2ast Citations

Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase.

Mol Cell 20 9-19 (2005)
Cited: 189 times
EuropePMC logo PMID: 16209941

Abstract

The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex.

Reviews - 2ast mentioned but not cited (4)

  1. Structural insights into the functional diversity of the CDK-cyclin family. Wood DJ, Endicott JA. Open Biol 8 180112 (2018)
  2. Chemical probes of Skp2-mediated p27 ubiquitylation and degradation. Lough L, Sherman D, Ni E, Young LM, Hao B, Cardozo T. Medchemcomm 9 1093-1104 (2018)
  3. Folding cooperativity and allosteric function in the tandem-repeat protein class. Perez-Riba A, Synakewicz M, Itzhaki LS. Philos Trans R Soc Lond B Biol Sci 373 20170188 (2018)
  4. An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul-Leclaire M, Villot R, Uriarte M, Boulay K, Hlayhel S, Farhat B, Milot E, Mallette FA, Daou S, Affar EB. iScience 26 106276 (2023)

Articles - 2ast mentioned but not cited (27)

  1. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, Logothetis CJ, Hung MC, Zhang S, Lin HK. Cell 154 556-568 (2013)
  2. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Wu L, Grigoryan AV, Li Y, Hao B, Pagano M, Cardozo TJ. Chem Biol 19 1515-1524 (2012)
  3. CRY2 and FBXL3 Cooperatively Degrade c-MYC. Huber AL, Papp SJ, Chan AB, Henriksson E, Jordan SD, Kriebs A, Nguyen M, Wallace M, Li Z, Metallo CM, Lamia KA. Mol Cell 64 774-789 (2016)
  4. Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Gavenonis J, Sheneman BA, Siegert TR, Eshelman MR, Kritzer JA. Nat Chem Biol 10 716-722 (2014)
  5. Transplanting supersites of HIV-1 vulnerability. Zhou T, Zhu J, Yang Y, Gorman J, Ofek G, Srivatsan S, Druz A, Lees CR, Lu G, Soto C, Stuckey J, Burton DR, Koff WC, Connors M, Kwong PD. PLoS One 9 e99881 (2014)
  6. Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly. Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klügel M, Scott DC, Ovaa H, Kleiger G, Schulman BA. Nature 590 671-676 (2021)
  7. The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. Liu J, Nussinov R. PLoS Comput Biol 5 e1000527 (2009)
  8. Origin and evolution of GALA-LRR, a new member of the CC-LRR subfamily: from plants to bacteria? Kajava AV, Anisimova M, Peeters N. PLoS One 3 e1694 (2008)
  9. Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors. Liu YQ, Wang XL, Cheng X, Lu YZ, Wang GZ, Li XC, Zhang J, Wen ZS, Huang ZL, Gao QL, Yang LN, Cheng YX, Tao SC, Liu J, Zhou GB, Zhou GB. Oncotarget 6 34953-34967 (2015)
  10. Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases. Liu J, Nussinov R. J Mol Biol 396 1508-1523 (2010)
  11. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. Muniz JR, Guo K, Kershaw NJ, Ayinampudi V, von Delft F, Babon JJ, Bullock AN. J Mol Biol 425 3166-3177 (2013)
  12. Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. She K, Ferreira JS, Carvalho AL, Craig AM. J Biol Chem 287 27432-27445 (2012)
  13. Alisertib induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells. Liu Z, Wang F, Zhou ZW, Xia HC, Wang XY, Yang YX, He ZX, Sun T, Zhou SF. Am J Transl Res 9 845-873 (2017)
  14. Molecular interaction studies of Deguelin and its derivatives with Cyclin D1 and Cyclin E in cancer cell signaling pathway: The computational approach. Lokhande KB, Nagar S, Swamy KV. Sci Rep 9 1778 (2019)
  15. Structural basis for dimerization quality control. Mena EL, Jevtić P, Greber BJ, Gee CL, Lew BG, Akopian D, Nogales E, Kuriyan J, Rape M. Nature 586 452-456 (2020)
  16. The FBXL family of F-box proteins: variations on a theme. Mason B, Laman H. Open Biol 10 200319 (2020)
  17. Capturing cooperative interactions with the PSI-MI format. Van Roey K, Orchard S, Kerrien S, Dumousseau M, Ricard-Blum S, Hermjakob H, Gibson TJ. Database (Oxford) 2013 bat066 (2013)
