1zrp Citations

Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.

Protein Sci. 1 1508-21 (1992)
Cited: 49 times
EuropePMC logo PMID: 1303769

Articles - 1zrp mentioned but not cited (2)

  1. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy. Zheng P, Li H. Biophys. J. 101 1467-1473 (2011)
  2. Type III secretion system effector proteins are mechanically labile. LeBlanc MA, Fink MR, Perkins TT, Sousa MC. Proc Natl Acad Sci U S A 118 e2019566118 (2021)


Reviews citing this publication (7)

  1. The denaturation and degradation of stable enzymes at high temperatures. Daniel RM, Dines M, Petach HH. Biochem. J. 317 ( Pt 1) 1-11 (1996)
  2. Hyperthermophiles: taking the heat and loving it. Rees DC, Adams MW. Structure 3 251-254 (1995)
  3. Histones and chromatin structure in hyperthermophilic Archaea. Grayling RA, Sandman K, Reeve JN. FEMS Microbiol. Rev. 18 203-213 (1996)
  4. Protein engineering for unusual environments. Arnold FH. Curr. Opin. Biotechnol. 4 450-455 (1993)
  5. Thermostability and thermoactivity of enzymes from hyperthermophilic Archaea. Adams MW, Kelly RM. Bioorg. Med. Chem. 2 659-667 (1994)
  6. Structural components and architectures of RNA exosomes. Januszyk K, Lima CD. Adv. Exp. Med. Biol. 702 9-28 (2010)
  7. Solution NMR Studies of Mycobacterium tuberculosis Proteins for Antibiotic Target Discovery. Kim DH, Kang SM, Lee BJ. Molecules 22 (2017)

Articles citing this publication (40)

