2b7a Citations

The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor.

Abstract

JAK2, a member of the Janus kinase (JAK) family of protein tyrosine kinases (PTKs), is an important intracellular mediator of cytokine signaling. Mutations of the JAK2 gene are associated with hematologic cancers, and aberrant JAK activity is also associated with a number of immune diseases, including rheumatoid arthritis. Accordingly, the development of JAK2-specific inhibitors has tremendous clinical relevance. Critical to the function of JAK2 is its PTK domain. We report the 2.0 A crystal structure of the active conformation of the JAK2 PTK domain in complex with a high-affinity, pan-JAK inhibitor that appears to bind via an induced fit mechanism. This inhibitor, the tetracyclic pyridone 2-tert-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-1, was buried deep within a constricted ATP-binding site, in which extensive interactions, including residues that are unique to JAK2 and the JAK family, are made with the inhibitor. We present a structural basis of high-affinity JAK-specific inhibition that will undoubtedly provide an invaluable tool for the further design of novel, potent, and specific therapeutics against the JAK family.

Reviews - 2b7a mentioned but not cited (6)

  1. The molecular regulation of Janus kinase (JAK) activation. Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN. Biochem J 462 1-13 (2014)
  2. Regulation of Janus kinases by SOCS proteins. Kershaw NJ, Murphy JM, Lucet IS, Nicola NA, Babon JJ. Biochem Soc Trans 41 1042-1047 (2013)
  3. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. Haan C, Behrmann I, Haan S. J Cell Mol Med 14 504-527 (2010)
  4. A Comprehensive Overview of Globally Approved JAK Inhibitors. Shawky AM, Almalki FA, Abdalla AN, Abdelazeem AH, Gouda AM. Pharmaceutics 14 1001 (2022)
  5. The use of structural biology in Janus kinase targeted drug discovery. Alicea-Velázquez NL, Boggon TJ. Curr Drug Targets 12 546-555 (2011)
  6. Anticancer Activity of Natural and Synthetic Chalcones. Constantinescu T, Lungu CN. Int J Mol Sci 22 11306 (2021)

Articles - 2b7a mentioned but not cited (34)

  1. Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Babon JJ, Kershaw NJ, Murphy JM, Varghese LN, Laktyushin A, Young SN, Lucet IS, Norton RS, Nicola NA. Immunity 36 239-250 (2012)
  2. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M, Camp HS, Padley RJ, George JS, Hyland D, Rosebraugh M, Wishart N, Olson L, Long AJ. BMC Rheumatol 2 23 (2018)
  3. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Fröhling S, Cullen D, Polakiewicz RD, Bernard OA, Boggon TJ, Lee BH, Gilliland DG. Blood 108 2770-2779 (2006)
  4. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, Marque F, Régnier CH, De Pover A, Ryckelynck H, Bhagwat N, Koppikar P, Goel A, Wyder L, Tavares G, Baffert F, Pissot-Soldermann C, Manley PW, Gaul C, Voshol H, Levine RL, Sellers WR, Hofmann F, Radimerski T. Cancer Discov 2 512-523 (2012)
  5. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Deshpande A, Reddy MM, Schade GO, Ray A, Chowdary TK, Griffin JD, Sattler M. Leukemia 26 708-715 (2012)
  6. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. PLoS One 5 e11157 (2010)
  7. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, Sasidharakurup H, Lee CH, Cho KH, Park KD, Lee HK, Yang YM. J Cell Mol Med 21 720-734 (2017)
  8. Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix. Leroy E, Dusa A, Colau D, Motamedi A, Cahu X, Mouton C, Huang LJ, Shiau AK, Constantinescu SN. Biochem J 473 1579-1591 (2016)
  9. Fedratinib in myelofibrosis. Mullally A, Hood J, Harrison C, Mesa R. Blood Adv 4 1792-1800 (2020)
  10. Identification of a novel inhibitor of JAK2 tyrosine kinase by structure-based virtual screening. Kiss R, Polgár T, Kirabo A, Sayyah J, Figueroa NC, List AF, Sokol L, Zuckerman KS, Gali M, Bisht KS, Sayeski PP, Keseru GM. Bioorg Med Chem Lett 19 3598-3601 (2009)
  11. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, Thapa MB, Shah NP, Meller J, Zheng Y, Azam M. Sci Rep 5 14538 (2015)