  18. Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. Salamina M, Montefiore BC, Liu M, Wood DJ, Heath R, Ault JR, Wang LZ, Korolchuk S, Baslé A, Pastok MW, Reeks J, Tatum NJ, Sobott F, Arold ST, Pagano M, Noble MEM, Endicott JA. J Mol Biol 433 166795 (2021)
  19. PCFamily: a web server for searching homologous protein complexes. Lo YS, Lin CY, Yang JM. Nucleic Acids Res 38 W516-22 (2010)
  20. Phytochemical library screening reveals betulinic acid as a novel Skp2-SCF E3 ligase inhibitor in non-small cell lung cancer. He DH, Chen YF, Zhou YL, Zhang SB, Hong M, Yu X, Wei SF, Fan XZ, Li SY, Wang Q, Lu Y, Liu YQ. Cancer Sci 112 3218-3232 (2021)
  21. Crystal Structure-Based Exploration of Arginine-Containing Peptide Binding in the ADP-Ribosyltransferase Domain of the Type III Effector XopAI Protein. Liu JH, Yang JY, Hsu DW, Lai YH, Li YP, Tsai YR, Hou MH. Int J Mol Sci 20 E5085 (2019)
  22. Structural prediction of the interaction of the tumor suppressor p27KIP1 with cyclin A/CDK2 identifies a novel catalytically relevant determinant. Li J, Vervoorts J, Carloni P, Rossetti G, Lüscher B. BMC Bioinformatics 18 15 (2017)
  23. Accurate Prediction of Docked Protein Structure Similarity. Akbal-Delibas B, Pomplun M, Haspel N. J Comput Biol 22 892-904 (2015)
  24. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. J Biol Chem 295 16545-16561 (2020)
  25. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. Hussain M, Lu Y, Tariq M, Jiang H, Shu Y, Luo S, Zhu Q, Zhang J, Liu J. iScience 25 104591 (2022)
  26. Cryo-EM structure of SKP1-SKP2-CKS1 in complex with CDK2-cyclin A-p27KIP1. Rowland RJ, Heath R, Maskell D, Thompson RF, Ranson NA, Blaza JN, Endicott JA, Noble MEM, Salamina M. Sci Rep 13 10718 (2023)
  27. research-article Exploiting the Cullin E3 Ligase Adaptor Protein SKP1 for Targeted Protein Degradation. Hong SH, Osa A, Huang OW, Wertz IE, Nomura DK. bioRxiv 2023.10.20.563371 (2023)


Reviews citing this publication (43)

  1. RING domain E3 ubiquitin ligases. Deshaies RJ, Joazeiro CA. Annu Rev Biochem 78 399-434 (2009)
  2. Diversity of degradation signals in the ubiquitin-proteasome system. Ravid T, Hochstrasser M. Nat Rev Mol Cell Biol 9 679-690 (2008)
  3. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu Rev Biochem 86 129-157 (2017)
  4. Mitochondrial retrograde signaling. Liu Z, Butow RA. Annu Rev Genet 40 159-185 (2006)
  5. Mechanisms and function of substrate recruitment by F-box proteins. Skaar JR, Pagan JK, Pagano M. Nat Rev Mol Cell Biol 14 369-381 (2013)
  6. Drug discovery in the ubiquitin-proteasome system. Nalepa G, Rolfe M, Harper JW. Nat Rev Drug Discov 5 596-613 (2006)
  7. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Liou YC, Zhou XZ, Lu KP. Trends Biochem Sci 36 501-514 (2011)
  8. Building and remodelling Cullin-RING E3 ubiquitin ligases. Lydeard JR, Schulman BA, Harper JW. EMBO Rep 14 1050-1061 (2013)
  9. SCF ubiquitin ligase-targeted therapies. Skaar JR, Pagan JK, Pagano M. Nat Rev Drug Discov 13 889-903 (2014)
  10. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Takahashi-Yanaga F, Sasaguri T. Cell Signal 20 581-589 (2008)
  11. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Reinhardt HC, Yaffe MB. Nat Rev Mol Cell Biol 14 563-580 (2013)
  12. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Lu Z, Hunter T. Cell Cycle 9 2342-2352 (2010)
  13. Ubiquitin ligases and cell cycle control. Teixeira LK, Reed SI. Annu Rev Biochem 82 387-414 (2013)
  14. Structural regulation of cullin-RING ubiquitin ligase complexes. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA. Curr Opin Struct Biol 21 257-264 (2011)
  15. E3 ubiquitin ligases as cancer targets and biomarkers. Sun Y. Neoplasia 8 645-654 (2006)
  16. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Bulatov E, Ciulli A. Biochem J 467 365-386 (2015)
  17. SCF E3 ubiquitin ligases as anticancer targets. Jia L, Sun Y. Curr Cancer Drug Targets 11 347-356 (2011)
