
  2. Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs. Winther AM, Liu H, Sonntag Y, Olesen C, le Maire M, Soehoel H, Olsen CE, Christensen SB, Nissen P, Møller JV. J Biol Chem 285 28883-28892 (2010)
  3. Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+. Toyoshima C, Yonekura S, Tsueda J, Iwasawa S. Proc Natl Acad Sci U S A 108 1833-1838 (2011)
  4. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Espinoza-Fonseca LM, Autry JM, Ramírez-Salinas GL, Thomas DD. Biophys J 108 1697-1708 (2015)
  5. Improved Model of Proton Pump Crystal Structure Obtained by Interactive Molecular Dynamics Flexible Fitting Expands the Mechanistic Model for Proton Translocation in P-Type ATPases. Focht D, Croll TI, Pedersen BP, Nissen P. Front Physiol 8 202 (2017)
  6. Osmotic stress and viscous retardation of the Na,K-ATPase ion pump. Esmann M, Fedosova NU, Marsh D. Biophys J 94 2767-2776 (2008)
  7. A conserved asparagine in a P-type proton pump is required for efficient gating of protons. Ekberg K, Wielandt AG, Buch-Pedersen MJ, Palmgren MG. J Biol Chem 288 9610-9618 (2013)
  8. Preexisting domain motions underlie protonation-dependent structural transitions of the P-type Ca2+-ATPase. Fernández-de Gortari E, Espinoza-Fonseca LM. Phys Chem Chem Phys 19 10153-10162 (2017)
  9. Identification and Characterization of a Novel Protein ASP-3 Purified from Arca subcrenata and Its Antitumor Mechanism. Guo Z, Shi H, Li C, Luo Y, Bi S, Yu R, Wang H, Liu W, Zhu J, Huang W, Song L. Mar Drugs 17 E528 (2019)
  10. Critical roles of interdomain interactions for modulatory ATP binding to sarcoplasmic reticulum Ca2+-ATPase. Clausen JD, Holdensen AN, Andersen JP. J Biol Chem 289 29123-29134 (2014)


Reviews citing this publication (18)

  1. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P. Nat Rev Mol Cell Biol 12 60-70 (2011)
  2. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Møller JV, Olesen C, Winther AM, Nissen P. Q Rev Biophys 43 501-566 (2010)
  3. How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Toyoshima C. Biochim Biophys Acta 1793 941-946 (2009)
  4. Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Toyoshima C. Arch Biochem Biophys 476 3-11 (2008)
  5. Determining membrane protein structures: still a challenge! Lacapère JJ, Pebay-Peyroula E, Neumann JM, Etchebest C. Trends Biochem Sci 32 259-270 (2007)
  6. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. Bublitz M, Musgaard M, Poulsen H, Thøgersen L, Olesen C, Schiøtt B, Morth JP, Møller JV, Nissen P. J Biol Chem 288 10759-10765 (2013)
  7. In and out of the cation pumps: P-type ATPase structure revisited. Bublitz M, Poulsen H, Morth JP, Nissen P. Curr Opin Struct Biol 20 431-439 (2010)
  8. Structure and mechanism of ATP-dependent phospholipid transporters. López-Marqués RL, Poulsen LR, Bailly A, Geisler M, Pomorski TG, Palmgren MG. Biochim Biophys Acta 1850 461-475 (2015)
  9. Targeting oncogenic Notch signaling with SERCA inhibitors. Pagliaro L, Marchesini M, Roti G. J Hematol Oncol 14 8 (2021)
  10. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Aguayo-Ortiz R, Espinoza-Fonseca LM. Int J Mol Sci 21 E4146 (2020)
  11. Primary Active Ca2+ Transport Systems in Health and Disease. Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Cold Spring Harb Perspect Biol 12 a035113 (2020)
  12. Mechanistic studies of sodium pump. Faller LD. Arch Biochem Biophys 476 12-21 (2008)
