2c5j Citations

Structural analysis of the interaction between the SNARE Tlg1 and Vps51.

Traffic 7 182-90 (2006)
Related entries: 2c5i, 2c5k

Cited: 39 times
EuropePMC logo PMID: 16420526

Abstract

Membrane fusion in cells involves the interaction of SNARE proteins on apposing membranes. Formation of SNARE complexes is preceded by tethering events, and a number of protein complexes that are thought to mediate this have been identified. The VFT or GARP complex is required for endosome-Golgi traffic in yeast. It consists of four subunits, one of which, Vps51, has been shown to bind specifically to the SNARE Tlg1, which participates in the same fusion event. We have determined the structure of the N-terminal domain of Tlg1 bound to a peptide from the N terminus of Vps51. Binding depends mainly on residues 18-30 of Vps51. These form a short helix which lies in a conserved groove in the three-helix bundle formed by Tlg1. Surprisingly, although both Vps51 and Tlg1 are required for transport to the late Golgi from endosomes, removal of the Tlg1-binding sequences from Vps51 does not block such traffic in vivo. Thus, this particular interaction cannot be crucial to the process of vesicle docking or fusion.

Reviews - 2c5j mentioned but not cited (2)

  1. Protein acrobatics in pairs--dimerization via domain swapping. Gronenborn AM. Curr Opin Struct Biol 19 39-49 (2009)
  2. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. Biomolecules 13 1130 (2023)

Articles - 2c5j mentioned but not cited (2)

  1. The enigma of the near-symmetry of proteins: Domain swapping. Bonjack-Shterengartz M, Avnir D. PLoS One 12 e0180030 (2017)
  2. PepPro: A Nonredundant Structure Data Set for Benchmarking Peptide-Protein Computational Docking. Xu X, Zou X. J Comput Chem 41 362-369 (2020)


Reviews citing this publication (11)

  1. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Cai H, Reinisch K, Ferro-Novick S. Dev Cell 12 671-682 (2007)
  2. Multisubunit tethering complexes and their role in membrane fusion. Bröcker C, Engelbrecht-Vandré S, Ungermann C. Curr Biol 20 R943-52 (2010)
  3. Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Bonifacino JS, Hierro A. Trends Cell Biol 21 159-167 (2011)
  4. Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Smith RD, Lupashin VV. Carbohydr Res 343 2024-2031 (2008)
  5. Organization of SNAREs within the Golgi stack. Malsam J, Söllner TH. Cold Spring Harb Perspect Biol 3 a005249 (2011)
  6. Entry at the trans-face of the Golgi. Pfeffer SR. Cold Spring Harb Perspect Biol 3 a005272 (2011)
  7. Structures and mechanisms of vesicle coat components and multisubunit tethering complexes. Jackson LP, Kümmel D, Reinisch KM, Owen DJ. Curr Opin Cell Biol 24 475-483 (2012)
  8. Traffic from the endosome towards trans-Golgi network. Saimani U, Kim K. Eur J Cell Biol 96 198-205 (2017)
  9. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. Wang S, Ma C. FEBS Open Bio 12 1939-1957 (2022)
  10. Structure of Golgi transport proteins. Kümmel D, Reinisch KM. Cold Spring Harb Perspect Biol 3 a007609 (2011)
  11. Role of GARP Vesicle Tethering Complex in Golgi Physiology. Khakurel A, Lupashin VV. Int J Mol Sci 24 6069 (2023)

Articles citing this publication (24)

