1z6a Citations

X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA.

Cell 121 363-73 (2005)
Related entries: 1z5z, 1z63

Cited: 192 times
EuropePMC logo PMID: 15882619

Abstract

SWI2/SNF2 ATPases remodel chromatin or other DNA:protein complexes by a poorly understood mechanism that involves ATP-dependent DNA translocation and generation of superhelical torsion. Crystal structures of a dsDNA-translocating SWI2/SNF2 ATPase core from Sulfolobus solfataricus reveal two helical SWI2/SNF2 specific subdomains, fused to a DExx box helicase-related ATPase core. Fully base paired duplex DNA binds along a central cleft via both minor groove strands, indicating that SWI2/SNF2 ATPases travel along the dsDNA minor groove without strand separation. A structural switch, linking DNA binding and the active site DExx motif, may account for the stimulation of ATPase activity by dsDNA. Our results suggest that torque in remodeling processes is generated by an ATP-driven screw motion of DNA along the active site cleft. The structures also redefine SWI2/SNF2 functional motifs and uncover unexpected structural correlation of mutations in Cockayne and X-linked mental retardation syndromes.

Articles - 1z6a mentioned but not cited (9)

  1. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Flaus A, Martin DM, Barton GJ, Owen-Hughes T. Nucleic Acids Res 34 2887-2905 (2006)
  2. A protein-DNA docking benchmark. van Dijk M, Bonvin AM. Nucleic Acids Res 36 e88 (2008)
  3. Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription. Shaw G, Gan J, Zhou YN, Zhi H, Subburaman P, Zhang R, Joachimiak A, Jin DJ, Ji X. Structure 16 1417-1427 (2008)
  4. Subunit Rtt102 controls the conformation of the Arp7/9 heterodimer and its interactions with nucleotide and the catalytic subunit of SWI/SNF remodelers. Turegun B, Kast DJ, Dominguez R. J Biol Chem 288 35758-35768 (2013)
  5. Expression of EhRAD54, EhRAD51, and EhBLM proteins during DNA repair by homologous recombination in Entamoeba histolytica. Charcas-Lopez Mdel S, Garcia-Morales L, Pezet-Valdez M, Lopez-Camarillo C, Zamorano-Carrillo A, Marchat LA. Parasite 21 7 (2014)
  6. Molecular Mechanism of Mot1, a TATA-binding Protein (TBP)-DNA Dissociating Enzyme. Viswanathan R, True JD, Auble DT. J Biol Chem 291 15714-15726 (2016)
  7. 'Hot' macromolecular crystals. Koclega KD, Chruszcz M, Zimmerman MD, Bujacz G, Minor W. Cryst Growth Des 10 580 (2009)
  8. Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state. Butryn A, Woike S, Shetty SJ, Auble DT, Hopfner KP. Elife 7 e37774 (2018)
  9. Crystal structure of the ATPase-C domain of the chromatin remodeller Fun30 from Saccharomyces cerevisiae. Liu L, Jiang T. Acta Crystallogr F Struct Biol Commun 73 9-15 (2017)


Reviews citing this publication (41)

  1. Structure and mechanism of helicases and nucleic acid translocases. Singleton MR, Dillingham MS, Wigley DB. Annu Rev Biochem 76 23-50 (2007)
  2. SF1 and SF2 helicases: family matters. Fairman-Williams ME, Guenther UP, Jankowsky E. Curr Opin Struct Biol 20 313-324 (2010)
  3. Chromatin remodelling: the industrial revolution of DNA around histones. Saha A, Wittmeyer J, Cairns BR. Nat Rev Mol Cell Biol 7 437-447 (2006)
  4. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Cell 154 490-503 (2013)
  5. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Hodges C, Kirkland JG, Crabtree GR. Cold Spring Harb Perspect Med 6 a026930 (2016)
  6. Structural basis of transcription initiation by RNA polymerase II. Sainsbury S, Bernecky C, Cramer P. Nat Rev Mol Cell Biol 16 129-143 (2015)
  7. Rad54: the Swiss Army knife of homologous recombination? Heyer WD, Li X, Rolfsmeier M, Zhang XP. Nucleic Acids Res 34 4115-4125 (2006)
  8. Chromatin remodeling: insights and intrigue from single-molecule studies. Cairns BR. Nat Struct Mol Biol 14 989-996 (2007)
  9. Regulating the chromatin landscape: structural and mechanistic perspectives. Bartholomew B. Annu Rev Biochem 83 671-696 (2014)
  10. Rad54, the motor of homologous recombination. Mazin AV, Mazina OM, Bugreev DV, Rossi MJ. DNA Repair (Amst) 9 286-302 (2010)