  13. Review. Peering into an ATPase ion pump with single-channel recordings. Gadsby DC, Takeuchi A, Artigas P, Reyes N. Philos Trans R Soc Lond B Biol Sci 364 229-238 (2009)
  14. Ca2+ versus Mg2+ coordination at the nucleotide-binding site of the sarcoplasmic reticulum Ca2+-ATPase. Picard M, Jensen AM, Sørensen TL, Champeil P, Møller JV, Nissen P. J Mol Biol 368 1-7 (2007)
  15. Roles of transmembrane segment M1 of Na+,K+-ATPase and Ca2-ATPase, the gatekeeper and the pivot. Einholm AP, Andersen JP, Vilsen B. J Bioenerg Biomembr 39 357-366 (2007)
  16. Pumping ions. Clarke RJ, Fan X. Clin Exp Pharmacol Physiol 38 726-733 (2011)
  17. Single-Molecule FRET of Membrane Transport Proteins. Bartels K, Lasitza-Male T, Hofmann H, Löw C. Chembiochem 22 2657-2671 (2021)
  18. Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. Clarke RJ. Eur Biophys J 39 3-17 (2009)

Articles citing this publication (86)

  1. Spiroindolones, a potent compound class for the treatment of malaria. Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 329 1175-1180 (2010)
  2. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Nature 459 446-450 (2009)
  3. The structural basis of calcium transport by the calcium pump. Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P. Nature 450 1036-1042 (2007)
  4. Crystal structure of the plasma membrane proton pump. Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P. Nature 450 1111-1114 (2007)
  5. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, Inesi G. Nature 495 260-264 (2013)
  6. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Winther AM, Bublitz M, Karlsen JL, Møller JV, Hansen JB, Nissen P, Buch-Pedersen MJ. Nature 495 265-269 (2013)
  7. How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Toyoshima C, Norimatsu Y, Iwasawa S, Tsuda T, Ogawa H. Proc Natl Acad Sci U S A 104 19831-19836 (2007)
  8. The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. Moncoq K, Trieber CA, Young HS. J Biol Chem 282 9748-9757 (2007)
  9. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Takahashi M, Kondou Y, Toyoshima C. Proc Natl Acad Sci U S A 104 5800-5805 (2007)
  10. The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. Akin BL, Hurley TD, Chen Z, Jones LR. J Biol Chem 288 30181-30191 (2013)
  11. Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Sonntag Y, Musgaard M, Olesen C, Schiøtt B, Møller JV, Nissen P, Thøgersen L. Nat Commun 2 304 (2011)
  12. The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations. Morth JP, Poulsen H, Toustrup-Jensen MS, Schack VR, Egebjerg J, Andersen JP, Vilsen B, Nissen P. Philos Trans R Soc Lond B Biol Sci 364 217-227 (2009)
  13. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. Laursen M, Bublitz M, Moncoq K, Olesen C, Møller JV, Young HS, Nissen P, Morth JP. J Biol Chem 284 13513-13518 (2009)
  14. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. González-Guerrero M, Hong D, Argüello JM. J Biol Chem 284 20804-20811 (2009)
  15. Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle. Clark JH, Kinnear NP, Kalujnaia S, Cramb G, Fleischer S, Jeyakumar LH, Wuytack F, Evans AM. J Biol Chem 285 13542-13549 (2010)
  16. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II. Walldén K, Nordlund P. J Mol Biol 408 684-696 (2011)
  17. Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase {alpha} subunit. Meier S, Tavraz NN, Dürr KL, Friedrich T. J Gen Physiol 135 115-134 (2010)