  12. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Lee EJ, Dykas DJ, Leavitt AD, Camire RM, Ebberink E, García de Frutos P, Gnanasambandan K, Gu SX, Huntington JA, Lentz SR, Mertens K, Parish CR, Rezaie AR, Sayeski PP, Cromwell C, Bar N, Halene S, Neparidze N, Parker TL, Burns AJ, Dumont A, Yao X, Chaar CIO, Connors JM, Bale AE, Lee AI. Blood Adv 1 1224-1237 (2017)
  13. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Varghese LN, Ungureanu D, Liau NP, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM. Biochem J 458 395-405 (2014)
  14. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library. Ma DL, Chan DS, Wei G, Zhong HJ, Yang H, Leung LT, Gullen EA, Chiu P, Cheng YC, Leung CH. Chem Commun (Camb) 50 13885-13888 (2014)
  15. Discovering RNA-protein interactome by using chemical context profiling of the RNA-protein interface. Parisien M, Wang X, Perdrizet G, Lamphear C, Fierke CA, Maheshwari KC, Wilde MJ, Sosnick TR, Pan T. Cell Rep 3 1703-1713 (2013)
  16. Random mutagenesis reveals residues of JAK2 critical in evading inhibition by a tyrosine kinase inhibitor. Marit MR, Chohan M, Matthew N, Huang K, Kuntz DA, Rose DR, Barber DL. PLoS One 7 e43437 (2012)
  17. Tyrosines 868, 966, and 972 in the kinase domain of JAK2 are autophosphorylated and required for maximal JAK2 kinase activity. Argetsinger LS, Stuckey JA, Robertson SA, Koleva RI, Cline JM, Marto JA, Myers MG, Carter-Su C. Mol Endocrinol 24 1062-1076 (2010)
  18. Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension. Dong H, Li X, Cai M, Zhang C, Mao W, Wang Y, Xu Q, Chen M, Wang L, Huang X. Aging (Albany NY) 13 14234-14257 (2021)
  19. NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3. Kim BH, Jee JG, Yin CH, Sandoval C, Jayabose S, Kitamura D, Bach EA, Baeg GH. Mol Cancer 9 36 (2010)
  20. Identified the Synergistic Mechanism of Drynariae Rhizoma for Treating Fracture Based on Network Pharmacology. Lin H, Wang X, Wang L, Dong H, Huang P, Cai Q, Mo Y, Huang F, Jiang Z. Evid Based Complement Alternat Med 2019 7342635 (2019)
  21. Overcoming AC220 resistance of FLT3-ITD by SAR302503. Kesarwani M, Huber E, Azam M. Blood Cancer J 3 e138 (2013)
  22. Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor. Argiriadi MA, Goedken ER, Banach D, Borhani DW, Burchat A, Dixon RW, Marcotte D, Overmeyer G, Pivorunas V, Sadhukhan R, Sousa S, Moore NS, Tomlinson M, Voss J, Wang L, Wishart N, Woller K, Talanian RV. BMC Struct Biol 12 22 (2012)
  23. Identification of tyrosine 972 as a novel site of Jak2 tyrosine kinase phosphorylation and its role in Jak2 activation. McDoom I, Ma X, Kirabo A, Lee KY, Ostrov DA, Sayeski PP. Biochemistry 47 8326-8334 (2008)
  24. Ab initio modeling and experimental assessment of Janus Kinase 2 (JAK2) kinase-pseudokinase complex structure. Wan X, Ma Y, McClendon CL, Huang LJ, Huang N. PLoS Comput Biol 9 e1003022 (2013)
  25. Nonlinear molecular dynamics of quercetin in Gynocardia odorata and Diospyros malabarica fruits: Its mechanistic role in hepatoprotection. Ghosh A, Sarmah P, Patel H, Mukerjee N, Mishra R, Alkahtani S, Varma RS, Baishya D. PLoS One 17 e0263917 (2022)
  26. Selaginellin B induces apoptosis and autophagy in pancreatic cancer cells via the JAK2/STAT3 signaling pathway. Chu P, Wang S, Zhu X, Yang Y, Li H, Tesfaldet T, Shopit A, Yang Y, Ma X, Peng J, Tang Z, Sun Z. Am J Transl Res 12 7127-7143 (2020)
  27. Computational analyses of JAK1 kinase domain: subtle changes in the catalytic cleft influence inhibitor specificity. Zhang X, Hu Y, Yuan Z. Biochem Biophys Res Commun 370 72-76 (2008)
  28. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. Kim BH, Yi EH, Jee JG, Jeong AJ, Sandoval C, Park IC, Baeg GH, Ye SK. J Cell Mol Med 24 7427-7438 (2020)
  29. Lotus Bee Pollen Extract Inhibits Isoproterenol-Induced Hypertrophy via JAK2/STAT3 Signaling Pathway in Rat H9c2 Cells. Han S, Chen L, Zhang Y, Xie S, Yang J, Su S, Yao H, Shi P. Antioxidants (Basel) 12 88 (2022)
  30. A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors. Alov P, Al Sharif M, Aluani D, Chegaev K, Dinic J, Divac Rankov A, Fernandes MX, Fusi F, García-Sosa AT, Juvonen R, Kondeva-Burdina M, Padrón JM, Pajeva I, Pencheva T, Puerta A, Raunio H, Riganti C, Tsakovska I, Tzankova V, Yordanov Y, Saponara S. Front Pharmacol 13 831791 (2022)
