1zqn Citations

Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis.

Abstract

X-ray crystallographic studies have shown that DNA binding by human polymerase beta (pol beta) occurs primarily through two structurally and sequentially homologous helix-hairpin-helix (HhH) motifs, one in the fingers subdomain and the other in the 8-kDa domain [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996a) Biochemistry 35, 12742-12761]. In that DNA binding by each HhH motif is facilitated by a metal ion, we set out to determine the identity of the metal ion that most likely binds to the HhH motif in vivo. Crystal soaking experiments were performed on human pol beta-DNA cocrystals with Mg2+, Ca2+, Na+, and K+, the four most prevalent metal ions in the cell, and in each case a data set was collected and the resulting structure was refined. Under the conditions tested, the HhH motifs of pol beta have an affinity for these biologically prevalent metal ions in the order Mg2+ < Ca2+ < Na+ < K+, with K+ displaying the strongest binding. Crystals soaked in the presence of Tl+, a commonly used spectroscopic probe for K+, were too X-ray-sensitive to establish the binding behavior of Tl+, but soaking experiments with Ba2+ and Cs+ resulted in relatively stable crystals that gave evidence of metal ion binding in both HhH motifs, confirming that larger monovalent and divalent metal ions are capable of binding to the HhH metal sites. Although Mn2+, which has been categorized as a potent polymerase mutagen, binds to the HhH motifs with a greater affinity than Mg2+, Mn2+ does not bind to the HhH motifs in the presence of equimolar concentrations of Na+. These results suggest that in vivo, where Mn2+ is present only in trace amounts, Mn2+ probably does not have a large effect on DNA binding and may instead manifest a mutagenic effect on pol beta primarily by distorting nucleotide binding or by directly affecting the catalytic step [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996b) Biochemistry 35, 12762-12777]. Crystal soaking experiments with 31-kDa apoenzyme crystals show that, in the absence of DNA, the HhH motif in the fingers subdomain binds metal ions with either much lower occupancy or not at all, indicating that metal ion binding is dependent on the presence of the DNA substrate.

Articles - 1zqn mentioned but not cited (1)

  1. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (5)

  1. Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Beard WA, Horton JK, Prasad R, Wilson SH. Annu Rev Biochem 88 137-162 (2019)
  2. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway. Parikh SS, Mol CD, Tainer JA. Structure 5 1543-1550 (1997)
  3. Unpairing and gating: sequence-independent substrate recognition by FEN superfamily nucleases. Grasby JA, Finger LD, Tsutakawa SE, Atack JM, Tainer JA. Trends Biochem Sci 37 74-84 (2012)
  4. A novel function of adenomatous polyposis coli (APC) in regulating DNA repair. Jaiswal AS, Narayan S. Cancer Lett 271 272-280 (2008)
  5. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Ordóñez CD, Redrejo-Rodríguez M. Int J Mol Sci 24 9331 (2023)

Articles citing this publication (37)