  18. Phosphorylated phospholamban stabilizes a compact conformation of the cardiac calcium-ATPase. Pallikkuth S, Blackwell DJ, Hu Z, Hou Z, Zieman DT, Svensson B, Thomas DD, Robia SL. Biophys J 105 1812-1821 (2013)
  19. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Dyla M, Terry DS, Kjaergaard M, Sørensen TL, Lauwring Andersen J, Andersen JP, Andersen JP, Rohde Knudsen C, Altman RB, Nissen P, Blanchard SC. Nature 551 346-351 (2017)
  20. Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Winters DL, Autry JM, Svensson B, Thomas DD. Biochemistry 47 4246-4256 (2008)
  21. Intermediate phosphorylation reactions in the mechanism of ATP utilization by the copper ATPase (CopA) of Thermotoga maritima. Hatori Y, Hirata A, Toyoshima C, Lewis D, Pilankatta R, Inesi G. J Biol Chem 283 22541-22549 (2008)
  22. SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation. Clausen JD, Bublitz M, Arnou B, Montigny C, Jaxel C, Møller JV, Nissen P, Andersen JP, le Maire M. EMBO J 32 3231-3243 (2013)
  23. Concerted conformational effects of Ca2+ and ATP are required for activation of sequential reactions in the Ca2+ ATPase (SERCA) catalytic cycle. Inesi G, Lewis D, Ma H, Prasad A, Toyoshima C. Biochemistry 45 13769-13778 (2006)
  24. Crystal structure of the potassium-importing KdpFABC membrane complex. Huang CS, Pedersen BP, Stokes DL. Nature 546 681-685 (2017)
  25. Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation. Dong X, Thomas DD. Biochem Biophys Res Commun 449 196-201 (2014)
  26. Sarcolipin Promotes Uncoupling of the SERCA Ca2+ Pump by Inducing a Structural Rearrangement in the Energy-Transduction Domain. Autry JM, Thomas DD, Espinoza-Fonseca LM. Biochemistry 55 6083-6086 (2016)
  27. 2-Color calcium pump reveals closure of the cytoplasmic headpiece with calcium binding. Hou Z, Hu Z, Blackwell DJ, Miller TD, Thomas DD, Robia SL. PLoS One 7 e40369 (2012)
  28. Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Stabach PR, Devarajan P, Stankewich MC, Bannykh S, Morrow JS. Am J Physiol Cell Physiol 295 C1202-14 (2008)
  29. Superinhibitory phospholamban mutants compete with Ca2+ for binding to SERCA2a by stabilizing a unique nucleotide-dependent conformational state. Akin BL, Chen Z, Jones LR. J Biol Chem 285 28540-28552 (2010)
  30. Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Sugita Y, Ikeguchi M, Toyoshima C. Proc Natl Acad Sci U S A 107 21465-21469 (2010)
  31. Molecular and clinical characterization in Japanese and Korean patients with Hailey-Hailey disease: six new mutations in the ATP2C1 gene. Hamada T, Fukuda S, Sakaguchi S, Yasumoto S, Kim SC, Hashimoto T. J Dermatol Sci 51 31-36 (2008)
  32. Side-chain protonation and mobility in the sarcoplasmic reticulum Ca2+-ATPase: implications for proton countertransport and Ca2+ release. Hauser K, Barth A. Biophys J 93 3259-3270 (2007)
  33. A structural mechanism for calcium transporter headpiece closure. Smolin N, Robia SL. J Phys Chem B 119 1407-1415 (2015)
  34. A tomato ER-type Ca2+-ATPase, LCA1, has a low thapsigargin-sensitivity and can transport manganese. Johnson NA, Liu F, Weeks PD, Hentzen AE, Kruse HP, Parker JJ, Laursen M, Nissen P, Costa CJ, Gatto C. Arch Biochem Biophys 481 157-168 (2009)
  35. Motion of the Ca2+-pump captured. Yokokawa M, Takeyasu K. FEBS J 278 3025-3031 (2011)