  11. A structure-based model of RIG-I activation. Kolakofsky D, Kowalinski E, Cusack S. RNA 18 2118-2127 (2012)
  12. Mechanisms of ATP dependent chromatin remodeling. Gangaraju VK, Bartholomew B. Mutat Res 618 3-17 (2007)
  13. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Ceballos SJ, Heyer WD. Biochim Biophys Acta 1809 509-523 (2011)
  14. Structural insights into transcription initiation by RNA polymerase II. Grünberg S, Hahn S. Trends Biochem Sci 38 603-611 (2013)
  15. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Dürr H, Flaus A, Owen-Hughes T, Hopfner KP. Nucleic Acids Res 34 4160-4167 (2006)
  16. Mechanisms for ATP-dependent chromatin remodelling: the means to the end. Flaus A, Owen-Hughes T. FEBS J 278 3579-3595 (2011)
  17. Chromatin remodelers: We are the drivers!! Tyagi M, Imam N, Imam N, Verma K, Patel AK. Nucleus 7 388-404 (2016)
  18. Superfamily 2 helicases. Byrd AK, Raney KD. Front Biosci (Landmark Ed) 17 2070-2088 (2012)
  19. Comparative genomics and structural biology of the molecular innovations of eukaryotes. Aravind L, Iyer LM, Koonin EV. Curr Opin Struct Biol 16 409-419 (2006)
  20. ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Racki LR, Narlikar GJ. Curr Opin Genet Dev 18 137-144 (2008)
  21. Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Varga-Weisz PD, Becker PB. Curr Opin Genet Dev 16 151-156 (2006)
  22. ATP-dependent chromatin remodeling complexes in Drosophila. Bouazoune K, Brehm A. Chromosome Res 14 433-449 (2006)
  23. Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Hopfner KP, Gerhold CB, Lakomek K, Wollmann P. Curr Opin Struct Biol 22 225-233 (2012)
  24. Duplex RNA activated ATPases (DRAs): platforms for RNA sensing, signaling and processing. Luo D, Kohlway A, Pyle AM. RNA Biol 10 111-120 (2013)
  25. NO sparks off chromatin: tales of a multifaceted epigenetic regulator. Illi B, Colussi C, Grasselli A, Farsetti A, Capogrossi MC, Gaetano C. Pharmacol Ther 123 344-352 (2009)
  26. Diversity of operation in ATP-dependent chromatin remodelers. Hota SK, Bartholomew B. Biochim Biophys Acta 1809 476-487 (2011)
  27. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Thomsen ND, Berger JM. Mol Microbiol 69 1071-1090 (2008)
  28. Histone post-translational modifications and the response to DNA double-strand breaks. Wurtele H, Verreault A. Curr Opin Cell Biol 18 137-144 (2006)
  29. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Hopfner KP, Michaelis J. Curr Opin Struct Biol 17 87-95 (2007)
  30. The bacterial transcription repair coupling factor. Deaconescu AM, Savery N, Darst SA. Curr Opin Struct Biol 17 96-102 (2007)
  31. ISWI chromatin remodeling: one primary actor or a coordinated effort? Bartholomew B. Curr Opin Struct Biol 24 150-155 (2014)
  32. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  33. Biophysics of Chromatin Remodeling. Nodelman IM, Bowman GD. Annu Rev Biophys 50 73-93 (2021)
  34. The role of ATP-dependent machines in regulating genome topology. Hauk G, Berger JM. Curr Opin Struct Biol 36 85-96 (2016)
  35. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? Viswanathan R, Auble DT. Biochim Biophys Acta 1809 488-496 (2011)
  36. Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription. Jin DJ, Zhou YN, Shaw G, Ji X. Biochim Biophys Acta 1809 470-475 (2011)
  37. NO points to epigenetics in vascular development. Illi B, Colussi C, Rosati J, Spallotta F, Nanni S, Farsetti A, Capogrossi MC, Gaetano C. Cardiovasc Res 90 447-456 (2011)
  38. Chromatin remodelling comes into focus. Sundaramoorthy R, Owen-Hughes T. F1000Res 9 F1000 Faculty Rev-1011 (2020)
  39. Remodeler Catalyzed Nucleosome Repositioning: Influence of Structure and Stability. Morgan A, LeGresley S, Fischer C. Int J Mol Sci 22 E76 (2020)
  40. Probing the structure and function of polymerase θ helicase-like domain. Vanson S, Li Y, Wood RD, Doublié S. DNA Repair (Amst) 116 103358 (2022)
  41. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Nat Rev Mol Cell Biol (2023)

Articles citing this publication (142)