  18. MYC Oncogene Contributions to Release of Cell Cycle Brakes. García-Gutiérrez L, Delgado MD, León J. Genes (Basel) 10 (2019)
  19. Ubiquitin pathways in neurodegenerative disease. Atkin G, Paulson H. Front Mol Neurosci 7 63 (2014)
  20. Ubiquitin signaling in cell cycle control and tumorigenesis. Dang F, Nie L, Wei W. Cell Death Differ 28 427-438 (2021)
  21. Protein post-translational modifications: In silico prediction tools and molecular modeling. Audagnotto M, Dal Peraro M. Comput Struct Biotechnol J 15 307-319 (2017)
  22. Genetics and neurobiology of circadian clocks in mammals. Siepka SM, Yoo SH, Park J, Lee C, Takahashi JS. Cold Spring Harb Symp Quant Biol 72 251-259 (2007)
  23. The multiple layers of ubiquitin-dependent cell cycle control. Wickliffe K, Williamson A, Jin L, Rape M. Chem Rev 109 1537-1548 (2009)
  24. p27(Kip1) signaling: Transcriptional and post-translational regulation. Hnit SS, Xie C, Yao M, Holst J, Bensoussan A, De Souza P, Li Z, Dong Q. Int J Biochem Cell Biol 68 9-14 (2015)
  25. Degrons in cancer. Mészáros B, Kumar M, Gibson TJ, Uyar B, Dosztányi Z. Sci Signal 10 eaak9982 (2017)
  26. Targeting ubiquitination for cancer therapies. Morrow JK, Lin HK, Sun SC, Zhang S. Future Med Chem 7 2333-2350 (2015)
  27. A unified model for the G1/S cell cycle transition. Hume S, Dianov GL, Ramadan K. Nucleic Acids Res 48 12483-12501 (2020)
  28. The Skp2 Pathway: A Critical Target for Cancer Therapy. Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. Semin Cancer Biol 67 16-33 (2020)
  29. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. Lippens G, Landrieu I, Smet C. FEBS J 274 5211-5222 (2007)
  30. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Harper JW, Schulman BA. Annu Rev Biochem 90 403-429 (2021)
  31. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci 20 1941-1954 (2011)
  32. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. Cardozo T, Pagano M. BMC Biochem 8 Suppl 1 S9 (2007)
  33. Temporal and spatial regulatory functions of the V(D)J recombinase. Desiderio S. Semin Immunol 22 362-369 (2010)
  34. Loss of cks1 homeostasis deregulates cell division cycle. Krishnan A, Nair SA, Pillai MR. J Cell Mol Med 14 154-164 (2010)
  35. Ubiquitin ligases in cancer: ushers for degradation. Newton K, Vucic D. Cancer Invest 25 502-513 (2007)
  36. An update on the current pharmacotherapy for endometrial cancer. de Haydu C, Black JD, Schwab CL, English DP, Santin AD. Expert Opin Pharmacother 17 489-499 (2016)
  37. Ubiquitin ligases in cancer: Functions and clinical potentials. Duan S, Pagano M. Cell Chem Biol 28 918-933 (2021)
  38. Hormone signaling through protein destruction: a lesson from plants. Tan X, Zheng N. Am J Physiol Endocrinol Metab 296 E223-7 (2009)
  39. Noise cancellation: viral fine tuning of the cellular environment for its own genome replication. Sato Y, Tsurumi T. PLoS Pathog 6 e1001158 (2010)
  40. The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Wang D, Bu F, Zhang W. Int J Mol Sci 20 E2667 (2019)
  41. The Importance of Ubiquitin E3 Ligases, SCF and APC/C, in Human Cancers. Bochis OV, Fetica B, Vlad C, Achimas-Cadariu P, Irimie A. Clujul Med 88 9-14 (2015)
  42. Cellular Functions of OCT-3/4 Regulated by Ubiquitination in Proliferating Cells. Baek KH, Choi J, Pei CZ. Cancers (Basel) 12 E663 (2020)
  43. Emerging Roles of SKP2 in Cancer Drug Resistance. Wu T, Gu X, Cui H. Cells 10 1147 (2021)

Articles citing this publication (115)

  1. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Cell 134 995-1006 (2008)
  2. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS. Cell 129 1011-1023 (2007)
  3. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. Mol Cell 26 131-143 (2007)
  4. Identification, analysis, and prediction of protein ubiquitination sites. Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM. Proteins 78 365-380 (2010)
