1z5s Citations

Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.

Nature 435 687-92 (2005)
Cited: 331 times
EuropePMC logo PMID: 15931224

Abstract

SUMO-1 (for small ubiquitin-related modifier) belongs to the ubiquitin (Ub) and ubiquitin-like (Ubl) protein family. SUMO conjugation occurs on specific lysine residues within protein targets, regulating pathways involved in differentiation, apoptosis, the cell cycle and responses to stress by altering protein function through changes in activity or cellular localization or by protecting substrates from ubiquitination. Ub/Ubl conjugation occurs in sequential steps and requires the concerted action of E2 conjugating proteins and E3 ligases. In addition to being a SUMO E3, the nucleoporin Nup358/RanBP2 localizes SUMO-conjugated RanGAP1 to the cytoplasmic face of the nuclear pore complex by means of interactions in a complex that also includes Ubc9, the SUMO E2 conjugating protein. Here we describe the 3.0-A crystal structure of a four-protein complex of Ubc9, a Nup358/RanBP2 E3 ligase domain (IR1-M) and SUMO-1 conjugated to the carboxy-terminal domain of RanGAP1. Structural insights, combined with biochemical and kinetic data obtained with additional substrates, support a model in which Nup358/RanBP2 acts as an E3 by binding both SUMO and Ubc9 to position the SUMO-E2-thioester in an optimal orientation to enhance conjugation.

Reviews - 1z5s mentioned but not cited (10)

  1. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Gareau JR, Lima CD. Nat Rev Mol Cell Biol 11 861-871 (2010)
  2. Ubiquitin-binding domains. Hurley JH, Lee S, Prag G. Biochem J 399 361-372 (2006)
  3. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem Rev 118 889-918 (2018)
  4. The Structure of the Nuclear Pore Complex (An Update). Lin DH, Hoelz A. Annu Rev Biochem 88 725-783 (2019)
  5. E2s: structurally economical and functionally replete. Wenzel DM, Stoll KE, Klevit RE. Biochem J 433 31-42 (2011)
  6. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  7. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Capili AD, Lima CD. Curr Opin Struct Biol 17 726-735 (2007)
  8. Structural Diversity of Ubiquitin E3 Ligase. Toma-Fukai S, Shimizu T. Molecules 26 6682 (2021)
  9. Plant SUMO E3 Ligases: Function, Structural Organization, and Connection With DNA. Jmii S, Cappadocia L. Front Plant Sci 12 652170 (2021)
  10. SUMO conjugation regulates immune signalling. Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. Fly (Austin) 14 62-79 (2020)

Articles - 1z5s mentioned but not cited (25)