  1. A long noncoding RNA protects the heart from pathological hypertrophy. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP. Nature 514 102-106 (2014)
  2. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S. Cell 147 423-435 (2011)
  3. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M, Patel SS, Marcotrigiano J. Nature 479 423-427 (2011)
  4. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Lee JY, Yang W. Cell 127 1349-1360 (2006)
  5. Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA. Myong S, Cui S, Cornish PV, Kirchhofer A, Gack MU, Jung JU, Hopfner KP, Ha T. Science 323 1070-1074 (2009)
  6. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Bétous R, Carroll CM, Jung SY, Qin J, Cimprich KA, Cortez D. Genes Dev 27 1610-1623 (2013)
  7. Structural basis for DNA duplex separation by a superfamily-2 helicase. Büttner K, Nehring S, Hopfner KP. Nat Struct Mol Biol 14 647-652 (2007)
  8. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Bétous R, Mason AC, Rambo RP, Bansbach CE, Badu-Nkansah A, Sirbu BM, Eichman BF, Cortez D. Genes Dev 26 151-162 (2012)
  9. Near-atomic resolution visualization of human transcription promoter opening. He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Nature 533 359-365 (2016)
  10. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Hauk G, McKnight JN, Nodelman IM, Bowman GD. Mol Cell 39 711-723 (2010)
  11. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Saha A, Wittmeyer J, Cairns BR. Nat Struct Mol Biol 12 747-755 (2005)
  12. Structural basis for bacterial transcription-coupled DNA repair. Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, Darst SA. Cell 124 507-520 (2006)
  13. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Tosi A, Haas C, Herzog F, Gilmozzi A, Berninghausen O, Ungewickell C, Gerhold CB, Lakomek K, Aebersold R, Beckmann R, Hopfner KP. Cell 154 1207-1219 (2013)
  14. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Yen K, Vinayachandran V, Pugh BF. Cell 154 1246-1256 (2013)
  15. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, Pasquier L, Odent S, Cormier-Daire V, Gener B, Tobias ES, Tolmie JL, Martin-Coignard D, Drouin-Garraud V, Heron D, Journel H, Raffo E, Vigneron J, Lyonnet S, Murday V, Gubser-Mercati D, Funalot B, Brueton L, Sanchez Del Pozo J, Muñoz E, Gennery AR, Salih M, Noruzinia M, Prescott K, Ramos L, Stark Z, Fieggen K, Chabrol B, Sarda P, Edery P, Bloch-Zupan A, Fawcett H, Pham D, Egly JM, Lehmann AR, Sarasin A, Dollfus H. Hum Mutat 31 113-126 (2010)
  16. HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal. Kile AC, Chavez DA, Bacal J, Eldirany S, Korzhnev DM, Bezsonova I, Eichman BF, Cimprich KA. Mol Cell 58 1090-1100 (2015)
  17. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Liu X, Li M, Xia X, Li X, Chen Z. Nature 544 440-445 (2017)
  18. Nucleosome-Chd1 structure and implications for chromatin remodelling. Farnung L, Vos SM, Wigge C, Cramer P. Nature 550 539-542 (2017)
  19. Structure and mechanism of the chromatin remodelling factor ISW1a. Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ. Nature 472 448-453 (2011)
  20. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Bultman SJ, Gebuhr TC, Magnuson T. Genes Dev 19 2849-2861 (2005)
  21. Substrate-selective repair and restart of replication forks by DNA translocases. Bétous R, Couch FB, Mason AC, Eichman BF, Manosas M, Cortez D. Cell Rep 3 1958-1969 (2013)
  22. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, Cooke R, Cheng Y, Narlikar GJ. Nature 462 1016-1021 (2009)
  23. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Amitani I, Baskin RJ, Kowalczykowski SC. Mol Cell 23 143-148 (2006)
  24. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Eustermann S, Schall K, Kostrewa D, Lakomek K, Strauss M, Moldt M, Hopfner KP. Nature 556 386-390 (2018)
  25. Mechanistic basis of 5'-3' translocation in SF1B helicases. Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. Cell 137 849-859 (2009)
  26. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Chaban Y, Ezeokonkwo C, Chung WH, Zhang F, Kornberg RD, Maier-Davis B, Lorch Y, Asturias FJ. Nat Struct Mol Biol 15 1272-1277 (2008)