  1. Structure of the carboxy-terminal LIM domain from the cysteine rich protein CRP. Pérez-Alvarado GC, Miles C, Michelsen JW, Louis HA, Winge DR, Beckerle MC, Summers MF. Nat. Struct. Biol. 1 388-398 (1994)
  2. Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Jaenicke R. Proc. Natl. Acad. Sci. U.S.A. 97 2962-2964 (2000)
  3. Letter The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Zhu W, Zeng Q, Colangelo CM, Lewis M, Summers MF, Scott RA. Nat. Struct. Biol. 3 122-124 (1996)
  4. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J. Proc. Natl. Acad. Sci. U.S.A. 93 8836-8840 (1996)
  5. Extremozymes: expanding the limits of biocatalysis. Adams MW, Perler FB, Kelly RM. Biotechnology (N.Y.) 13 662-668 (1995)
  6. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Lazaridis T, Lee I, Karplus M. Protein Sci. 6 2589-2605 (1997)
  7. Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Hiller R, Zhou ZH, Adams MW, Englander SW. Proc. Natl. Acad. Sci. U.S.A. 94 11329-11332 (1997)
  8. Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR structure of the complex with the Psi-site analog, dACGCC. South TL, Summers MF. Protein Sci. 2 3-19 (1993)
  9. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I. J. Mol. Biol. 284 101-124 (1998)
  10. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. Martinez-Yamout M, Legge GB, Zhang O, Wright PE, Dyson HJ. J. Mol. Biol. 300 805-818 (2000)
  11. Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability. Usher KC, de la Cruz AF, Dahlquist FW, Swanson RV, Simon MI, Remington SJ. Protein Sci. 7 403-412 (1998)
  12. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Hoaki T, Nishijima M, Kato M, Adachi K, Mizobuchi S, Hanzawa N, Maruyama T. Appl. Environ. Microbiol. 60 2898-2904 (1994)
  13. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Wang B, Jones DN, Kaine BP, Weiss MA. Structure 6 555-569 (1998)
  14. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain. Proudfoot M, Sanders SA, Singer A, Zhang R, Brown G, Binkowski A, Xu L, Lukin JA, Murzin AG, Joachimiak A, Arrowsmith CH, Edwards AM, Savchenko AV, Yakunin AF. J. Mol. Biol. 375 301-315 (2008)
  15. Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin. Grottesi A, Ceruso MA, Colosimo A, Di Nola A. Proteins 46 287-294 (2002)
  16. Effect of heat treatment on proper oligomeric structure formation of thermostable glutamate dehydrogenase from a hyperthermophilic archaeon. Abd Rahman RN, Fujiwara S, Takagi M, Kanaya S, Imanaka T. Biochem. Biophys. Res. Commun. 241 646-652 (1997)
  17. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus. Thorgersen MP, Stirrett K, Scott RA, Adams MW. Proc. Natl. Acad. Sci. U.S.A. 109 18547-18552 (2012)
  18. Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Diruggiero J, Robb FT. Appl. Environ. Microbiol. 61 159-164 (1995)
  19. Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin. Min T, Ergenekan CE, Eidsness MK, Ichiye T, Kang C. Protein Sci. 10 613-621 (2001)
  20. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability. Richie KA, Teng Q, Elkin CJ, Kurtz DM. Protein Sci. 5 883-894 (1996)
  21. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Yelle RB, Park NS, Ichiye T. Proteins 22 154-167 (1995)
  22. Miniaturized metalloproteins: application to iron-sulfur proteins. Lombardi A, Marasco D, Maglio O, Di Costanzo L, Nastri F, Pavone V. Proc. Natl. Acad. Sci. U.S.A. 97 11922-11927 (2000)
  23. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids. LeMaster DM, Tang J, Paredes DI, Hernández G. Proteins 61 608-616 (2005)
  24. Neutron crystallographic study on rubredoxin from Pyrococcus furiosus by BIX-3, a single-crystal diffractometer for biomacromolecules. Kurihara K, Tanaka I, Chatake T, Adams MW, Jenney FE, Moiseeva N, Bau R, Niimura N. Proc. Natl. Acad. Sci. U.S.A. 101 11215-11220 (2004)
  25. Characterizing protein crystal contacts and their role in crystallization: rubredoxin as a case study. Fusco D, Headd JJ, De Simone A, Wang J, Charbonneau P. Soft Matter 10 290-302 (2014)
  26. Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein. Blake PR, Day MW, Hsu BT, Joshua-Tor L, Park JB, Hare DR, Adams MW, Rees DC, Summers MF. Protein Sci. 1 1522-1525 (1992)
  27. Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. Lee HJ, Lian LY, Scrutton NS. Biochem. J. 328 ( Pt 1) 131-136 (1997)
  28. Estimating the accuracy of protein structures using residual dipolar couplings. Simon K, Xu J, Kim C, Skrynnikov NR. J. Biomol. NMR 33 83-93 (2005)
  29. Structures of DNA-binding mutant zinc finger domains: implications for DNA binding. Hoffman RC, Horvath SJ, Klevit RE. Protein Sci. 2 951-965 (1993)
  30. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. Perry A, Lian LY, Scrutton NS. Biochem. J. 354 89-98 (2001)
  31. Additivity in both thermodynamic stability and thermal transition temperature for rubredoxin chimeras via hybrid native partitioning. LeMaster DM, Hernández G. Structure 13 1153-1163 (2005)
  32. Identification and characterization of a eukaryotically encoded rubredoxin in a cryptomonad alga. Wastl J, Sticht H, Maier UG, Rösch P, Hoffmann S. FEBS Lett. 471 191-196 (2000)
  33. Investigations of the thermostability of rubredoxin models using molecular dynamics simulations. Bradley EA, Stewart DE, Adams MW, Wampler JE. Protein Sci. 2 650-665 (1993)
  34. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics. Tan ML, Bizzarri AR, Xiao Y, Cannistraro S, Ichiye T, Manzoni C, Cerullo G, Adams MW, Jenney FE, Cramer SP. J. Inorg. Biochem. 101 375-384 (2007)
  35. 1H NMR investigation of the secondary structure, tertiary contacts and cluster environment of the four-iron ferredoxin from the hyperthermophilic archaeon Thermococcus litoralis. Donaire A, Zhou ZH, Adams MM, La Mar GN. J. Biomol. NMR 7 35-47 (1996)
  36. Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures. Wampler JE, Bradley EA, Stewart DE, Adams MW. Protein Sci. 2 640-649 (1993)
  37. Structural features of the metal binding site and dynamics of gallium putidaredoxin, a diamagnetic derivative of a Cys4Fe2S2 ferredoxin. Kazanis S, Pochapsky TC. J. Biomol. NMR 9 337-346 (1997)
  38. Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga Guillardia theta. Schweimer K, Hoffmann S, Wastl J, Maier UG, Rösch P, Sticht H. Protein Sci. 9 1474-1486 (2000)
  39. Residue cluster additivity of thermodynamic stability in the hydrophobic core of mesophile vs. hyperthermophile rubredoxins. LeMaster DM, Hernández G. Biophys. Chem. 125 483-489 (2007)
  40. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding. Chandrayan SK, Prakash S, Ahmed S, Guptasarma P. PLoS ONE 9 e80014 (2014)


Related citations provided by authors (4)