  5. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Saha A, Deshaies RJ. Mol Cell 32 21-31 (2008)
  6. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA. Mol Cell 24 355-366 (2006)
  7. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. BMC Genomics 8 124 (2007)
  8. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Dye BT, Schulman BA. Annu Rev Biophys Biomol Struct 36 131-150 (2007)
  9. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ. Blood 111 4690-4699 (2008)
  10. APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Amador V, Ge S, Santamaría PG, Guardavaccaro D, Pagano M. Mol Cell 27 462-473 (2007)
  11. Crystal structure of the human COP9 signalosome. Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U, Renatus M, Fischer ES, Thomä NH. Nature 512 161-165 (2014)
  12. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, Pagano M, Zheng N. Nature 496 64-68 (2013)
  13. Cell regulation: determined to signal discrete cooperation. Gibson TJ. Trends Biochem Sci 34 471-482 (2009)
  14. Structural basis for a reciprocal regulation between SCF and CSN. Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Cell Rep 2 616-627 (2012)
  15. Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein. Munakata T, Liang Y, Kim S, McGivern DR, Huibregtse J, Nomoto A, Lemon SM. PLoS Pathog 3 1335-1347 (2007)
  16. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Saha A, Lewis S, Kleiger G, Kuhlman B, Deshaies RJ. Mol Cell 42 75-83 (2011)
  17. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control. Burke JR, Hura GL, Rubin SM. Genes Dev 26 1156-1166 (2012)
  18. Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27 Kip1. Galea CA, Nourse A, Wang Y, Sivakolundu SG, Heller WT, Kriwacki RW. J Mol Biol 376 827-838 (2008)
  19. Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Martinsson-Ahlzén HS, Liberal V, Grünenfelder B, Chaves SR, Spruck CH, Reed SI. Mol Cell Biol 28 5698-5709 (2008)
  20. Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1. Jakoby MJ, Weinl C, Pusch S, Kuijt SJ, Merkle T, Dissmeyer N, Schnittger A. Plant Physiol 141 1293-1305 (2006)
  21. The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Van Roey K, Dinkel H, Weatheritt RJ, Gibson TJ, Davey NE. Sci Signal 6 rs7 (2013)
  22. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. Keller UB, Old JB, Dorsey FC, Nilsson JA, Nilsson L, MacLean KH, Chung L, Yang C, Spruck C, Boyd K, Reed SI, Cleveland JL. EMBO J 26 2562-2574 (2007)
  23. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, Chang L, Liu N, Zeng L, Wang W, Wang Y, Zhang P, Hu X, Su X, Liang H, Sun Y, Ma L. Nat Commun 9 2269 (2018)
  24. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. Zhang M, Botër M, Li K, Kadota Y, Panaretou B, Prodromou C, Shirasu K, Pearl LH. EMBO J 27 2789-2798 (2008)
  25. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Zhuang M, Guan S, Wang H, Burlingame AL, Wells JA. Mol Cell 49 273-282 (2013)
  26. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ, Weis WI, Wang CY, Chazin WJ. J Biol Chem 285 13507-13516 (2010)
  27. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Bhatt KV, Hu R, Spofford LS, Aplin AE. Oncogene 26 1056-1066 (2007)
  28. Cks confers specificity to phosphorylation-dependent CDK signaling pathways. McGrath DA, Balog ER, Kõivomägi M, Lucena R, Mai MV, Hirschi A, Kellogg DR, Loog M, Rubin SM. Nat Struct Mol Biol 20 1407-1414 (2013)
  29. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee SW, Jin G, Rezaeian AH, Han F, Wang J, Yang WL, Feng ZZ, Chen W, Wu CY, Wang YJ, Chow LP, Zhu XF, Zeng YX, Lin HK. Nat Commun 6 6641 (2015)
  30. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB, Mittag T, DeCaprio JA, Schulman BA. Mol Cell 47 371-382 (2012)
  31. Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Keszei AF, Tang X, McCormick C, Zeqiraj E, Rohde JR, Tyers M, Sicheri F. Mol Cell Biol 34 362-373 (2014)