  27. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. Ferreira H, Flaus A, Owen-Hughes T. J Mol Biol 374 563-579 (2007)
  28. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Thorslund T, von Kobbe C, Harrigan JA, Indig FE, Christiansen M, Stevnsner T, Bohr VA. Mol Cell Biol 25 7625-7636 (2005)
  29. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA, Bergmann AK, Betts MJ, Carrillo-de-Santa-Pau E, Doose G, Gutwein J, Richter J, Hovestadt V, Huang B, Rico D, Jühling F, Kolarova J, Lu Q, Otto C, Wagener R, Arnolds J, Burkhardt B, Claviez A, Drexler HG, Eberth S, Eils R, Flicek P, Haas S, Humme M, Karsch D, Kerstens HHD, Klapper W, Kreuz M, Lawerenz C, Lenzek D, Loeffler M, López C, MacLeod RAF, Martens JHA, Kulis M, Martín-Subero JI, Möller P, Nage I, Picelli S, Vater I, Rohde M, Rosenstiel P, Rosolowski M, Russell RB, Russell RB, Schilhabel M, Schlesner M, Stadler PF, Szczepanowski M, Trümper L, Stunnenberg HG, Küppers R, Ammerpohl O, Lichter P, Siebert R, Hoffmann S, Radlwimmer B. Nat Genet 47 1316-1325 (2015)
  30. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Dang W, Bartholomew B. Mol Cell Biol 27 8306-8317 (2007)
  31. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Musselman CA, Ramírez J, Sims JK, Mansfield RE, Oliver SS, Denu JM, Mackay JP, Wade PA, Hagman J, Kutateladze TG. Proc Natl Acad Sci U S A 109 787-792 (2012)
  32. UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Lake RJ, Geyko A, Hemashettar G, Zhao Y, Fan HY. Mol Cell 37 235-246 (2010)
  33. INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Brahma S, Udugama MI, Kim J, Hada A, Bhardwaj SK, Hailu SG, Lee TH, Bartholomew B. Nat Commun 8 15616 (2017)
  34. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. Civril F, Bennett M, Moldt M, Deimling T, Witte G, Schiesser S, Carell T, Hopfner KP. EMBO Rep 12 1127-1134 (2011)
  35. RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Li X, Heyer WD. Nucleic Acids Res 37 638-646 (2009)
  36. Mechanism of chromatin remodeling. Lorch Y, Maier-Davis B, Kornberg RD. Proc Natl Acad Sci U S A 107 3458-3462 (2010)
  37. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Wang Z, Ma Z, Castillo-González C, Sun D, Li Y, Yu B, Zhao B, Li P, Zhang X. Nature 557 516-521 (2018)
  38. Molecular insights into the recruitment of TFIIH to sites of DNA damage. Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly JM, Coin F. EMBO J 28 2971-2980 (2009)
  39. Quality control of a transcriptional regulator by SUMO-targeted degradation. Wang Z, Prelich G. Mol Cell Biol 29 1694-1706 (2009)
  40. PICH: a DNA translocase specially adapted for processing anaphase bridge DNA. Biebricher A, Hirano S, Enzlin JH, Wiechens N, Streicher WW, Huttner D, Wang LH, Nigg EA, Owen-Hughes T, Liu Y, Peterman E, Wuite GJL, Hickson ID. Mol Cell 51 691-701 (2013)
  41. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. EMBO J 30 2364-2372 (2011)
  42. The cryo-electron microscopy structure of human transcription factor IIH. Greber BJ, Nguyen THD, Fang J, Afonine PV, Adams PD, Nogales E. Nature 549 414-417 (2017)
  43. The molecular mechanism of transcription-coupled DNA repair. Savery NJ. Trends Microbiol 15 326-333 (2007)
  44. Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. Marq JB, Hausmann S, Veillard N, Kolakofsky D, Garcin D. J Biol Chem 286 6108-6116 (2011)
  45. Prespacer processing and specific integration in a Type I-A CRISPR system. Rollie C, Graham S, Rouillon C, White MF. Nucleic Acids Res 46 1007-1020 (2018)
  46. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP. Nature 475 403-407 (2011)
  47. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Mueller-Planitz F, Klinker H, Ludwigsen J, Becker PB. Nat Struct Mol Biol 20 82-89 (2013)
  48. A novel classification system to predict the pathogenic effects of CHD7 missense variants in CHARGE syndrome. Bergman JE, Janssen N, van der Sloot AM, de Walle HE, Schoots J, Rendtorff ND, Tranebjaerg L, Hoefsloot LH, van Ravenswaaij-Arts CM, Hofstra RM. Hum Mutat 33 1251-1260 (2012)