  1. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH. Nat Struct Mol Biol 13 264-271 (2006)
  2. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. Koide A, Wojcik J, Gilbreth RN, Hoey RJ, Koide S. J Mol Biol 415 393-405 (2012)
  3. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. Capili AD, Lima CD. J Mol Biol 369 608-618 (2007)
  4. Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. Lasker K, Topf M, Sali A, Wolfson HJ. J Mol Biol 388 180-194 (2009)
  5. SUMO protease SENP1 induces isomerization of the scissile peptide bond. Shen L, Tatham MH, Dong C, Zagórska A, Naismith JH, Hay RT. Nat Struct Mol Biol 13 1069-1077 (2006)
  6. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Burroughs AM, Jaffee M, Iyer LM, Aravind L. J Struct Biol 162 205-218 (2008)
  7. Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates. Page RC, Pruneda JN, Amick J, Klevit RE, Misra S. Biochemistry 51 4175-4187 (2012)
  8. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2. Gareau JR, Reverter D, Lima CD. J Biol Chem 287 4740-4751 (2012)
  9. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Krüppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress. Kuo CY, Li X, Kong XQ, Luo C, Chang CC, Chung Y, Shih HM, Li KK, Ann DK. J Biol Chem 289 20757-20772 (2014)
  10. Assembly of macromolecular complexes by satisfaction of spatial restraints from electron microscopy images. Velázquez-Muriel J, Lasker K, Russel D, Phillips J, Webb BM, Schneidman-Duhovny D, Sali A. Proc Natl Acad Sci U S A 109 18821-18826 (2012)
  11. Protein purification and crystallization artifacts: The tale usually not told. Niedzialkowska E, Gasiorowska O, Handing KB, Majorek KA, Porebski PJ, Shabalin IG, Zasadzinska E, Cymborowski M, Minor W. Protein Sci 25 720-733 (2016)
  12. Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. Bonomi M, Hanot S, Greenberg CH, Sali A, Nilges M, Vendruscolo M, Pellarin R. Structure 27 175-188.e6 (2019)
  13. Nup358 binds to AGO proteins through its SUMO-interacting motifs and promotes the association of target mRNA with miRISC. Sahoo MR, Gaikwad S, Khuperkar D, Ashok M, Helen M, Yadav SK, Singh A, Magre I, Deshmukh P, Dhanvijay S, Sahoo PK, Ramtirtha Y, Madhusudhan MS, Gayathri P, Seshadri V, Joseph J. EMBO Rep 18 241-263 (2017)
  14. Atomic resolution structures in nuclear transport. Süel KE, Cansizoglu AE, Chook YM. Methods 39 342-355 (2006)
  15. A mechanistic view of the role of E3 in sumoylation. Tozluoğlu M, Karaca E, Nussinov R, Haliloğlu T. PLoS Comput Biol 6 e1000913 (2010)
  16. SUMO takes control of a ubiquitin-specific protease. Mohideen F, Lima CD. Mol Cell 30 539-540 (2008)
  17. Assessing predictions of fitness effects of missense mutations in SUMO-conjugating enzyme UBE2I. Zhang J, Kinch LN, Cong Q, Weile J, Sun S, Cote AG, Roth FP, Grishin NV. Hum Mutat 38 1051-1063 (2017)
  18. Alternative allosteric mechanisms can regulate the substrate and E2 in SUMO conjugation. Karaca E, Tozluoğlu M, Nussinov R, Haliloğlu T. J Mol Biol 406 620-630 (2011)
  19. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Kuzu G, Keskin O, Nussinov R, Gursoy A. Acta Crystallogr D Struct Biol 72 1137-1148 (2016)
  20. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. Tripathi V, Chatterjee KS, Das R. J Biol Chem 294 14546-14561 (2019)
  21. A conserved and buried edge-to-face aromatic interaction in small ubiquitin-like modifier (SUMO) has a role in SUMO stability and function. Chatterjee KS, Tripathi V, Das R. J Biol Chem 294 6772-6784 (2019)
  22. Mutations of Rad6 E2 ubiquitin-conjugating enzymes at alanine-126 in helix-3 affect ubiquitination activity and decrease enzyme stability. Shukla PK, Sinha D, Leng AM, Bissell JE, Thatipamula S, Ganguly R, Radmall KS, Skalicky JJ, Shrieve DC, Chandrasekharan MB. J Biol Chem 298 102524 (2022)
  23. An in vitro Förster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9. Wang YZ, Liu X, Way G, Madarha V, Zhou QT, Yang DH, Liao JY, Wang MW. Acta Pharmacol Sin 41 1497-1506 (2020)
  24. MarkovFit: Structure Fitting for Protein Complexes in Electron Microscopy Maps Using Markov Random Field. Alnabati E, Esquivel-Rodriguez J, Terashi G, Kihara D. Front Mol Biosci 9 935411 (2022)
  25. Cellular gp96 upregulates AFP expression by blocking NR5A2 SUMOylation and ubiquitination in hepatocellular carcinoma. Qian L, Liang Z, Wang Z, Wang J, Li X, Zhao J, Li Z, Chen L, Liu Y, Ju Y, Li C, Meng S. J Mol Cell Biol 15 mjad027 (2023)


Reviews citing this publication (81)