  31. Comprehensive Bioinformatics Analysis Combined with Wet-Lab Experiments to Find Target Proteins of Chinese Medicine Monomer. Xu X, Zhu Y, Yue C, Yang Q, Zhang Z. Molecules 27 6105 (2022)
  32. Comprehensive analysis of crystal structure, spectroscopic properties, quantum chemical insights, and molecular docking studies of two pyrazolopyridine compounds: potential anticancer agents. Polo-Cuadrado E, López-Cuellar L, Acosta-Quiroga K, Rojas-Peña C, Brito I, Cisterna J, Trilleras J, Alderete JB, Duarte Y, Gutiérrez M. RSC Adv 13 30118-30128 (2023)
  33. Molecular docking analysis of human JAK2 with compounds from tomatoes. Rekha UV, Anita M, Bhuminathan S, Sadhana K. Bioinformation 16 742-747 (2020)
  34. Network Pharmacology and Experimental Validation of the Anti-Inflammatory Effect of Tingli Dazao Xiefei Decoction in Acute Lung Injury Treatment. Zhang C, Li X, Gao D, Zhu H, Wang S, Tan B, Yang A. J Inflamm Res 16 6195-6209 (2023)


Reviews citing this publication (47)

  1. The molecular details of cytokine signaling via the JAK/STAT pathway. Morris R, Kershaw NJ, Babon JJ. Protein Sci 27 1984-2009 (2018)
  2. Structural biology of shared cytokine receptors. Wang X, Lupardus P, Laporte SL, Garcia KC. Annu Rev Immunol 27 29-60 (2009)
  3. Biology and significance of the JAK/STAT signalling pathways. Kiu H, Nicholson SE. Growth Factors 30 88-106 (2012)
  4. Targeting innate immunity protein kinase signalling in inflammation. Gaestel M, Kotlyarov A, Kracht M. Nat Rev Drug Discov 8 480-499 (2009)
  5. Myeloproliferative disorders. Levine RL, Gilliland DG. Blood 112 2190-2198 (2008)
  6. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Nat Rev Drug Discov 10 127-140 (2011)
  7. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Pardanani A. Leukemia 22 23-30 (2008)
  8. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Buchert M, Burns CJ, Ernst M. Oncogene 35 939-951 (2016)
  9. Jaks and cytokine receptors--an intimate relationship. Haan C, Kreis S, Margue C, Behrmann I. Biochem Pharmacol 72 1538-1546 (2006)
  10. Jak2: normal function and role in hematopoietic disorders. Ihle JN, Gilliland DG. Curr Opin Genet Dev 17 8-14 (2007)
  11. JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Vainchenker W, Dusa A, Constantinescu SN. Semin Cell Dev Biol 19 385-393 (2008)
  12. Mining for JAK-STAT mutations in cancer. Constantinescu SN, Girardot M, Pecquet C. Trends Biochem Sci 33 122-131 (2008)
  13. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Dehkhoda F, Lee CMM, Medina J, Brooks AJ. Front Endocrinol (Lausanne) 9 35 (2018)
  14. Janus kinase deregulation in leukemia and lymphoma. Chen E, Staudt LM, Green AR. Immunity 36 529-541 (2012)
  15. Leptin-Induced JAK/STAT Signaling and Cancer Growth. Mullen M, Gonzalez-Perez RR. Vaccines (Basel) 4 E26 (2016)
  16. JAK2 activation by growth hormone and other cytokines. Waters MJ, Brooks AJ. Biochem J 466 1-11 (2015)
  17. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. Kurdi M, Booz GW. J Cardiovasc Pharmacol 50 126-141 (2007)
  18. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Beenstock J, Mooshayef N, Engelberg D. Trends Biochem Sci 41 938-953 (2016)
  19. The role of Janus kinases in haemopoiesis and haematological malignancy. Khwaja A. Br J Haematol 134 366-384 (2006)
  20. The JAK kinases: not just another kinase drug discovery target. Wilks AF. Semin Cell Dev Biol 19 319-328 (2008)
  21. Critical control points in the impact of the proinflammatory immune response on growth and metabolism. Elsasser TH, Caperna TJ, Li CJ, Kahl S, Sartin JL. J Anim Sci 86 E105-25 (2008)
  22. Management of rheumatoid arthritis: the 2012 perspective. Yamanaka H, Seto Y, Tanaka E, Furuya T, Nakajima A, Ikari K, Taniguchi A, Momohara S. Mod Rheumatol 23 1-7 (2013)
  23. The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms. Smith CA, Fan G. Hum Pathol 39 795-810 (2008)
  24. SOCS proteins in infectious diseases of mammals. Delgado-Ortega M, Marc D, Dupont J, Trapp S, Berri M, Meurens F. Vet Immunol Immunopathol 151 1-19 (2013)
  25. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Velloso FJ, Bianco AF, Farias JO, Torres NE, Ferruzo PY, Anschau V, Jesus-Ferreira HC, Chang TH, Sogayar MC, Zerbini LF, Correa RG. Onco Targets Ther 10 5491-5524 (2017)