  32. Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Mizushima T, Yoshida Y, Kumanomidou T, Hasegawa Y, Suzuki A, Yamane T, Tanaka K. Proc Natl Acad Sci U S A 104 5777-5781 (2007)
  33. Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease. Agarwal A, Bumm TG, Corbin AS, O'Hare T, Loriaux M, VanDyke J, Willis SG, Deininger J, Nakayama KI, Druker BJ, Deininger MW. Blood 112 1960-1970 (2008)
  34. Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. Liberal V, Martinsson-Ahlzén HS, Liberal J, Spruck CH, Widschwendter M, McGowan CH, Reed SI. Proc Natl Acad Sci U S A 109 2754-2759 (2012)
  35. Inhibitors of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and degradation of nuclear p27kip1: therapeutic potential for endometrial cancer. Pavlides SC, Huang KT, Reid DA, Wu L, Blank SV, Mittal K, Guo L, Rothenberg E, Rueda B, Cardozo T, Gold LI. Endocrinology 154 4030-4045 (2013)
  36. Structural basis of selective ubiquitination of TRF1 by SCFFbx4. Zeng Z, Wang W, Yang Y, Chen Y, Yang X, Diehl JA, Liu X, Lei M. Dev Cell 18 214-225 (2010)
  37. Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination. Liu J, Nussinov R. J Biol Chem 286 40934-40942 (2011)
  38. How to decrease p27Kip1 levels during tumor development. Koff A. Cancer Cell 9 75-76 (2006)
  39. Skp2 regulates non-small cell lung cancer cell growth by Meg3 and miR-3163. Su L, Han D, Wu J, Huo X. Tumour Biol 37 3925-3931 (2016)
  40. FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Wang H, Shi H, Rajan M, Canarie ER, Hong S, Simoneschi D, Pagano M, Bush MF, Stoll S, Leibold EA, Zheng N. Mol Cell 78 31-41.e5 (2020)
  41. Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators. Askew EB, Bai S, Hnat AT, Minges JT, Wilson EM. J Biol Chem 284 34793-34808 (2009)
  42. Pin1 catalyzes conformational changes of Thr-187 in p27Kip1 and mediates its stability through a polyubiquitination process. Zhou W, Yang Q, Low CB, Karthik BC, Wang Y, Ryo A, Yao SQ, Yang D, Liou YC. J Biol Chem 284 23980-23988 (2009)
  43. SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. Raducu M, Fung E, Serres S, Infante P, Barberis A, Fischer R, Bristow C, Thézénas ML, Finta C, Christianson JC, Buffa FM, Kessler BM, Sibson NR, Di Marcotullio L, Toftgård R, D'Angiolella V. EMBO J 35 1400-1416 (2016)
  44. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. Havens CG, Shobnam N, Guarino E, Centore RC, Zou L, Kearsey SE, Walter JC. J Biol Chem 287 11410-11421 (2012)
  45. High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. Ungermannova D, Lee J, Zhang G, Dallmann HG, McHenry CS, Liu X. J Biomol Screen 18 910-920 (2013)
  46. LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. Helft L, Reddy V, Chen X, Koller T, Federici L, Fernández-Recio J, Gupta R, Bent A. PLoS One 6 e21614 (2011)
  47. Skp2-mediated p27(Kip1) degradation during S/G2 phase progression of adipocyte hyperplasia. Auld CA, Fernandes KM, Morrison RF. J Cell Physiol 211 101-111 (2007)
  48. Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase. Li Y, Hao B. J Biol Chem 285 13896-13906 (2010)
  49. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Tsai YS, Lai CL, Lai CH, Chang KH, Wu K, Tseng SF, Fazli L, Gleave M, Xiao G, Gandee L, Sharifi N, Moro L, Tzai TS, Hsieh JT. Oncotarget 5 6425-6436 (2014)
  50. A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. Ouni I, Flick K, Kaiser P. Mol Cell 40 954-964 (2010)
  51. Recognition of the Diglycine C-End Degron by CRL2KLHDC2 Ubiquitin Ligase. Rusnac DV, Lin HC, Canzani D, Tien KX, Hinds TR, Tsue AF, Bush MF, Yen HS, Zheng N. Mol Cell 72 813-822.e4 (2018)
  52. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation. Zhang W, Cao L, Sun Z, Xu J, Tang L, Chen W, Luo J, Yang F, Wang Y, Guan X. Cell Cycle 15 1344-1351 (2016)
  53. SIRT2 inhibits non-small cell lung cancer cell growth through impairing Skp2-mediated p27 degradation. Li Z, Huang J, Yuan H, Chen Z, Luo Q, Lu S. Oncotarget 7 18927-18939 (2016)