  36. Nucleotide activation of the Ca-ATPase. Autry JM, Rubin JE, Svensson B, Li J, Thomas DD. J Biol Chem 287 39070-39082 (2012)
  37. Redistribution of SERCA calcium pump conformers during intracellular calcium signaling. Raguimova ON, Smolin N, Bovo E, Bhayani S, Autry JM, Zima AV, Robia SL. J Biol Chem 293 10843-10856 (2018)
  38. Structure/activity relationship of thapsigargin inhibition on the purified Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a). Chen J, De Raeymaecker J, Hovgaard JB, Smaardijk S, Vandecaetsbeek I, Wuytack F, Møller JV, Eggermont J, De Maeyer M, Christensen SB, Vangheluwe P. J Biol Chem 292 6938-6951 (2017)
  39. Concerted but noncooperative activation of nucleotide and actuator domains of the Ca-ATPase upon calcium binding. Chen B, Mahaney JE, Mayer MU, Bigelow DJ, Squier TC. Biochemistry 47 12448-12456 (2008)
  40. ATP-binding modes and functionally important interdomain bonds of sarcoplasmic reticulum Ca2+-ATPase revealed by mutation of glycine 438, glutamate 439, and arginine 678. Clausen JD, McIntosh DB, Anthonisen AN, Woolley DG, Vilsen B, Andersen JP. J Biol Chem 282 20686-20697 (2007)
  41. Mechanism of the E2 to E1 transition in Ca2+ pump revealed by crystal structures of gating residue mutants. Tsunekawa N, Ogawa H, Tsueda J, Akiba T, Toyoshima C. Proc Natl Acad Sci U S A 115 12722-12727 (2018)
  42. Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (sensitivity to Pichia farinosa killer toxin) P5-ATPase. Corradi GR, de Tezanos Pinto F, Mazzitelli LR, Adamo HP. J Biol Chem 287 30477-30484 (2012)
  43. Single point mutations in the small cytoplasmic loop of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, generate partially deregulated pumps. Fusca T, Bonza MC, Luoni L, Meneghelli S, Marrano CA, De Michelis MI. J Biol Chem 284 30881-30888 (2009)
  44. Glutamate 90 at the luminal ion gate of sarcoplasmic reticulum Ca2+-ATPase is critical for Ca(2+) binding on both sides of the membrane. Clausen JD, Andersen JP. J Biol Chem 285 20780-20792 (2010)
  45. Modulatory ATP binding affinity in intermediate states of E2P dephosphorylation of sarcoplasmic reticulum Ca2+-ATPase. Clausen JD, McIntosh DB, Woolley DG, Andersen JP. J Biol Chem 286 11792-11802 (2011)
  46. Protonation and hydrogen bonding of Ca2+ site residues in the E2P phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase studied by a combination of infrared spectroscopy and electrostatic calculations. Andersson J, Hauser K, Karjalainen EL, Barth A. Biophys J 94 600-611 (2008)
  47. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. Bublitz M, Kjellerup L, Cohrt KO, Gordon S, Mortensen AL, Clausen JD, Pallin TD, Hansen JB, Fuglsang AT, Dalby-Brown W, Winther AL. PLoS One 13 e0188620 (2018)
  48. Human delta opioid receptor biogenesis is regulated via interactions with SERCA2b and calnexin. Tuusa JT, Leskelä TT, Petäjä-Repo UE. FEBS J 277 2815-2829 (2010)
  49. Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state. Fibich A, Janko K, Apell HJ. Biophys J 93 3092-3104 (2007)
  50. Proton paths in the sarcoplasmic reticulum Ca(2+) -ATPase. Karjalainen EL, Hauser K, Barth A. Biochim Biophys Acta 1767 1310-1318 (2007)
  51. Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H(+)-ATPase. Guerra G, Petrov VV, Allen KE, Miranda M, Pardo JP, Slayman CW. Biochim Biophys Acta 1768 2383-2392 (2007)