  26. JAK-2 mutations and their relevance to myeloproliferative disease. Levine RL, Gilliland DG. Curr Opin Hematol 14 43-47 (2007)
  27. Sensitivity and resistance of JAK2 inhibitors to myeloproliferative neoplasms. Bhagwat N, Levine RL, Koppikar P. Int J Hematol 97 695-702 (2013)
  28. New insights into the structure and function of the pseudokinase domain in JAK2. Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R, Hubbard SR. Biochem Soc Trans 41 1002-1007 (2013)
  29. Recent developments on JAK2 inhibitors: a patent review. Kiss R, Sayeski PP, Keserũ GM. Expert Opin Ther Pat 20 471-495 (2010)
  30. The current status and the future of JAK2 inhibitors for the treatment of myeloproliferative diseases. Hitoshi Y, Lin N, Payan DG, Markovtsov V. Int J Hematol 91 189-200 (2010)
  31. JAK inhibitors and COVID-19. Levy G, Guglielmelli P, Langmuir P, Constantinescu SN. J Immunother Cancer 10 e002838 (2022)
  32. Jak2 inhibitors: rationale and role as therapeutic agents in hematologic malignancies. Sayyah J, Sayeski PP. Curr Oncol Rep 11 117-124 (2009)
  33. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms. Atallah E, Verstovsek S. Expert Rev Anticancer Ther 9 663-670 (2009)
  34. A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors. Waters MJ, Brooks AJ, Chhabra Y. JAKSTAT 3 e29569 (2014)
  35. Stat5 as a diagnostic marker for leukemia. Lewis RS, Ward AC. Expert Rev Mol Diagn 8 73-82 (2008)
  36. JAK2 inhibitors in the treatment of myeloproliferative neoplasms. Tibes R, Bogenberger JM, Geyer HL, Mesa RA. Expert Opin Investig Drugs 21 1755-1774 (2012)
  37. Redox regulation of Janus kinase: The elephant in the room. Duhé RJ. JAKSTAT 2 e26141 (2013)
  38. New JAK2 inhibitors for myeloproliferative neoplasms. Quintás-Cardama A, Verstovsek S. Expert Opin Investig Drugs 20 961-972 (2011)
  39. JAK2 inhibitors: A reality? A hope? Apostolidou E, Kantarjian HM, Verstovsek S. Clin Lymphoma Myeloma 9 Suppl 3 S340-5 (2009)
  40. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Abramson HN. Oncotarget 7 81926-81968 (2016)
  41. Progress toward JAK1-selective inhibitors. Menet CJ, Mammoliti O, López-Ramos M. Future Med Chem 7 203-235 (2015)
  42. A structure-function perspective of Jak2 mutations and implications for alternate drug design strategies: the road not taken. Gnanasambandan K, Sayeski PP. Curr Med Chem 18 4659-4673 (2011)
  43. Janus kinase 2 inhibitors in myeloproliferative disorders. Lucia E, Recchia AG, Gentile M, Bossio S, Vigna E, Mazzone C, Madeo A, Morabito L, Gigliotti V, De Stefano L, Caruso N, Servillo P, Franzese S, Bisconte MG, Gentile C, Morabito F. Expert Opin Investig Drugs 20 41-59 (2011)
  44. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Downes CE, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. Front Cell Dev Biol 10 942053 (2022)
  45. JAK2 and MPL mutations in myeloproliferative neoplasms. Koppikar P, Levine RL. Acta Haematol 119 218-225 (2008)
  46. A (selective) history of Australian involvement in cytokine biology. Nicola NA. Cytokine Growth Factor Rev 24 179-187 (2013)
  47. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. Mol Divers (2023)

Articles citing this publication (87)

  1. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR. N Engl J Med 356 459-468 (2007)
  2. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, Tasian SK, Loh ML, Su X, Liu W, Devidas M, Atlas SR, Chen IM, Clifford RJ, Gerhard DS, Carroll WL, Reaman GH, Smith M, Downing JR, Hunger SP, Willman CL. Proc Natl Acad Sci U S A 106 9414-9418 (2009)
  3. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, Gomez GA, Alexandrov K, Wilson IA, Doxastakis M, Mark AE, Waters MJ. Science 344 1249783 (2014)
  4. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G, Finke C, Mak CC, Mesa R, Zhu H, Soll R, Gilliland DG, Tefferi A. Leukemia 21 1658-1668 (2007)
  5. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, Xu CF, Neubert TA, Skoda RC, Hubbard SR, Silvennoinen O. Nat Struct Mol Biol 18 971-976 (2011)
  6. SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Kershaw NJ, Murphy JM, Liau NP, Varghese LN, Laktyushin A, Whitlock EL, Lucet IS, Nicola NA, Babon JJ. Nat Struct Mol Biol 20 469-476 (2013)
  7. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Nat Struct Mol Biol 19 754-759 (2012)