  49. Terminal association of Rad54 protein with the Rad51-dsDNA filament. Kiianitsa K, Solinger JA, Heyer WD. Proc Natl Acad Sci U S A 103 9767-9772 (2006)
  50. When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. Stanley LK, Seidel R, van der Scheer C, Dekker NH, Szczelkun MD, Dekker C. EMBO J 25 2230-2239 (2006)
  51. Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome. Nodelman IM, Bleichert F, Patel A, Ren R, Horvath KC, Berger JM, Bowman GD. Mol Cell 65 447-459.e6 (2017)
  52. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci. Neves-Costa A, Will WR, Vetter AT, Miller JR, Varga-Weisz P. PLoS One 4 e8111 (2009)
  53. Structure and regulation of the chromatin remodeller ISWI. Yan L, Wang L, Tian Y, Xia X, Chen Z. Nature 540 466-469 (2016)
  54. Structural basis for transcription reactivation by RapA. Liu B, Zuo Y, Steitz TA. Proc Natl Acad Sci U S A 112 2006-2010 (2015)
  55. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T. Elife 7 e35720 (2018)
  56. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. Patel AB, Moore CM, Greber BJ, Luo J, Zukin SA, Ranish J, Nogales E. Elife 8 e54449 (2019)
  57. Structure and Mechanisms of SF1 DNA Helicases. Raney KD, Byrd AK, Aarattuthodiyil S. Adv Exp Med Biol 767 17-46 (2013)
  58. MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes. Ramírez J, Dege C, Kutateladze TG, Hagman J. Mol Cell Biol 32 5078-5088 (2012)
  59. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Kennaway CK, Taylor JEN, Song CF, Potrzebowski W, Nicholson W, White JH, Swiderska A, Obarska-Kosinska A, Callow P, Cooper LP, Roberts GA, Artero JB, Bujnicki JM, Trinick J, Kneale GG, Dryden DT. Genes Dev 26 92-104 (2012)
  60. Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. Sprouse RO, Brenowitz M, Auble DT. EMBO J 25 1492-1504 (2006)
  61. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Gupta YK, Chan SH, Xu SY, Aggarwal AK. Nat Commun 6 7363 (2015)
  62. The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Sen P, Vivas P, Dechassa ML, Mooney AM, Poirier MG, Bartholomew B. Mol Cell Biol 33 360-370 (2013)
  63. Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle. Lewis R, Dürr H, Hopfner KP, Michaelis J. Nucleic Acids Res 36 1881-1890 (2008)
  64. Functional significance of mutations in the Snf2 domain of ATRX. Mitson M, Kelley LA, Sternberg MJ, Higgs DR, Gibbons RJ. Hum Mol Genet 20 2603-2610 (2011)
  65. Structure of chromatin remodeler Swi2/Snf2 in the resting state. Xia X, Liu X, Li T, Fang X, Chen Z. Nat Struct Mol Biol 23 722-729 (2016)
  66. Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Lehmann LC, Hewitt G, Aibara S, Leitner A, Marklund E, Maslen SL, Maturi V, Chen Y, van der Spoel D, Skehel JM, Moustakas A, Boulton SJ, Deindl S. Mol Cell 68 847-859.e7 (2017)
  67. Interactions of human rad54 protein with branched DNA molecules. Mazina OM, Rossi MJ, Thomaä NH, Mazin AV. J Biol Chem 282 21068-21080 (2007)
  68. Structure of the motor subunit of type I restriction-modification complex EcoR124I. Lapkouski M, Panjikar S, Janscak P, Smatanova IK, Carey J, Ettrich R, Csefalvay E. Nat Struct Mol Biol 16 94-95 (2009)
  69. Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. He Y, Staley JP, Andersen GR, Nielsen KH. RNA 23 1110-1124 (2017)
  70. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Kristensen U, Epanchintsev A, Rauschendorf MA, Laugel V, Stevnsner T, Bohr VA, Coin F, Egly JM. Proc Natl Acad Sci U S A 110 E2261-70 (2013)
  71. Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T. Elife 6 e22510 (2017)
  72. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Forné I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F. Mol Cell Proteomics 11 M111.012088 (2012)
  73. The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1. Ghosal G, Yuan J, Chen J. EMBO Rep 12 574-580 (2011)
  74. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide. Omura H, Oikawa D, Nakane T, Kato M, Ishii R, Ishitani R, Tokunaga F, Nureki O. Sci Rep 6 34756 (2016)
  75. Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs. Assenmacher N, Wenig K, Lammens A, Hopfner KP. J Mol Biol 355 675-683 (2006)