  1. RING domain E3 ubiquitin ligases. Deshaies RJ, Joazeiro CA. Annu Rev Biochem 78 399-434 (2009)
  2. Concepts in sumoylation: a decade on. Geiss-Friedlander R, Melchior F. Nat Rev Mol Cell Biol 8 947-956 (2007)
  3. Modification of proteins by ubiquitin and ubiquitin-like proteins. Kerscher O, Felberbaum R, Hochstrasser M. Annu Rev Cell Dev Biol 22 159-180 (2006)
  4. Sumoylation: a regulatory protein modification in health and disease. Flotho A, Melchior F. Annu Rev Biochem 82 357-385 (2013)
  5. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu Rev Biochem 86 129-157 (2017)
  6. Origin and function of ubiquitin-like proteins. Hochstrasser M. Nature 458 422-429 (2009)
  7. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Schulman BA, Harper JW. Nat Rev Mol Cell Biol 10 319-331 (2009)
  8. Mechanisms, regulation and consequences of protein SUMOylation. Wilkinson KA, Henley JM. Biochem J 428 133-145 (2010)
  9. The nuclear pore complex and nuclear transport. Wente SR, Rout MP. Cold Spring Harb Perspect Biol 2 a000562 (2010)
  10. New insights into ubiquitin E3 ligase mechanism. Berndsen CE, Wolberger C. Nat Struct Mol Biol 21 301-307 (2014)
  11. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Metzger MB, Pruneda JN, Klevit RE, Weissman AM. Biochim Biophys Acta 1843 47-60 (2014)
  12. The nuclear pore complex: bridging nuclear transport and gene regulation. Strambio-De-Castillia C, Niepel M, Rout MP. Nat Rev Mol Cell Biol 11 490-501 (2010)
  13. The structure of the nuclear pore complex. Hoelz A, Debler EW, Blobel G. Annu Rev Biochem 80 613-643 (2011)
  14. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  15. SUMO junction-what's your function? New insights through SUMO-interacting motifs. Kerscher O. EMBO Rep 8 550-555 (2007)
  16. E2 enzymes: more than just middle men. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. Cell Res 26 423-440 (2016)
  17. Ubiquitin-like proteins. van der Veen AG, Ploegh HL. Annu Rev Biochem 81 323-357 (2012)
  18. PIAS proteins: pleiotropic interactors associated with SUMO. Rytinki MM, Kaikkonen S, Pehkonen P, Jääskeläinen T, Palvimo JJ. Cell Mol Life Sci 66 3029-3041 (2009)
  19. Lingering mysteries of ubiquitin-chain assembly. Hochstrasser M. Cell 124 27-34 (2006)
  20. A SIM-ultaneous role for SUMO and ubiquitin. Perry JJ, Tainer JA, Boddy MN. Trends Biochem Sci 33 201-208 (2008)
  21. Constructing and decoding unconventional ubiquitin chains. Behrends C, Harper JW. Nat Struct Mol Biol 18 520-528 (2011)
  22. The post-translational modification, SUMOylation, and cancer (Review). Han ZJ, Feng YH, Gu BH, Li YM, Chen H. Int J Oncol 52 1081-1094 (2018)
  23. Protein-protein interaction through beta-strand addition. Remaut H, Waksman G. Trends Biochem Sci 31 436-444 (2006)
  24. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Henley JM, Craig TJ, Wilkinson KA. Physiol Rev 94 1249-1285 (2014)
  25. Interaction-site prediction for protein complexes: a critical assessment. Zhou HX, Qin S. Bioinformatics 23 2203-2209 (2007)
  26. K11-linked ubiquitin chains as novel regulators of cell division. Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. Trends Cell Biol 21 656-663 (2011)
  27. Sumo and the cellular stress response. Enserink JM. Cell Div 10 4 (2015)
  28. SUMOylation and deSUMOylation at a glance. Wang Y, Dasso M. J Cell Sci 122 4249-4252 (2009)
  29. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Mattiroli F, Sixma TK. Nat Struct Mol Biol 21 308-316 (2014)
  30. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Alfieri C, Zhang S, Barford D. Open Biol 7 170204 (2017)
  31. Decoding the SUMO signal. Hay RT. Biochem Soc Trans 41 463-473 (2013)
  32. Structural mechanisms of HECT-type ubiquitin ligases. Lorenz S. Biol Chem 399 127-145 (2018)
  33. Structure, function and mechanism of the anaphase promoting complex (APC/C). Barford D. Q Rev Biophys 44 153-190 (2011)
  34. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Watson ER, Brown NG, Peters JM, Stark H, Schulman BA. Trends Cell Biol 29 117-134 (2019)
  35. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Palancade B, Doye V. Trends Cell Biol 18 174-183 (2008)
  36. The multiple layers of ubiquitin-dependent cell cycle control. Wickliffe K, Williamson A, Jin L, Rape M. Chem Rev 109 1537-1548 (2009)
  37. SUMO-regulated transcription: challenging the dogma. Chymkowitch P, Nguéa P A, Enserink JM. Bioessays 37 1095-1105 (2015)
  38. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Baek K, Scott DC, Schulman BA. Curr Opin Struct Biol 67 101-109 (2021)
  39. The Structure Inventory of the Nuclear Pore Complex. Schwartz TU. J Mol Biol 428 1986-2000 (2016)
  40. Targeting Ubc9 for cancer therapy. Mo YY, Moschos SJ. Expert Opin Ther Targets 9 1203-1216 (2005)
  41. DAXX in cancer: phenomena, processes, mechanisms and regulation. Mahmud I, Liao D. Nucleic Acids Res 47 7734-7752 (2019)
  42. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol 11 65 (2013)