  8. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I, Zerwes HG. Chem Biol 18 314-323 (2011)
  9. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, Fantino E, Rossjohn J, Lucet IS. J Mol Biol 387 219-232 (2009)
  10. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, Toms AV, Marubayashi S, Christie AL, McKeown M, Paranal RM, Bradner JE, Yoda A, Gaul C, Vangrevelinghe E, Romanet V, Murakami M, Tiedt R, Ebel N, Evrot E, De Pover A, Régnier CH, Erdmann D, Hofmann F, Eck MJ, Sallan SE, Levine RL, Kung AL, Baffert F, Radimerski T, Weinstock DM. J Exp Med 209 259-273 (2012)
  11. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC, Madan B, Amalini C, Loh YK, Ong LC, William AD, Lee A, Poulsen A, Jayaraman R, Ong KH, Ethirajulu K, Dymock BW, Wood JW. Leukemia 25 1751-1759 (2011)
  12. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Lupardus PJ, Ultsch M, Wallweber H, Bir Kohli P, Johnson AR, Eigenbrot C. Proc Natl Acad Sci U S A 111 8025-8030 (2014)
  13. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Chaikuad A, Tacconi EM, Zimmer J, Liang Y, Gray NS, Tarsounas M, Knapp S. Nat Chem Biol 10 853-860 (2014)
  14. Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. Serezani CH, Lewis C, Jancar S, Peters-Golden M. J Clin Invest 121 671-682 (2011)
  15. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  16. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). Jiang JK, Ghoreschi K, Deflorian F, Chen Z, Perreira M, Pesu M, Smith J, Nguyen DT, Liu EH, Leister W, Costanzi S, O'Shea JJ, Thomas CJ. J Med Chem 51 8012-8018 (2008)
  17. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Couturier N, Bucciarelli F, Nurtdinov RN, Debouverie M, Lebrun-Frenay C, Defer G, Moreau T, Confavreux C, Vukusic S, Cournu-Rebeix I, Goertsches RH, Zettl UK, Comabella M, Montalban X, Rieckmann P, Weber F, Müller-Myhsok B, Edan G, Fontaine B, Mars LT, Saoudi A, Oksenberg JR, Clanet M, Liblau RS, Brassat D. Brain 134 693-703 (2011)
  18. Gö6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Grandage VL, Everington T, Linch DC, Khwaja A. Br J Haematol 135 303-316 (2006)
  19. Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Hashioka S, Klegeris A, Schwab C, McGeer PL. Neurobiol Aging 30 1924-1935 (2009)
  20. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC. Structure 19 45-55 (2011)
  21. HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. Frey KG, Ahmed CM, Dabelic R, Jager LD, Noon-Song EN, Haider SM, Johnson HM, Bigley NJ. J Immunol 183 1253-1262 (2009)
  22. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. Yang X, He G, Hao Y, Chen C, Li M, Wang Y, Zhang G, Yu Z. J Neuroinflammation 7 54 (2010)
  23. Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Quintás-Cardama A, Kantarjian H, Estrov Z, Borthakur G, Cortes J, Verstovsek S. Leuk Res 36 1124-1127 (2012)
  24. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Marty C, Saint-Martin C, Pecquet C, Grosjean S, Saliba J, Mouton C, Leroy E, Harutyunyan AS, Abgrall JF, Favier R, Toussaint A, Solary E, Kralovics R, Constantinescu SN, Najman A, Vainchenker W, Plo I, Bellanné-Chantelot C. Blood 123 1372-1383 (2014)
  25. JAK Kinases in Health and Disease: An Update. Laurence A, Pesu M, Silvennoinen O, O'Shea J. Open Rheumatol J 6 232-244 (2012)
  26. The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK, Fantino E, Wilks AF, Rossjohn J. J Mol Biol 367 839-847 (2007)
  27. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. Goedken ER, Argiriadi MA, Banach DL, Fiamengo BA, Foley SE, Frank KE, George JS, Harris CM, Hobson AD, Ihle DC, Marcotte D, Merta PJ, Michalak ME, Murdock SE, Tomlinson MJ, Voss JW. J Biol Chem 290 4573-4589 (2015)
  28. Glycogen synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Kida A, Kakihana K, Kotani S, Kurosu T, Miura O. Oncogene 26 6630-6640 (2007)
  29. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Bergamin E, Wu J, Hubbard SR. Structure 14 1285-1292 (2006)
  30. A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation. Zhao L, Dong H, Zhang CC, Kinch L, Osawa M, Iacovino M, Grishin NV, Kyba M, Huang LJ. J Biol Chem 284 26988-26998 (2009)