  52. Regulation of the Ca(2+)-ATPase by cholesterol: a specific or non-specific effect? Autzen HE, Siuda I, Sonntag Y, Nissen P, Møller JV, Thøgersen L. Mol Membr Biol 32 75-87 (2015)
  53. Structural analysis of 2D crystals of gastric H+,K+-ATPase in different states of the transport cycle. Nishizawa T, Abe K, Tani K, Fujiyoshi Y. J Struct Biol 162 219-228 (2008)
  54. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport. Grønberg C, Sitsel O, Lindahl E, Gourdon P, Andersson M. Biophys J 111 2417-2429 (2016)
  55. What ATP binding does to the Ca2+ pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca2. Kabashima Y, Ogawa H, Nakajima R, Toyoshima C. Proc Natl Acad Sci U S A 117 18448-18458 (2020)
  56. Modulation of plasma membrane Ca2+-ATPase by neutral phospholipids: effect of the micelle-vesicle transition and the bilayer thickness. Pignataro MF, Dodes-Traian MM, González-Flecha FL, Sica M, Mangialavori IC, Rossi JP. J Biol Chem 290 6179-6190 (2015)
  57. Structural basis for allosteric control of the SERCA-Phospholamban membrane complex by Ca2+ and phosphorylation. Weber DK, Reddy UV, Wang S, Larsen EK, Gopinath T, Gustavsson MB, Cornea RL, Thomas DD, De Simone A, Veglia G. Elife 10 e66226 (2021)
  58. Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding. Kubala M, Grycova L, Lansky Z, Sklenovsky P, Janovska M, Otyepka M, Teisinger J. Biophys J 97 1756-1764 (2009)
  59. Chelerythrine inhibits the sarco/endoplasmic reticulum Ca(2+)-ATPase and results in cell Ca(2+) imbalance. Vieira SM, de Oliveira VH, Valente Rdo C, Moreira Oda C, Fontes CF, Mignaco JA. Arch Biochem Biophys 570 58-65 (2015)
  60. Conformational changes of recombinant Ca2+-ATPase studied by reaction-induced infrared difference spectroscopy. Kumar S, Li C, Montigny C, le Maire M, Barth A. FEBS J 280 5398-5407 (2013)
  61. Dynamics-Driven Allostery Underlies Ca2+-Mediated Release of SERCA Inhibition by Phospholamban. Raguimova ON, Aguayo-Ortiz R, Robia SL, Espinoza-Fonseca LM. Biophys J 119 1917-1926 (2020)
  62. Roles of interaction between actuator and nucleotide binding domains of sarco(endo)plasmic reticulum Ca(2+)-ATPase as revealed by single and swap mutational analyses of serine 186 and glutamate 439. Liu X, Daiho T, Yamasaki K, Wang G, Danko S, Suzuki H. J Biol Chem 284 25190-25198 (2009)
  63. Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy. Purhonen P, Thomsen K, Maunsbach AB, Hebert H. J Membr Biol 214 139-146 (2006)
  64. Ca(2+) ATPase Conformational Transitions in Lipid Bilayers Mapped by Site-directed Ethylation and Solid-State NMR. Vostrikov VV, Gustavsson M, Gopinath T, Mullen D, Dicke AA, Truong V, Veglia G. ACS Chem Biol 11 329-334 (2016)
  65. Cryo-EM analysis provides new mechanistic insight into ATP binding to Ca2+ -ATPase SERCA2b. Zhang Y, Watanabe S, Tsutsumi A, Kadokura H, Kikkawa M, Inaba K. EMBO J 40 e108482 (2021)
  66. Dual mechanisms of allosteric acceleration of the Na(+),K(+)-ATPase by ATP. Khalid M, Cornelius F, Clarke RJ. Biophys J 98 2290-2298 (2010)
  67. Engineering a Prototypic P-type ATPase Listeria monocytogenes Ca(2+)-ATPase 1 for Single-Molecule FRET Studies. Dyla M, Andersen JL, Kjaergaard M, Birkedal V, Terry DS, Altman RB, Blanchard SC, Nissen P, Knudsen CR. Bioconjug Chem 27 2176-2187 (2016)
  68. Modulatory ATP binding to the E2 state of maize plasma membrane H+-ATPase indicated by the kinetics of vanadate inhibition. Wang X, Qian X, Stumpf B, Fatima A, Feng K, Schubert S, Hanstein S. FEBS J 280 4793-4806 (2013)