  76. A structure-specific nucleic acid-binding domain conserved among DNA repair proteins. Mason AC, Rambo RP, Greer B, Pritchett M, Tainer JA, Cortez D, Eichman BF. Proc Natl Acad Sci U S A 111 7618-7623 (2014)
  77. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase. Mallam AL, Sidote DJ, Lambowitz AM. Elife 3 e04630 (2014)
  78. Primers on chromatin. Lall S. Nat Struct Mol Biol 14 1110-1115 (2007)
  79. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Dechassa ML, Hota SK, Sen P, Chatterjee N, Prasad P, Bartholomew B. Nucleic Acids Res 40 4412-4421 (2012)
  80. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. Muthuswami R, Bailey L, Rakesh R, Imbalzano AN, Nickerson JA, Hockensmith JW. J Cell Physiol 234 15194-15205 (2019)
  81. Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. Iyer LM, Burroughs AM, Anand S, de Souza RF, Aravind L. J Bacteriol 199 e00245-17 (2017)
  82. Rad54B serves as a scaffold in the DNA damage response that limits checkpoint strength. Yasuhara T, Suzuki T, Katsura M, Miyagawa K. Nat Commun 5 5426 (2014)
  83. Actin-related proteins regulate the RSC chromatin remodeler by weakening intramolecular interactions of the Sth1 ATPase. Turegun B, Baker RW, Leschziner AE, Dominguez R. Commun Biol 1 1 (2018)
  84. A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly. Zhang S, Pondarre C, Pennarun G, Labussiere-Wallet H, Vera G, France B, Chansel M, Rouvet I, Revy P, Lopez B, Soulier J, Bertrand P, Callebaut I, de Villartay JP. J Exp Med 213 1011-1028 (2016)
  85. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme. Racki LR, Naber N, Pate E, Leonard JD, Cooke R, Narlikar GJ. J Mol Biol 426 2034-2044 (2014)
  86. Regulation of the Rhp26ERCC6/CSB chromatin remodeler by a novel conserved leucine latch motif. Wang L, Limbo O, Fei J, Chen L, Kim B, Luo J, Chong J, Conaway RC, Conaway JW, Ranish JA, Kadonaga JT, Russell P, Wang D. Proc Natl Acad Sci U S A 111 18566-18571 (2014)
  87. Deletion of the Chd6 exon 12 affects motor coordination. Lathrop MJ, Chakrabarti L, Eng J, Rhodes CH, Lutz T, Nieto A, Liggitt HD, Warner S, Fields J, Stöger R, Fiering S. Mamm Genome 21 130-142 (2010)
  88. Structural and functional studies of the yeast class II Hda1 histone deacetylase complex. Lee JH, Maskos K, Huber R. J Mol Biol 391 744-757 (2009)
  89. Transient Kinetic Analysis of SWR1C-Catalyzed H2A.Z Deposition Unravels the Impact of Nucleosome Dynamics and the Asymmetry of Histone Exchange. Singh RK, Fan J, Gioacchini N, Watanabe S, Bilsel O, Peterson CL. Cell Rep 27 374-386.e4 (2019)
  90. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes. Chand MK, Nirwan N, Diffin FM, van Aelst K, Kulkarni M, Pernstich C, Szczelkun MD, Saikrishnan K. Nat Chem Biol 11 870-877 (2015)
  91. ABF1-binding sites promote efficient global genome nucleotide excision repair. Yu S, Smirnova JB, Friedberg EC, Stillman B, Akiyama M, Owen-Hughes T, Waters R, Reed SH. J Biol Chem 284 966-973 (2009)
  92. Escherichia coli RNA polymerase-associated SWI/SNF protein RapA: evidence for RNA-directed binding and remodeling activity. McKinley BA, Sukhodolets MV. Nucleic Acids Res 35 7044-7060 (2007)
  93. The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity. Uyen NT, Park SY, Choi JW, Lee HJ, Nishi K, Kim JS. Nucleic Acids Res 37 6960-6969 (2009)
  94. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1. Butryn A, Schuller JM, Stoehr G, Runge-Wollmann P, Förster F, Auble DT, Hopfner KP. Elife 4 (2015)
  95. An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA. Haseltine CA, Kowalczykowski SC. Nucleic Acids Res 37 2757-2770 (2009)
  96. An aromatic-rich loop couples DNA binding and ATP hydrolysis in the PriA DNA helicase. Windgassen TA, Keck JL. Nucleic Acids Res 44 9745-9757 (2016)
  97. Double-stranded RNA-dependent ATPase DRH-3: insight into its role in RNAsilencing in Caenorhabditis elegans. Matranga C, Pyle AM. J Biol Chem 285 25363-25371 (2010)
  98. Molecular determinants for dsDNA translocation by the transcription-repair coupling and evolvability factor Mfd. Brugger C, Zhang C, Suhanovsky MM, Kim DD, Sinclair AN, Lyumkis D, Deaconescu AM. Nat Commun 11 3740 (2020)