  43. Targeting HECT-type E3 ligases - insights from catalysis, regulation and inhibitors. Fajner V, Maspero E, Polo S. FEBS Lett 591 2636-2647 (2017)
  44. SUMOylation in control of accurate chromosome segregation during mitosis. Wan J, Subramonian D, Zhang XD. Curr Protein Pept Sci 13 467-481 (2012)
  45. How plants LINC the SUN to KASH. Zhou X, Meier I. Nucleus 4 206-215 (2013)
  46. A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Nussinov R, Ma B, Tsai CJ. Biochim Biophys Acta 1834 820-829 (2013)
  47. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Yunus AA, Lima CD. Methods Mol Biol 497 167-186 (2009)
  48. Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Rodríguez JA. Semin Cancer Biol 27 11-19 (2014)
  49. Protein SUMOylation in neuropathological conditions. Anderson DB, Wilkinson KA, Henley JM. Drug News Perspect 22 255-265 (2009)
  50. SUMO pathway components as possible cancer biomarkers. Mattoscio D, Chiocca S. Future Oncol 11 1599-1610 (2015)
  51. Decrypting UFMylation: How Proteins Are Modified with UFM1. Banerjee S, Kumar M, Wiener R. Biomolecules 10 E1442 (2020)
  52. SUMO rules: regulatory concepts and their implication in neurologic functions. Droescher M, Chaugule VK, Pichler A. Neuromolecular Med 15 639-660 (2013)
  53. SUMO and estrogen receptors in breast cancer. Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG. Breast Cancer Res Treat 107 195-210 (2008)
  54. Insights in Post-Translational Modifications: Ubiquitin and SUMO. Salas-Lloret D, González-Prieto R. Int J Mol Sci 23 3281 (2022)
  55. SUMO Interacting Motifs: Structure and Function. Yau TY, Sander W, Eidson C, Courey AJ. Cells 10 2825 (2021)
  56. Protein sumoylation in brain development, neuronal morphology and spinogenesis. Gwizdek C, Cassé F, Martin S. Neuromolecular Med 15 677-691 (2013)
  57. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. Musser SM, Grünwald D. J Mol Biol 428 2091-2119 (2016)
  58. Decoding the messaging of the ubiquitin system using chemical and protein probes. Henneberg LT, Schulman BA. Cell Chem Biol 28 889-902 (2021)
  59. Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Kroetz MB, Hochstrasser M. Methods Mol Biol 497 107-120 (2009)
  60. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. Matyskiela ME, Rodrigo-Brenni MC, Morgan DO. J Biol 8 92 (2009)
  61. The role of allostery in the ubiquitin-proteasome system. Liu J, Nussinov R. Crit Rev Biochem Mol Biol 48 89-97 (2013)
  62. Protein interactions in the sumoylation cascade: lessons from X-ray structures. Tang Z, Hecker CM, Scheschonka A, Betz H. FEBS J 275 3003-3015 (2008)
  63. Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. J Mol Biol 429 3409-3429 (2017)
  64. Nuclear pore complexes in development and tissue homeostasis. Guglielmi V, Sakuma S, D'Angelo MA. Development 147 dev183442 (2020)
  65. Roles of Nucleoporin RanBP2/Nup358 in Acute Necrotizing Encephalopathy Type 1 (ANE1) and Viral Infection. Jiang J, Wang YE, Palazzo AF, Shen Q. Int J Mol Sci 23 3548 (2022)
  66. For a healthy histone code, a little SUMO in the tail keeps the acetyl away. Iñiguez-Lluhí JA. ACS Chem Biol 1 204-206 (2006)
  67. The functional versatility of the nuclear pore complex proteins. Hezwani M, Fahrenkrog B. Semin Cell Dev Biol 68 2-9 (2017)
  68. Regulation of E2s: A Role for Additional Ubiquitin Binding Sites? Middleton AJ, Wright JD, Day CL. J Mol Biol 429 3430-3440 (2017)
  69. Trojan horse strategies used by pathogens to influence the small ubiquitin-like modifier (SUMO) system of host eukaryotic cells. Békés M, Drag M. J Innate Immun 4 159-167 (2012)
  70. Viruses, SUMO, and immunity: the interplay between viruses and the host SUMOylation system. Imbert F, Langford D. J Neurovirol 27 531-541 (2021)
  71. Post-translational modifications and their applications in eye research (Review). Chen BJ, Lam TC, Liu LQ, To CH. Mol Med Rep 15 3923-3935 (2017)
  72. How Does SUMO Participate in Spindle Organization? Abrieu A, Liakopoulos D. Cells 8 E801 (2019)
  73. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Lara-Ureña N, Jafari V, García-Domínguez M. Int J Mol Sci 23 8012 (2022)
  74. Structural insight into CIDE domains: the Janus face of CIDEs. Park HH. Apoptosis 20 240-249 (2015)
  75. Developing Practical Therapeutic Strategies that Target Protein SUMOylation. Cox OF, Huber PW. Curr Drug Targets 20 960-969 (2019)
  76. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Shi X, Du Y, Li S, Wu H. Int J Mol Sci 23 3639 (2022)
  77. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J Biol Chem 290 26437-26444 (2015)
  78. Influence of Sox protein SUMOylation on neural development and regeneration. Chang KC. Neural Regen Res 17 477-481 (2022)
  79. The enzymes in ubiquitin-like post-translational modifications. Chen Y. Biosci Trends 1 16-25 (2007)
  80. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. Huang CH, Yang TT, Lin KI. J Biomed Sci 31 16 (2024)
  81. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Cheng X, Yang W, Lin W, Mei F. Pharmacol Rev 75 979-1006 (2023)