  1. Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. Jones S, Shanahan HP, Berman HM, Thornton JM. Nucleic Acids Res 31 7189-7198 (2003)
  2. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. Hollis T, Ichikawa Y, Ellenberger T. EMBO J 19 758-766 (2000)
  3. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Rissland OS, Mikulasova A, Norbury CJ. Mol Cell Biol 27 3612-3624 (2007)
  4. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. Delarue M, Boulé JB, Lescar J, Expert-Bezançon N, Jourdan N, Sukumar N, Rougeon F, Papanicolaou C. EMBO J 21 427-439 (2002)
  5. Common fold in helix-hairpin-helix proteins. Shao X, Grishin NV. Nucleic Acids Res 28 2643-2650 (2000)
  6. A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology. Garcia-Diaz M, Bebenek K, Krahn JM, Blanco L, Kunkel TA, Pedersen LC. Mol Cell 13 561-572 (2004)
  7. Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme. Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O. Genes Cells 7 639-651 (2002)
  8. Characterization of an African swine fever virus 20-kDa DNA polymerase involved in DNA repair. Oliveros M, Yáñez RJ, Salas ML, Salas J, Viñuela E, Blanco L. J Biol Chem 272 30899-30910 (1997)
  9. Three-dimensional structure analysis of PROSITE patterns. Kasuya A, Thornton JM. J Mol Biol 286 1673-1691 (1999)
  10. Structure of rat BCKD kinase: nucleotide-induced domain communication in a mitochondrial protein kinase. Machius M, Chuang JL, Wynn RM, Tomchick DR, Chuang DT. Proc Natl Acad Sci U S A 98 11218-11223 (2001)
  11. UTP-bound and Apo structures of a minimal RNA uridylyltransferase. Stagno J, Aphasizheva I, Rosengarth A, Luecke H, Aphasizhev R. J Mol Biol 366 882-899 (2007)
  12. Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli. Singh S, Folkers GE, Bonvin AM, Boelens R, Wechselberger R, Niztayev A, Kaptein R. EMBO J 21 6257-6266 (2002)
  13. The inhibitory effect of novel triterpenoid compounds, fomitellic acids, on DNA polymerase beta. Mizushina Y, Tanaka N, Kitamura A, Tamai K, Ikeda M, Takemura M, Sugawara F, Arai T, Matsukage A, Yoshida S, Sakaguchi K. Biochem J 330 ( Pt 3) 1325-1332 (1998)
  14. Structural similarities between Escherichia coli RuvA protein and other DNA-binding proteins and a mutational analysis of its binding to the holliday junction. Rafferty JB, Ingleston SM, Hargreaves D, Artymiuk PJ, Sharples GJ, Lloyd RG, Rice DW. J Mol Biol 278 105-116 (1998)
  15. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. J Biol Chem 289 16541-16550 (2014)
  16. Kinetic study of various binding modes between human DNA polymerase beta and different DNA substrates by surface-plasmon-resonance biosensor. Tsoi PY, Yang M. Biochem J 361 317-325 (2002)
  17. Protein secondary structure mimetics: crystal conformations of α/γ4-hybrid peptide12-helices with proteinogenic side chains and their analogy with α- and β-peptide helices. Jadhav SV, Bandyopadhyay A, Gopi HN. Org Biomol Chem 11 509-514 (2013)
  18. Solution structures of 2 : 1 and 1 : 1 DNA polymerase-DNA complexes probed by ultracentrifugation and small-angle X-ray scattering. Tang KH, Niebuhr M, Aulabaugh A, Tsai MD. Nucleic Acids Res 36 849-860 (2008)
  19. Crystal structures of TM0549 and NE1324--two orthologs of E. coli AHAS isozyme III small regulatory subunit. Petkowski JJ, Chruszcz M, Zimmerman MD, Zheng H, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A, Minor W. Protein Sci 16 1360-1367 (2007)
  20. The C-terminal lysine of Ogg2 DNA glycosylases is a major molecular determinant for guanine/8-oxoguanine distinction. Faucher F, Wallace SS, Doublié S. J Mol Biol 397 46-56 (2010)
  21. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Moscato B, Swain M, Loria JP. Biochemistry 55 382-395 (2016)
  22. Mismatched dNTP incorporation by DNA polymerase beta does not proceed via globally different conformational pathways. Tang KH, Niebuhr M, Tung CS, Chan HC, Chou CC, Tsai MD. Nucleic Acids Res 36 2948-2957 (2008)