  99. Nucleic acid binding activity of human Cockayne syndrome B protein and identification of Ca(2+) as a novel metal cofactor. Berquist BR, Wilson DM. J Mol Biol 391 820-832 (2009)
  100. Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nodelman IM, Das S, Faustino AM, Fried SD, Bowman GD, Armache JP. Nat Struct Mol Biol 29 121-129 (2022)
  101. Structural insights into assembly, operation and inhibition of a type I restriction-modification system. Gao Y, Cao D, Zhu J, Feng H, Luo X, Liu S, Yan XX, Zhang X, Gao P. Nat Microbiol 5 1107-1118 (2020)
  102. Analysis of the activities of RAD54, a SWI2/SNF2 protein, using a specific small-molecule inhibitor. Deakyne JS, Huang F, Negri J, Tolliday N, Cocklin S, Mazin AV. J Biol Chem 288 31567-31580 (2013)
  103. Function and structural organization of Mot1 bound to a natural target promoter. Sprouse RO, Shcherbakova I, Cheng H, Jamison E, Brenowitz M, Auble DT. J Biol Chem 283 24935-24948 (2008)
  104. RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes. Yawn B, Zhang L, Mura C, Sukhodolets MV. Biochemistry 48 7794-7806 (2009)
  105. Genome-wide identification of SF1 and SF2 helicases from archaea. Chamieh H, Ibrahim H, Kozah J. Gene 576 214-228 (2016)
  106. Elucidating the mechanism of DNA-dependent ATP hydrolysis mediated by DNA-dependent ATPase A, a member of the SWI2/SNF2 protein family. Nongkhlaw M, Dutta P, Hockensmith JW, Komath SS, Muthuswami R. Nucleic Acids Res 37 3332-3341 (2009)
  107. The Spring α-Helix Coordinates Multiple Modes of HCV (Hepatitis C Virus) NS3 Helicase Action. Gu M, Rice CM. J Biol Chem 291 14499-14509 (2016)
  108. Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA. Moyle-Heyrman G, Viswanathan R, Widom J, Auble DT. J Biol Chem 287 9002-9012 (2012)
  109. A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity. Zhang XP, Janke R, Kingsley J, Luo J, Fasching C, Ehmsen KT, Heyer WD. PLoS One 8 e82184 (2013)
  110. Investigating the genetic regulation of the ECF sigma factor σS in Staphylococcus aureus. Burda WN, Miller HK, Krute CN, Leighton SL, Carroll RK, Shaw LN. BMC Microbiol 14 280 (2014)
  111. Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Shen M, Dhingra N, Wang Q, Cheng C, Zhu S, Tian X, Yu J, Gong X, Li X, Zhang H, Xu X, Zhai L, Xie M, Gao Y, Deng H, He Y, Niu H, Zhao X, Xiang S. Nat Commun 12 321 (2021)
  112. Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal. Warren GM, Stein RA, Mchaourab HS, Eichman BF. Int J Mol Sci 19 E3049 (2018)
  113. ATP Hydrolysis by the SNF2 Domain of Dnmt5 Is Coupled to Both Specific Recognition and Modification of Hemimethylated DNA. Dumesic PA, Stoddard CI, Catania S, Narlikar GJ, Madhani HD. Mol Cell 79 127-139.e4 (2020)
  114. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase. Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D. BMC Struct Biol 15 10 (2015)
  115. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Yan C, Dodd T, Yu J, Leung B, Xu J, Oh J, Wang D, Ivanov I. Nat Commun 12 7001 (2021)
  116. Novel compound mutations of SMARCAL1 associated with severe Schimke immuno-osseous dysplasia in a Chinese patient. Yue Z, Xiong S, Sun L, Huang W, Mo Y, Huang L, Jiang X, Chen S, Hu B, Wang Y. Nephrol Dial Transplant 25 1697-1702 (2010)
  117. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  118. An ancient anion-binding structural module in RNA and DNA helicases. Milner-White EJ, Pietras Z, Luisi BF. Proteins 78 1900-1908 (2010)
  119. Case Reports Non-hodgkin lymphoma in a child with schimke immuno-osseous dysplasia. Basiratnia M, Baradaran-Heravi A, Yavarian M, Geramizadeh B, Karimi M. Iran J Med Sci 36 222-225 (2011)
  120. The SWI/SNF KlSnf2 subunit controls the glucose signaling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis. Cotton P, Soulard A, Wésolowski-Louvel M, Lemaire M. Eukaryot Cell 11 1382-1390 (2012)
  121. The complete genome of a baculovirus isolated from an insect of medical interest: Lonomia obliqua (Lepidoptera: Saturniidae). Aragão-Silva CW, Andrade MS, Ardisson-Araújo DM, Fernandes JE, Morgado FS, Báo SN, Moraes RH, Wolff JL, Melo FL, Ribeiro BM. Sci Rep 6 23127 (2016)