  31. Genetic and pharmacological inhibition of PDK1 in cancer cells: characterization of a selective allosteric kinase inhibitor. Nagashima K, Shumway SD, Sathyanarayanan S, Chen AH, Dolinski B, Xu Y, Keilhack H, Nguyen T, Wiznerowicz M, Li L, Lutterbach BA, Chi A, Paweletz C, Allison T, Yan Y, Munshi SK, Klippel A, Kraus M, Bobkova EV, Deshmukh S, Xu Z, Mueller U, Szewczak AA, Pan BS, Richon V, Pollock R, Blume-Jensen P, Northrup A, Andersen JN. J Biol Chem 286 6433-6448 (2011)
  32. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells. Lu M, Wang X, Li Y, Tripodi J, Mosoyan G, Mascarenhas J, Kremyanskaya M, Najfeld V, Hoffman R. Blood 120 3098-3105 (2012)
  33. Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Kurzer JH, Saharinen P, Silvennoinen O, Carter-Su C. Mol Cell Biol 26 6381-6394 (2006)
  34. CP690,550 inhibits oncostatin M-induced JAK/STAT signaling pathway in rheumatoid synoviocytes. Migita K, Komori A, Torigoshi T, Maeda Y, Izumi Y, Jiuchi Y, Miyashita T, Nakamura M, Motokawa S, Ishibashi H. Arthritis Res Ther 13 R72 (2011)
  35. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Nakaya Y, Shide K, Niwa T, Homan J, Sugahara S, Horio T, Kuramoto K, Kotera T, Shibayama H, Hori K, Naito H, Shimoda K. Blood Cancer J 1 e29 (2011)
  36. Phenylaminopyrimidines as inhibitors of Janus kinases (JAKs). Burns CJ, Bourke DG, Andrau L, Bu X, Charman SA, Donohue AC, Fantino E, Farrugia M, Feutrill JT, Joffe M, Kling MR, Kurek M, Nero TL, Nguyen T, Palmer JT, Phillips I, Shackleford DM, Sikanyika H, Styles M, Su S, Treutlein H, Zeng J, Wilks AF. Bioorg Med Chem Lett 19 5887-5892 (2009)
  37. ProKinO: a unified resource for mining the cancer kinome. McSkimming DI, Dastgheib S, Talevich E, Narayanan A, Katiyar S, Taylor SS, Kochut K, Kannan N. Hum Mutat 36 175-186 (2015)
  38. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. Linossi EM, Chandrashekaran IR, Kolesnik TB, Murphy JM, Webb AI, Willson TA, Kedzierski L, Bullock AN, Babon JJ, Norton RS, Nicola NA, Nicholson SE. PLoS One 8 e70536 (2013)
  39. Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3) Function and Expression. Williams JJ, Munro KM, Palmer TM. Cells 3 546-562 (2014)
  40. Identification of a redox-sensitive switch within the JAK2 catalytic domain. Smith JK, Patil CN, Patlolla S, Gunter BW, Booz GW, Duhé RJ. Free Radic Biol Med 52 1101-1110 (2012)
  41. The constitutive activation of Jak2-V617F is mediated by a π stacking mechanism involving phenylalanines 595 and 617. Gnanasambandan K, Magis A, Sayeski PP. Biochemistry 49 9972-9984 (2010)
  42. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, Hilhorst R, Silvennoinen O. PLoS One 6 e18522 (2011)
  43. Mechanisms of constitutive activation of Janus kinase 2-V617F revealed at the atomic level through molecular dynamics simulations. Lee TS, Ma W, Zhang X, Giles F, Kantarjian H, Albitar M. Cancer 115 1692-1700 (2009)
  44. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signaling via the angiotensin II type AT1 receptor. Godeny MD, Sayyah J, VonDerLinden D, Johns M, Ostrov DA, Caldwell-Busby J, Sayeski PP. Cell Signal 19 600-609 (2007)
  45. Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. Nitulescu II, Meyer SC, Wen QJ, Crispino JD, Lemieux ME, Levine RL, Pelish HE, Shair MD. EBioMedicine 26 112-125 (2017)
  46. Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases. Sanachai K, Mahalapbutr P, Choowongkomon K, Poo-Arporn RP, Wolschann P, Rungrotmongkol T. ACS Omega 5 369-377 (2020)
  47. Reconstruction of an active SOCS3-based E3 ubiquitin ligase complex in vitro: identification of the active components and JAK2 and gp130 as substrates. Kershaw NJ, Laktyushin A, Nicola NA, Babon JJ. Growth Factors 32 1-10 (2014)
  48. STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Hao Y, Yang X, Chen C, Yuan-Wang, Wang X, Li M, Yu Z. Int J Radiat Biol 86 27-36 (2010)
  49. CNTF-evoked activation of JAK and ERK mediates the functional expression of T-type Ca2+ channels in chicken nodose neurons. Trimarchi T, Pachuau J, Shepherd A, Dey D, Martin-Caraballo M. J Neurochem 108 246-259 (2009)
  50. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. Oh HN, Seo JH, Lee MH, Kim C, Kim E, Yoon G, Cho SS, Cho YS, Choi HW, Shim JH, Chae JI. J Cell Biochem 119 10118-10130 (2018)