  23. The biochemical mode of inhibition of DNA polymerase beta by alpha-rubromycin. Mizushina Y, Ueno T, Oda M, Yamaguchi T, Saneyoshi M, Sakaguchi K. Biochim Biophys Acta 1523 172-181 (2000)
  24. Characterization of terminal deoxynucleotidyl transferase and polymerase mu in zebrafish. Beetz S, Diekhoff D, Steiner LA. Immunogenetics 59 735-744 (2007)
  25. Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. Faucher F, Wallace SS, Doublié S. DNA Repair (Amst) 8 1283-1289 (2009)
  26. Structural insights on the pamoic acid and the 8 kDa domain of DNA polymerase beta complex: towards the design of higher-affinity inhibitors. Hazan C, Boudsocq F, Gervais V, Saurel O, Ciais M, Cazaux C, Czaplicki J, Milon A. BMC Struct Biol 8 22 (2008)
  27. Structural changes in the hydrophobic hinge region adversely affect the activity and fidelity of the I260Q mutator DNA polymerase β. Gridley CL, Rangarajan S, Firbank S, Dalal S, Sweasy JB, Jaeger J. Biochemistry 52 4422-4432 (2013)
  28. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces. Abyzov A, Uzun A, Strauss PR, Ilyin VA. PLoS Comput Biol 4 e1000066 (2008)
  29. High-resolution crystal structure of Z-DNA in complex with Cr(3+) cations. Drozdzal P, Gilski M, Kierzek R, Lomozik L, Jaskolski M. J Biol Inorg Chem 20 595-602 (2015)
  30. The structure of Escherichia coli ExoIX--implications for DNA binding and catalysis in flap endonucleases. Anstey-Gilbert CS, Hemsworth GR, Flemming CS, Hodskinson MR, Zhang J, Sedelnikova SE, Stillman TJ, Sayers JR, Artymiuk PJ. Nucleic Acids Res 41 8357-8367 (2013)
  31. Characterization of DNA polymerase β from Danio rerio by overexpression in E. coli using the in vivo/in vitro compatible pIVEX plasmid. Ishido T, Yamazaki N, Ishikawa M, Hirano K. Microb Cell Fact 10 84 (2011)
  32. Structural Insights into the Mechanism of Base Excision by MBD4. Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. J Mol Biol 433 167097 (2021)
  33. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Gomez-Raya-Vilanova MV, Leskinen K, Bhattacharjee A, Virta P, Rosenqvist P, Smith JLR, Bayfield OW, Homberger C, Kerrinnes T, Vogel J, Pajunen MI, Skurnik M. Nucleic Acids Res 50 3985-3997 (2022)
  34. Transitions in DNA polymerase β μs-ms dynamics related to substrate binding and catalysis. DeRose EF, Kirby TW, Mueller GA, Beard WA, Wilson SH, London RE. Nucleic Acids Res 46 7309-7322 (2018)
  35. Engineered viral DNA polymerase with enhanced DNA amplification capacity: a proof-of-concept of isothermal amplification of damaged DNA. Ordóñez CD, Lechuga A, Salas M, Redrejo-Rodríguez M. Sci Rep 10 15046 (2020)
  36. Polβ/XRCC1 heterodimerization dictates DNA damage recognition and basal Polβ protein levels without interfering with mouse viability or fertility. Koczor CA, Thompson MK, Sharma N, Prakash A, Sobol RW. DNA Repair (Amst) 123 103452 (2023)
  37. Study of the inhibitory effect of fatty acids on the interaction between DNA and polymerase beta. Yang J, Yang J, Yin ZQ, Xu J, Hu N, Svir I, Wang M, Li YY, Zhan L, Wu S, Zheng XL. Biochemistry (Mosc) 74 813-818 (2009)


Related citations provided by authors (7)

  1. Crystal Structures of Human DNA Polymerase Beta Complexed with Nicked and Gapped DNA Substrates. Sawaya MR, Rawson T, Wilson SH, Kraut J, Pelletier H To be Published -
  2. The Role of Thumb Movement and Template Bending in Polymerase Fidelity. Pelletier H To be Published -
  3. Crystal Structures of Human DNA Polymerase Beta Complexed with DNA; Implications for Catalytic Mechanism, Processivity, and Fidelity. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J Biochemistry 35 12742- (1996)
  4. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J Biochemistry 35 12762-77 (1996)
  5. Polymerase Structures and Mechanism. Pelletier H Science 266 2025- (1994)
  6. Structures of Ternary Complexes of Rat DNA Polymerase Beta, a DNA Template- Primer, and ddCTP. Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J Science 264 1891- (1994)
  7. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism.. Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J Science 264 1930-5 (1994)