Articles citing this publication (215)

  1. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Cell 133 653-665 (2008)
  2. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. Nature 489 115-120 (2012)
  3. The mechanisms of PML-nuclear body formation. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP. Mol Cell 24 331-339 (2006)
  4. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM. Mol Cell 24 341-354 (2006)
  5. A comprehensive compilation of SUMO proteomics. Hendriks IA, Vertegaal AC. Nat Rev Mol Cell Biol 17 581-595 (2016)
  6. Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Otomo C, Metlagel Z, Takaesu G, Otomo T. Nat Struct Mol Biol 20 59-66 (2013)
  7. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. Nat Struct Mol Biol 13 915-920 (2006)
  8. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat Struct Mol Biol 19 876-883 (2012)
  9. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M. Cell 127 509-522 (2006)
  10. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. Sun H, Leverson JD, Hunter T. EMBO J 26 4102-4112 (2007)
  11. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. McGinty RK, Henrici RC, Tan S. Nature 514 591-596 (2014)
  12. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E. Cell 131 309-323 (2007)
  13. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. Cell 144 769-781 (2011)
  14. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR. Cell 124 1183-1195 (2006)
  15. Simple fold composition and modular architecture of the nuclear pore complex. Devos D, Dokudovskaya S, Williams R, Alber F, Eswar N, Chait BT, Rout MP, Sali A. Proc Natl Acad Sci U S A 103 2172-2177 (2006)
  16. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Kamadurai HB, Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, Stringer D, Piper RC, Schulman BA. Mol Cell 36 1095-1102 (2009)
  17. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Dye BT, Schulman BA. Annu Rev Biophys Biomol Struct 36 131-150 (2007)
  18. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA. Nature 445 394-398 (2007)
  19. Ubc9 sumoylation regulates SUMO target discrimination. Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A. Mol Cell 31 371-382 (2008)
  20. Detecting endogenous SUMO targets in mammalian cells and tissues. Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Berriel Diaz M, Herzig S, Urlaub H, Melchior F. Nat Struct Mol Biol 20 525-531 (2013)
  21. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Yunus AA, Lima CD. Nat Struct Mol Biol 13 491-499 (2006)
  22. Atomic structure of the APC/C and its mechanism of protein ubiquitination. Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Nature 522 450-454 (2015)
  23. An extended consensus motif enhances the specificity of substrate modification by SUMO. Yang SH, Galanis A, Witty J, Sharrocks AD. EMBO J 25 5083-5093 (2006)
  24. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK. EMBO J 26 2797-2807 (2007)
  25. Active site remodelling accompanies thioester bond formation in the SUMO E1. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Nature 463 906-912 (2010)
  26. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Ozkan E, Yu H, Deisenhofer J. Proc Natl Acad Sci U S A 102 18890-18895 (2005)
  27. Proteome-wide identification of SUMO2 modification sites. Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT. Sci Signal 7 rs2 (2014)
  28. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Das R, Mariano J, Tsai YC, Kalathur RC, Kalathur RC, Kostova Z, Li J, Tarasov SG, McFeeters RL, Altieri AS, Ji X, Byrd RA, Weissman AM. Mol Cell 34 674-685 (2009)
  29. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, Harper JW, Schulman BA. Cell 157 1671-1684 (2014)