  54. Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27. García-Gutiérrez L, Bretones G, Molina E, Arechaga I, Symonds C, Acosta JC, Blanco R, Fernández A, Alonso L, Sicinski P, Barbacid M, Santamaría D, León J. Sci Rep 9 18693 (2019)
  55. A truncated two-alpha-helix F-box present in poxvirus ankyrin-repeat proteins is sufficient for binding the SCF1 ubiquitin ligase complex. Sonnberg S, Fleming SB, Mercer AA. J Gen Virol 90 1224-1228 (2009)
  56. SCFFbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression. Werner A, Disanza A, Reifenberger N, Habeck G, Becker J, Calabrese M, Urlaub H, Lorenz H, Schulman B, Scita G, Melchior F. Nat Cell Biol 15 179-188 (2013)
  57. The CDK subunit CKS2 counteracts CKS1 to control cyclin A/CDK2 activity in maintaining replicative fidelity and neurodevelopment. Frontini M, Kukalev A, Leo E, Ng YM, Cervantes M, Cheng CW, Holic R, Dormann D, Tse E, Pommier Y, Yu V. Dev Cell 23 356-370 (2012)
  58. Protein-protein interactions regulate Ubl conjugation. Knipscheer P, Sixma TK. Curr Opin Struct Biol 17 665-673 (2007)
  59. research-article SCF Fbx4/alphaB-crystallin cyclin D1 ubiquitin ligase: a license to destroy. Barbash O, Lin DI, Diehl JA. Cell Div 2 2 (2007)
  60. Activation of ubiquitin ligase SCF(Skp2) by Cks1: insights from hydrogen exchange mass spectrometry. Yao ZP, Zhou M, Kelly SE, Seeliger MA, Robinson CV, Itzhaki LS. J Mol Biol 363 673-686 (2006)
  61. Identification of small molecule inhibitors of p27(Kip1) ubiquitination by high-throughput screening. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H. Cancer Sci 104 1461-1467 (2013)
  62. COP1 enhances ubiquitin-mediated degradation of p27Kip1 to promote cancer cell growth. Choi HH, Phan L, Chou PC, Su CH, Yeung SC, Chen JS, Lee MH. Oncotarget 6 19721-19734 (2015)
  63. FBXO17 promotes cell proliferation through activation of Akt in lung adenocarcinoma cells. Suber TL, Nikolli I, O'Brien ME, Londino J, Zhao J, Chen K, Mallampalli RK, Zhao Y. Respir Res 19 206 (2018)
  64. Hormonal induction of adipogenesis induces Skp2 expression through PI3K and MAPK pathways. Auld CA, Caccia CD, Morrison RF. J Cell Biochem 100 204-216 (2007)
  65. Skp2 knockout reduces cell proliferation and mouse body size: and prevents cancer? Zhu L. Cell Res 20 605-607 (2010)
  66. Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. Magori S, Citovsky V. Front Plant Sci 2 87 (2011)
  67. Novel effect of helenalin on Akt signaling and Skp2 expression in 3T3-L1 preadipocytes. Auld CA, Hopkins RG, Fernandes KM, Morrison RF. Biochem Biophys Res Commun 346 314-320 (2006)
  68. Evidence for cytosolic p27(Kip1) ubiquitylation and degradation during adipocyte hyperplasia. Auld CA, Morrison RF. Obesity (Silver Spring) 14 2136-2144 (2006)
  69. Ubiquitin-dependent proteolysis in G1/S phase control and its relationship with tumor susceptibility. Diehl JA, Ponugoti B. Genes Cancer 1 717-724 (2010)
  70. ERα, SKP2 and E2F-1 form a feed forward loop driving late ERα targets and G1 cell cycle progression. Zhou W, Srinivasan S, Nawaz Z, Slingerland JM. Oncogene 33 2341-2353 (2014)
  71. Evolutionary Approach of Intrinsically Disordered CIP/KIP Proteins. Fahmi M, Ito M. Sci Rep 9 1575 (2019)
  72. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Niemeyer M, Moreno Castillo E, Ihling CH, Iacobucci C, Wilde V, Hellmuth A, Hoehenwarter W, Samodelov SL, Zurbriggen MD, Kastritis PL, Sinz A, Calderón Villalobos LIA. Nat Commun 11 2277 (2020)
  73. Flipping the switch from g1 to s phase with e3 ubiquitin ligases. Rizzardi LF, Cook JG. Genes Cancer 3 634-648 (2012)
  74. Targeted Inhibition of the E3 Ligase SCFSkp2/Cks1 Has Antitumor Activity in RB1-Deficient Human and Mouse Small-Cell Lung Cancer. Zhao H, Iqbal NJ, Sukrithan V, Nicholas C, Xue Y, Yu C, Locker J, Zou J, Schwartz EL, Zhu L. Cancer Res 80 2355-2367 (2020)