  69. Optimisation of recombinant production of active human cardiac SERCA2a ATPase. Antaloae AV, Montigny C, le Maire M, Watson KA, Sørensen TL. PLoS One 8 e71842 (2013)
  70. The plasma membrane Ca2+ pump catalyzes the hydrolysis of ATP at low rate in the absence of Ca2+. Mazzitelli LR, Rinaldi DE, Corradi GR, Adamo HP. Arch Biochem Biophys 495 62-66 (2010)
  71. Atomistic Structure and Dynamics of the Ca2+-ATPase Bound to Phosphorylated Phospholamban. Aguayo-Ortiz R, Espinoza-Fonseca LM. Int J Mol Sci 21 E7261 (2020)
  72. Inhibited KdpFABC transitions into an E1 off-cycle state. Silberberg JM, Stock C, Hielkema L, Corey RA, Rheinberger J, Wunnicke D, Dubach VRA, Stansfeld PJ, Hänelt I, Paulino C. Elife 11 e80988 (2022)
  73. Membrane-protein crystals for neutron diffraction. Sørensen TLM, Hjorth-Jensen SJ, Oksanen E, Andersen JL, Olesen C, Møller JV, Nissen P. Acta Crystallogr D Struct Biol 74 1208-1218 (2018)
  74. Substrate-induced conformational changes in sarcoplasmic reticulum Ca2+-ATPase probed by surface modification using diethylpyrocarbonate with mass spectrometry. Narumi R, Yamamoto T, Inoue A, Arata T. FEBS Lett 586 3172-3178 (2012)
  75. Three-dimensional structure of the KdpFABC complex of Escherichia coli by electron tomography of two-dimensional crystals. Hu GB, Rice WJ, Dröse S, Altendorf K, Stokes DL. J Struct Biol 161 411-418 (2008)
  76. Angle change of the A-domain in a single SERCA1a molecule detected by defocused orientation imaging. Katoh TA, Daiho T, Yamasaki K, Danko S, Fujimura S, Suzuki H. Sci Rep 11 13672 (2021)
  77. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump. Tejral G, Sopko B, Necas A, Schoner W, Amler E. PeerJ 5 e3087 (2017)
  78. Kinetic and mesoscopic non-equilibrium description of the Ca(2+) pump: a comparison. Lervik A, Bedeaux D, Kjelstrup S. Eur Biophys J 41 437-448 (2012)
  79. Kinetics of luminal proton binding to the SR Ca-ATPase. Fibich A, Apell HJ. Biophys J 101 1896-1904 (2011)
  80. One way for the gastric proton pump. Nissen P. EMBO J 28 1535-1536 (2009)
  81. Role of nucleotides in stabilization of the phospholamban/cardiac Ca²⁺ pump inhibitory complex examined with use of metal fluorides. Chen Z. FEBS J 282 4402-4414 (2015)
  82. A computational model of cytosolic and mitochondrial [ca] in paced rat ventricular myocytes. Youm JB, Choi SW, Jang CH, Kim HK, Leem CH, Kim N, Han J. Korean J Physiol Pharmacol 15 217-239 (2011)
  83. Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Silberberg JM, Corey RA, Hielkema L, Stock C, Stansfeld PJ, Paulino C, Hänelt I. Nat Commun 12 5098 (2021)
  84. Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4. Ashton TD, Dans MG, Favuzza P, Ngo A, Lehane AM, Zhang X, Qiu D, Chandra Maity B, De N, Schindler KA, Yeo T, Park H, Uhlemann AC, Churchyard A, Baum J, Fidock DA, Jarman KE, Lowes KN, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. J Med Chem 66 3540-3565 (2023)
  85. Ca2+ Dependent Formation/Collapse of Cylindrical Ca2+-ATPase Crystals in Scallop Sarcoplasmic Reticulum (SR) Vesicles: A Possible Dynamic Role of SR in Regulation of Muscle Contraction. Nakamura J, Maruyama Y, Tajima G, Hayakawa S, Suwa M, Sato C. Int J Mol Sci 24 7080 (2023)
  86. Isolation of the Sarcoplasmic Reticulum Ca2+-ATPase from Rabbit Fast-Twitch Muscle. Rivera-Morán MA, Sampedro JG. Methods Protoc 6 102 (2023)