  1. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. Koumandou VL, Dacks JB, Coulson RM, Field MC. BMC Evol Biol 7 29 (2007)
  2. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Kloepper TH, Kienle CN, Fasshauer D. Mol Biol Cell 18 3463-3471 (2007)
  3. Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Pérez-Victoria FJ, Bonifacino JS. Mol Cell Biol 29 5251-5263 (2009)
  4. A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Miller SE, Collins BM, McCoy AJ, Robinson MS, Owen DJ. Nature 450 570-574 (2007)
  5. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V. J Cell Biol 179 1179-1192 (2007)
  6. Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division. Theis M, Slabicki M, Junqueira M, Paszkowski-Rogacz M, Sontheimer J, Kittler R, Heninger AK, Glatter T, Kruusmaa K, Poser I, Hyman AA, Pisabarro MT, Gstaiger M, Aebersold R, Shevchenko A, Buchholz F. EMBO J 28 1453-1465 (2009)
  7. Ang2/fat-free is a conserved subunit of the Golgi-associated retrograde protein complex. Pérez-Victoria FJ, Schindler C, Magadán JG, Mardones GA, Delevoye C, Romao M, Raposo G, Bonifacino JS. Mol Biol Cell 21 3386-3395 (2010)
  8. Survey of the year 2006 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 20 300-366 (2007)
  9. TSSC1 is novel component of the endosomal retrieval machinery. Gershlick DC, Schindler C, Chen Y, Bonifacino JS. Mol Biol Cell 27 2867-2878 (2016)
  10. Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Wang LC, Tsai MC, Chang KY, Fan YS, Yeh CH, Wu SJ. J Exp Bot 62 3609-3620 (2011)
  11. The Caenorhabditis elegans GARP complex contains the conserved Vps51 subunit and is required to maintain lysosomal morphology. Luo L, Hannemann M, Koenig S, Hegermann J, Ailion M, Cho MK, Sasidharan N, Zweckstetter M, Rensing SA, Eimer S. Mol Biol Cell 22 2564-2578 (2011)
  12. A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex. Arasaki K, Takagi D, Furuno A, Sohda M, Misumi Y, Wakana Y, Inoue H, Tagaya M. Mol Biol Cell 24 2907-2917 (2013)
  13. Vacuolar protein sorting mechanisms in apicomplexan parasites. Jimenez-Ruiz E, Morlon-Guyot J, Daher W, Meissner M. Mol Biochem Parasitol 209 18-25 (2016)
  14. Structural basis for the interaction of the Golgi-Associated Retrograde Protein Complex with the t-SNARE Syntaxin 6. Abascal-Palacios G, Schindler C, Rojas AL, Bonifacino JS, Hierro A. Structure 21 1698-1706 (2013)
  15. Crystal structure of the C-terminal three-helix bundle subdomain of C. elegans Hsp70. Worrall LJ, Walkinshaw MD. Biochem Biophys Res Commun 357 105-110 (2007)
  16. Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle. Yanay C, Morpurgo N, Linial M. Genome Biol 9 R27 (2008)
  17. Yarrowia lipolytica vesicle-mediated protein transport pathways. Swennen D, Beckerich JM. BMC Evol Biol 7 219 (2007)
  18. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1. Travis SM, DAmico K, Yu IM, McMahon C, Hamid S, Ramirez-Arellano G, Jeffrey PD, Hughson FM. J Biol Chem 295 10125-10135 (2020)
  19. Dissecting Ent3p: the ENTH domain binds different SNAREs via distinct amino acid residues while the C-terminus is sufficient for retrograde transport from endosomes. Zimmermann J, Chidambaram S, Fischer von Mollard G. Biochem J 431 123-134 (2010)
  20. Crystal structure of Sec10, a subunit of the exocyst complex. Chen J, Yamagata A, Kubota K, Sato Y, Goto-Ito S, Fukai S. Sci Rep 7 40909 (2017)
  21. Importance of the N-terminal domain of the Qb-SNARE Vti1p for different membrane transport steps in the yeast endosomal system. Gossing M, Chidambaram S, Fischer von Mollard G. PLoS One 8 e66304 (2013)
  22. The inner workings of intracellular heterotypic and homotypic membrane fusion mechanisms. Cruz MD, Kim K. J Biosci 44 91 (2019)
  23. A computational prediction of structure and function of novel homologue of Arabidopsis thaliana Vps51/Vps67 subunit in Corchorus olitorius. Zaman A, Fancy NN. Interdiscip Sci 4 256-267 (2012)
  24. Structure of a membrane tethering complex incorporating multiple SNAREs. DAmico KA, Stanton AE, Shirkey JD, Travis SM, Jeffrey PD, Hughson FM. Nat Struct Mol Biol (2024)