  75. alphaB-crystallin is mutant B-RAF regulated and contributes to cyclin D1 turnover in melanocytic cells. Hu R, Aplin AE. Pigment Cell Melanoma Res 23 201-209 (2010)
  76. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. Kratzat S, Nikolova V, Miething C, Hoellein A, Schoeffmann S, Gorka O, Pietschmann E, Illert AL, Ruland J, Peschel C, Nilsson J, Duyster J, Keller U. PLoS One 7 e37433 (2012)
  77. p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Zhao H, Lu Z, Bauzon F, Fu H, Cui J, Locker J, Zhu L. Oncogene 36 60-70 (2017)
  78. Comparative structural analysis of the binding domain of follicle stimulating hormone receptor. Fan QR, Hendrickson WA. Proteins 72 393-401 (2008)
  79. The expression and prognostic significance of Cks1 in salivary cancer. Nagler RM, Ben-Izhak O, Ostrovsky D, Golz A, Hershko DD. Cancer Invest 27 512-520 (2009)
  80. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Chandra Dantu S, Nathubhai Kachariya N, Kumar A. Proteins 84 159-171 (2016)
  81. Skp2B stimulates mammary gland development by inhibiting REA, the repressor of the estrogen receptor. Umanskaya K, Radke S, Chander H, Monardo R, Xu X, Pan ZQ, O'Connell MJ, Germain D. Mol Cell Biol 27 7615-7622 (2007)
  82. Deathproof: new insights on the role of skp2 in tumorigenesis. Reed SI. Cancer Cell 13 88-89 (2008)
  83. SKP1-CULLIN1-F-box (SCF)-mediated DRG2 degradation facilitated chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells. Chen J, Shen BY, Deng XX, Zhan Q, Peng CH. Biochem Biophys Res Commun 420 651-655 (2012)
  84. Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. Zhao H, Bauzon F, Bi E, Yu JJ, Fu H, Lu Z, Cui J, Jeon H, Zang X, Ye BH, Zhu L. J Biol Chem 290 5797-5809 (2015)
  85. Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro. Voloshin O, Bakhrat A, Herrmann S, Raveh D. PLoS One 7 e39210 (2012)
  86. CSN6 deregulation impairs genome integrity in a COP1-dependent pathway. Choi HH, Su CH, Fang L, Zhang J, Yeung SC, Lee MH. Oncotarget 6 11779-11793 (2015)
  87. Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system. Ryu KS, Choi YS, Ko J, Kim SO, Kim HJ, Cheong HK, Jeon YH, Choi BS, Cheong C. BMB Rep 41 852-857 (2008)
  88. Expression of USP2-69 in mesangial cells in vivo and in vitro. Wang S, Wu H, Liu Y, Sun J, Zhao Z, Chen Q, Guo M, Ma D, Zhang Z. Pathol Int 60 184-192 (2010)
  89. Hdm2- and proteasome-dependent turnover limits p21 accumulation during S phase. Ciznadija D, Zhu XH, Koff A. Cell Cycle 10 2714-2723 (2011)
  90. Review of cellular and molecular pathways linking thrombosis and innate immune system during sepsis. Konecny FA. J Res Med Sci 15 348-358 (2010)
  91. Serendipitous SAD Solution for DMSO-Soaked SOCS2-ElonginC-ElonginB Crystals Using Covalently Incorporated Dimethylarsenic: Insights into Substrate Receptor Conformational Flexibility in Cullin RING Ligases. Gadd MS, Bulatov E, Ciulli A. PLoS One 10 e0131218 (2015)
  92. Cks1 promotion of S phase entry and proliferation is independent of p27Kip1 suppression. Hoellein A, Graf S, Bassermann F, Schoeffmann S, Platz U, Hölzlwimmer G, Kröger M, Peschel C, Oostendorp R, Quintanilla-Fend L, Keller U. Mol Cell Biol 32 2416-2427 (2012)
  93. PP2Cgamma-mediated S-phase accumulation induced by the proteasome-dependent degradation of p21(WAF1/CIP1). Suh EJ, Kim TY, Kim SH. FEBS Lett 580 6100-6104 (2006)
  94. Prediction of functional phosphorylation sites by incorporating evolutionary information. Niu S, Wang Z, Ge D, Zhang G, Li Y. Protein Cell 3 675-690 (2012)
  95. The Drosophila F-box protein dSkp2 regulates cell proliferation by targeting Dacapo for degradation. Dui W, Wei B, He F, Lu W, Li C, Liang X, Ma J, Jiao R. Mol Biol Cell 24 1676-87, S1-7 (2013)
  96. Fbxw7 and Skp2 Regulate Stem Cell Switch between Quiescence and Mitotic Division in Lung Adenocarcinoma. Zhang W, Ren Z, Jia L, Li X, Jia X, Han Y. Biomed Res Int 2019 9648269 (2019)