  51. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations. Lee TS, Ma W, Zhang X, Kantarjian H, Albitar M. BMC Struct Biol 9 58 (2009)
  52. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Poulsen A, William A, Blanchard S, Lee A, Nagaraj H, Wang H, Teo E, Tan E, Goh KC, Dymock B. J Comput Aided Mol Des 26 437-450 (2012)
  53. Growth hormone (GH)-associated nitration of Janus kinase-2 at the 1007Y-1008Y epitope impedes phosphorylation at this site: mechanism for and impact of a GH, AKT, and nitric oxide synthase axis on GH signal transduction. Elsasser TH, Li CJ, Caperna TJ, Kahl S, Schmidt WF. Endocrinology 148 3792-3802 (2007)
  54. Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor. Quintás-Cardama A, Manshouri T, Estrov Z, Harris D, Zhang Y, Gaikwad A, Kantarjian HM, Verstovsek S. Invest New Drugs 29 818-826 (2011)
  55. Targeting kinases for the treatment of inflammatory diseases. Müller S, Knapp S. Expert Opin Drug Discov 5 867-881 (2010)
  56. Leukemia inhibitory factor regulates trafficking of T-type Ca2+ channels. Dey D, Shepherd A, Pachuau J, Martin-Caraballo M. Am J Physiol Cell Physiol 300 C576-87 (2011)
  57. Licochalcone D directly targets JAK2 to induced apoptosis in human oral squamous cell carcinoma. Seo JH, Choi HW, Oh HN, Lee MH, Kim E, Yoon G, Cho SS, Park SM, Cho YS, Chae JI, Shim JH. J Cell Physiol 234 1780-1793 (2019)
  58. Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain. Hall T, Emmons TL, Chrencik JE, Gormley JA, Weinberg RA, Leone JW, Hirsch JL, Saabye MJ, Schindler JF, Day JE, Williams JM, Kiefer JR, Lightle SA, Harris MS, Guru S, Fischer HD, Tomasselli AG. Protein Expr Purif 69 54-63 (2010)
  59. Pyridone 6, a pan-Janus-activated kinase inhibitor, suppresses osteoclast formation and bone resorption through down-regulation of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced c-Fos and nuclear factor of activated T cells (NFAT) c1 expression. Kwak HB, Kim HS, Lee MS, Kim KJ, Choi EY, Choi MK, Kim JJ, Cho HJ, Kim JW, Bae JM, Kim YK, Park BH, Ha H, Chun CH, Oh J. Biol Pharm Bull 32 45-50 (2009)
  60. A new regulatory switch in a JAK protein kinase. Tsui V, Gibbons P, Ultsch M, Mortara K, Chang C, Blair W, Pulk R, Stanley M, Starovasnik M, Williams D, Lamers M, Leonard P, Magnuson S, Liang J, Eigenbrot C. Proteins 79 393-401 (2011)
  61. Cooperative effects of Janus and Aurora kinase inhibition by CEP701 in cells expressing Jak2V617F. Gäbler K, Rolvering C, Kaczor J, Eulenfeld R, Méndez SÁ, Berchem G, Palissot V, Behrmann I, Haan C. J Cell Mol Med 17 265-276 (2013)
  62. Pluripotent Stem Cell Model of Nakajo-Nishimura Syndrome Untangles Proinflammatory Pathways Mediated by Oxidative Stress. Honda-Ozaki F, Terashima M, Niwa A, Saiki N, Kawasaki Y, Ito H, Hotta A, Nagahashi A, Igura K, Asaka I, Li HL, Yanagimachi M, Furukawa F, Kanazawa N, Nakahata T, Saito MK. Stem Cell Reports 10 1835-1850 (2018)
  63. Scaffold hopping towards potent and selective JAK3 inhibitors: discovery of novel C-5 substituted pyrrolopyrazines. de Vicente J, Lemoine R, Bartlett M, Hermann JC, Hekmat-Nejad M, Henningsen R, Jin S, Kuglstatter A, Li H, Lovey AJ, Menke J, Niu L, Patel V, Petersen A, Setti L, Shao A, Tivitmahaisoon P, Vu MD, Soth M. Bioorg Med Chem Lett 24 4969-4975 (2014)
  64. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains. Sanz Sanz A, Niranjan Y, Hammarén H, Ungureanu D, Ruijtenbeek R, Touw IP, Silvennoinen O, Hilhorst R. Biochim Biophys Acta 1844 1835-1841 (2014)
  65. Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86. Alao JP, Michlikova S, Dinér P, Grøtli M, Sunnerhagen P. BMC Cancer 14 853 (2014)
  66. Structure-function correlation of G6, a novel small molecule inhibitor of Jak2: indispensability of the stilbenoid core. Majumder A, Govindasamy L, Magis A, Kiss R, Polgár T, Baskin R, Allan RW, Agbandje-McKenna M, Reuther GW, Keseru GM, Bisht KS, Sayeski PP. J Biol Chem 285 31399-31407 (2010)
  67. 2-Aminopyrazolo[1,5-a]pyrimidines as potent and selective inhibitors of JAK2. Ledeboer MW, Pierce AC, Duffy JP, Gao H, Messersmith D, Salituro FG, Nanthakumar S, Come J, Zuccola HJ, Swenson L, Shlyakter D, Mahajan S, Hoock T, Fan B, Tsai WJ, Kolaczkowski E, Carrier S, Hogan JK, Zessis R, Pazhanisamy S, Bennani YL. Bioorg Med Chem Lett 19 6529-6533 (2009)