  122. A novel compound heterozygous mutation of the SMARCAL1 gene leading to mild Schimke immune-osseous dysplasia: a case report. Liu S, Zhang M, Ni M, Zhu P, Xia X. BMC Pediatr 17 217 (2017)
  123. A novel missense mutation in ATRX uncovered in a Yemeni family leads to alpha-thalassemia/mental retardation syndrome without alpha-thalassemia. Hamzeh AR, Nair P, Mohamed M, Saif F, Tawfiq N, Al-Ali MT, Bastaki F. Ir J Med Sci 186 333-337 (2017)
  124. BIME2, a novel gene required for interhomolog meiotic recombination in the protist model organism Tetrahymena. Shodhan A, Novatchkova M, Loidl J. Chromosome Res 25 291-298 (2017)
  125. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity. Tóth J, van Aelst K, Salmons H, Szczelkun MD. Nucleic Acids Res 40 6752-6764 (2012)
  126. Ligand-induced conformation changes drive ATP hydrolysis and function in SMARCAL1. Gupta M, Mazumder M, Dhatchinamoorthy K, Nongkhlaw M, Haokip DT, Gourinath S, Komath SS, Muthuswami R. FEBS J 282 3841-3859 (2015)
  127. RecA-like domain 2 of DNA-dependent ATPase A domain, a SWI2/SNF2 protein, mediates conformational integrity and ATP hydrolysis. Bansal R, Arya V, Sethy R, Rakesh R, Muthuswami R. Biosci Rep 38 BSR20180568 (2018)
  128. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a. Richmond TJ. Biochem Soc Trans 40 347-350 (2012)
  129. Rad54 Phosphorylation Promotes Homologous Recombination by Balancing Rad54 Mobility and DNA Binding. Lengert N, Spies J, Drossel B. Biophys J 116 1406-1419 (2019)
  130. Three-dimensional structure of human chromatin accessibility complex hCHRAC by electron microscopy. Hu M, Zhang YB, Qian L, Briñas RP, Kuznetsova L, Hainfeld JF. J Struct Biol 164 263-269 (2008)
  131. Analysis of DNA-binding sites on Mhr1, a yeast mitochondrial ATP-independent homologous pairing protein. Masuda T, Ling F, Shibata T, Mikawa T. FEBS J 277 1440-1452 (2010)
  132. Isolation of a novel complex of the SWI/SNF family from Schizosaccharomyces pombe and its effects on in vitro transcription in nucleosome arrays. Bernal G, Maldonado E. Mol Cell Biochem 303 131-139 (2007)
  133. Structural basis for TBP displacement from TATA box DNA by the Swi2/Snf2 ATPase Mot1. Woike S, Eustermann S, Jung J, Wenzl SJ, Hagemann G, Bartho J, Lammens K, Butryn A, Herzog F, Hopfner KP. Nat Struct Mol Biol 30 640-649 (2023)
  134. Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase. Shi W, Zhou W, Chen M, Yang Y, Hu Y, Liu B. Nucleic Acids Res 49 10707-10716 (2021)
  135. Characterization of a Brg1 hypomorphic allele demonstrates that genetic and biochemical activity are tightly correlated. Chandler RL, Zhang Y, Magnuson T, Bultman SJ. Epigenetics 9 249-256 (2014)
  136. The H-subunit of the restriction endonuclease CglI contains a prototype DEAD-Z1 helicase-like motor. Toliusis P, Tamulaitiene G, Grigaitis R, Tuminauskaite D, Silanskas A, Manakova E, Venclovas C, Szczelkun MD, Siksnys V, Zaremba M. Nucleic Acids Res 46 2560-2572 (2018)
  137. The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation. Bialevich V, Sinha D, Shamayeva K, Guzanova A, Řeha D, Csefalvay E, Carey J, Weiserova M, Ettrich RH. PeerJ 5 e2887 (2017)
  138. Whole-exome sequencing revealed a novel ERCC6 variant in a Vietnamese patient with Cockayne syndrome. Duong NT, Anh NP, Bac ND, Quang LB, Miyake N, Van Hai N, Matsumoto N. Hum Genome Var 9 21 (2022)
  139. Congress Biomacromolecular interactions, assemblies and machines: a structural view. Heinz DW, Weiss MS, Wendt KU. Chembiochem 7 203-208 (2006)
  140. Fun30 nucleosome remodeller regulates white-to-opaque switching in Candida albicans. Gao N, Dai B, Nie X, Zhao Q, Zhu W, Chen J. Acta Biochim Biophys Sin (Shanghai) 55 508-517 (2023)
  141. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Hu J, Ferlez B, Dau J, Crickard JB. Nucleic Acids Res 51 11688-11705 (2023)
  142. Two heterozygous mutations in the ERCC6 gene associated with Cockayne syndrome in a Chinese patient. Zhang Q, Liu M, Liu Y, Tang H, Wang T, Li H, Xiang J. J Int Med Res 48 300060519877997 (2020)