  97. SKP2 targeted inhibition suppresses human uveal melanoma progression by blocking ubiquitylation of p27. Zhao H, Pan H, Wang H, Chai P, Ge S, Jia R, Fan X. Onco Targets Ther 12 4297-4308 (2019)
  98. The F-box protein FBXL16 up-regulates the stability of C-MYC oncoprotein by antagonizing the activity of the F-box protein FBW7. Morel M, Shah KN, Long W. J Biol Chem 295 7970-7980 (2020)
  99. Cks1 activates transcription by binding to the ubiquitylated proteasome. Holic R, Kukalev A, Lane S, Andress EJ, Lau I, Yu CW, Edelmann MJ, Kessler BM, Yu VP. Mol Cell Biol 30 3894-3901 (2010)
  100. Deficiency of Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent Formation of Neuronal Cofilin Aggregates. Kukalev A, Ng YM, Ju L, Saidi A, Lane S, Mondragon A, Dormann D, Walker SE, Grey W, Ho PW, Stephens DN, Carr AM, Lamsa K, Tse E, Yu VPCC. Cereb Cortex 27 11-23 (2017)
  101. S-phase kinase-associated protein 2 impairs the inhibitory effects of miR-1236-3p on bladder tumors. Zhang Q, Miao S, Li C, Cui K, Ge Q, Chen Z. Am J Transl Res 10 731-743 (2018)
  102. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Pavlides SC, Lecanda J, Daubriac J, Pandya UM, Gama P, Blank S, Mittal K, Shukla P, Gold LI. Cell Cycle 15 931-947 (2016)
  103. Cks85A and Skp2 interact to maintain diploidy and promote growth in Drosophila. Ghorbani M, Vasavan B, Kraja E, Swan A. Dev Biol 358 213-223 (2011)
  104. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling. Tsuji T, Yoda T, Shirai T. Sci Rep 5 16341 (2015)
  105. A terminal α3-galactose modification regulates an E3 ubiquitin ligase subunit in Toxoplasma gondii. Mandalasi M, Kim HW, Thieker D, Sheikh MO, Gas-Pascual E, Rahman K, Zhao P, Daniel NG, van der Wel H, Ichikawa HT, Glushka JN, Wells L, Woods RJ, Wood ZA, West CM. J Biol Chem 295 9223-9243 (2020)
  106. Backbone and side chain assignments of human cell cycle regulatory protein S-phase kinase-associated protein 1. Kachariya NN, Dantu SC, Kumar A. Biomol NMR Assign 10 351-355 (2016)
  107. Computationally designed peptide inhibitors of the ubiquitin E3 ligase SCF(Fbx4). Lee J, Sammond DW, Fiorini Z, Saludes JP, Resch MG, Hao B, Wang W, Yin H, Liu X. Chembiochem 14 445-451 (2013)
  108. Repurposing a psychoactive drug for children with cancer: p27Kip1-dependent inhibition of metastatic neuroblastomas by Prozac. Bibbo' S, Lamolinara A, Capone E, Purgato S, Tsakaneli A, Panella V, Sallese M, Rossi C, Ciufici P, Nieddu V, De Laurenzi V, Iezzi M, Perini G, Sala G, Sala A. Oncogenesis 9 3 (2020)
  109. Targeted ubiquitylation: the prey becomes predator. Yan J, Xiong Y. Mol Cell 40 853-855 (2010)
  110. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Baek K, Scott DC, Henneberg LT, King MT, Mann M, Schulman BA. Cell 186 1895-1911.e21 (2023)
  111. Defective import of mitochondrial metabolic enzyme elicits ectopic metabolic stress. Nishio K, Kawarasaki T, Sugiura Y, Matsumoto S, Konoshima A, Takano Y, Hayashi M, Okumura F, Kamura T, Mizushima T, Nakatsukasa K. Sci Adv 9 eadf1956 (2023)
  112. Establishment of high-throughput screening HTRF assay for identification small molecule inhibitors of Skp2-Cks1. Hu K, Li XJ, Asmamaw MD, Shi XJ, Liu HM. Sci Rep 11 21105 (2021)
  113. In silico analysis of a Skp1 protein homolog from the human pathogen E. histolytica. Ghosh R, Biswas P, Das M, Pal S, Dam S. J Parasit Dis 46 998-1010 (2022)
  114. PRMT6-CDC20 facilitates glioblastoma progression via the degradation of CDKN1B. Wang J, Xiao Z, Li P, Wu C, Li Y, Wang Q, Chen Y, Zhou H, Li Z, Wang Z, Lan Q, Wang Y. Oncogene 42 1088-1100 (2023)
  115. Synergy between a cytoplasmic vWFA/VIT protein and a WD40-repeat F-box protein controls development in Dictyostelium. Boland AW, Gas-Pascual E, van der Wel H, Kim HW, West CM. Front Cell Dev Biol 11 1259844 (2023)