  68. Inhibition of Janus kinases by tyrosine phosphorylation inhibitor, Tyrphostin AG-490. Rashid S, Bibi N, Parveen Z, Shafique S. J Biomol Struct Dyn 33 2368-2379 (2015)
  69. Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1. Liau NPD, Laktyushin A, Morris R, Sandow JJ, Nicola NA, Kershaw NJ, Babon JJ. Cancers (Basel) 11 E1701 (2019)
  70. A 2,6,9-hetero-trisubstituted purine inhibitor exhibits potent biological effects against multiple myeloma cells. Shahani VM, Ball DP, Ramos AV, Li Z, Spagnuolo PA, Haftchenary S, Schimmer AD, Trudel S, Gunning PT. Bioorg Med Chem 21 5618-5628 (2013)
  71. Selective detection of tyrosine-containing proximally phosphorylated motifs using an antenna-free Tb³⁺ luminescent sensor. Duodu E, Kraskouskaya D, Campbell J, Graca-Lima G, Gunning PT. Chem Commun (Camb) 51 6675-6677 (2015)
  72. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Babu S, Nagarajan SK, Sathish S, Negi VS, Sohn H, Madhavan T. Front Pharmacol 13 837369 (2022)
  73. In silico identification of natural product inhibitors of JAK2. Zhong HJ, Lin S, Tam IL, Lu L, Chan DS, Ma DL, Leung CH. Methods 71 21-25 (2015)
  74. Linear propargylic alcohol functionality attached to the indazole-7-carboxamide as a JAK1-specific linear probe group. Kim MK, Shin H, Cho SY, Chong Y. Bioorg Med Chem 22 1156-1162 (2014)
  75. Oncogenic mutations in IKKβ function through global changes induced by K63-linked ubiquitination and result in autocrine stimulation. Meyer AN, Gallo LH, Ko J, Cardenas G, Nelson KN, Siari A, Campos AR, Whisenant TC, Donoghue DJ. PLoS One 13 e0206014 (2018)
  76. Identification of novel SAR properties of the Jak2 small molecule inhibitor G6: significance of the para-hydroxyl orientation. Baskin R, Gali M, Park SO, Zhao ZJ, Keseru GM, Bisht KS, Sayeski PP. Bioorg Med Chem Lett 22 1402-1407 (2012)
  77. JAK Inhibitors and other Novel Agents in Myeloproliferative Neoplasms: Are We Hitting the Target? Kucine N, Levine RL. Ther Adv Hematol 2 203-211 (2011)
  78. Understanding the structural features of JAK2 inhibitors: a combined 3D-QSAR, DFT and molecular dynamics study. Babu S, Nagarajan SK, Madhavan T. Mol Divers 23 845-874 (2019)
  79. Selectivity and Ranking of Tight-Binding JAK-STAT Inhibitors Using Markovian Milestoning with Voronoi Tessellations. Ojha AA, Srivastava A, Votapka LW, Amaro RE. J Chem Inf Model 63 2469-2482 (2023)
  80. The discovery of reverse tricyclic pyridone JAK2 inhibitors. Part 2: lead optimization. Siu T, Kumarasinghe SE, Altman MD, Katcher M, Northrup A, White C, Rosenstein C, Mathur A, Xu L, Chan G, Bachman E, Bouthillette M, Dinsmore CJ, Marshall CG, Young JR. Bioorg Med Chem Lett 24 1466-1471 (2014)
  81. Thiophene carboxamide inhibitors of JAK2 as potential treatments for myleoproliferative neoplasms. Haidle AM, Zabierek AA, Childers KK, Rosenstein C, Mathur A, Altman MD, Chan G, Xu L, Bachman E, Mo JR, Bouthillette M, Rush T, Tempest P, Marshall CG, Young JR. Bioorg Med Chem Lett 24 1968-1973 (2014)
  82. Three dimensional quantitative structure-activity relationship of 5H-Pyrido[4,3-b]indol-4-carboxamide JAK2 inhibitors. Wu X, Wan S, Zhang J. Int J Mol Sci 14 12037-12053 (2013)
  83. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling. Nash O, Omotuyi O, Lee J, Kwon BM, Ogbadu L. J Mol Model 21 280 (2015)
  84. Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway. Perri MR, Pellegrino M, Marrelli M, Aquaro S, Cavaliere F, Grande F, Occhiuzzi MA, Lupia C, Toma CC, Conforti F, Statti G. Pharmaceuticals (Basel) 16 718 (2023)
  85. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Blood Cancer Discov 4 352-364 (2023)
  86. SCP4-STK35/PDIK1L complex is a dual phospho-catalytic signaling dependency in acute myeloid leukemia. Polyanskaya SA, Moreno RY, Lu B, Feng R, Yao Y, Irani S, Klingbeil O, Yang Z, Wei Y, Demerdash OE, Benjamin LA, Weiss MJ, Zhang YJ, Vakoc CR. Cell Rep 38 110233 (2022)
  87. Structural Analysis of Janus Tyrosine Kinase Variants in Hematological Malignancies: Implications for Drug Development and Opportunities for Novel Therapeutic Strategies. Rodriguez Moncivais OJ, Chavez SA, Estrada Jimenez VH, Sun S, Li L, Kirken RA, Rodriguez G. Int J Mol Sci 24 14573 (2023)