  30. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Ouyang J, Shi Y, Valin A, Xuan Y, Gill G. Mol Cell 34 145-154 (2009)
  31. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F. Mol Cell 44 462-475 (2011)
  32. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Maspero E, Valentini E, Mari S, Cecatiello V, Soffientini P, Pasqualato S, Polo S. Nat Struct Mol Biol 20 696-701 (2013)
  33. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Stehmeier P, Muller S. Mol Cell 33 400-409 (2009)
  34. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. Kamadurai HB, Kamadurai HB, Qiu Y, Deng A, Harrison JS, Macdonald C, Macdonald C, Actis M, Rodrigues P, Miller DJ, Souphron J, Lewis SM, Kurinov I, Fujii N, Hammel M, Piper R, Kuhlman B, Schulman BA. Elife 2 e00828 (2013)
  35. Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, Naik NM, Kung CC, Lin SY, Chen RH, Chang KS, Huang TH, Shih HM. Mol Cell 42 62-74 (2011)
  36. Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY, Matunis MJ. J Biol Chem 283 29405-29415 (2008)
  37. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Werner A, Flotho A, Melchior F. Mol Cell 46 287-298 (2012)
  38. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Armstrong AA, Mohideen F, Lima CD. Nature 483 59-63 (2012)
  39. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, Nourse A, Alpi AF, Schulman BA. Structure 21 1030-1041 (2013)
  40. SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, Azuma Y, Wilkinson KD, Dasso M. J Cell Biol 174 939-949 (2006)
  41. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. Starita LM, Pruneda JN, Lo RS, Fowler DM, Kim HJ, Hiatt JB, Shendure J, Brzovic PS, Fields S, Klevit RE. Proc Natl Acad Sci U S A 110 E1263-72 (2013)
  42. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CRR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA. Cell 165 1440-1453 (2016)
  43. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Olsen SK, Lima CD. Mol Cell 49 884-896 (2013)
  44. Emerging roles of the SUMO pathway in mitosis. Dasso M. Cell Div 3 5 (2008)
  45. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Guervilly JH, Takedachi A, Naim V, Scaglione S, Chawhan C, Lovera Y, Despras E, Kuraoka I, Kannouche P, Rosselli F, Gaillard PHL. Mol Cell 57 123-137 (2015)
  46. Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Reverter D, Lima CD. Nat Struct Mol Biol 13 1060-1068 (2006)
  47. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat Struct Mol Biol 20 982-986 (2013)
  48. Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Wu K, Kovacev J, Pan ZQ. Mol Cell 37 784-796 (2010)
  49. NXP-2 association with SUMO-2 depends on lysines required for transcriptional repression. Rosendorff A, Sakakibara S, Lu S, Kieff E, Xuan Y, DiBacco A, Shi Y, Shi Y, Gill G. Proc Natl Acad Sci U S A 103 5308-5313 (2006)
  50. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Yunus AA, Lima CD. Mol Cell 35 669-682 (2009)
  51. SUMO-1 modification alters ADAR1 editing activity. Desterro JM, Keegan LP, Jaffray E, Hay RT, O'Connell MA, Carmo-Fonseca M. Mol Biol Cell 16 5115-5126 (2005)
  52. Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, Grace CRR, Frye JJ, Qiao R, Dube P, Petzold G, Cho SE, Alsharif O, Bao J, Davidson IF, Zheng JJ, Nourse A, Kurinov I, Peters JM, Stark H, Schulman BA. Mol Cell 56 246-260 (2014)
  53. Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Wälde S, Joseph J, Kehlenbach RH, van Deursen JM. J Cell Biol 194 597-612 (2011)
  54. Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, Salvesen G, Wilkinson KD. Biochem J 430 335-344 (2010)
  55. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Bichel K, Price AJ, Schaller T, Towers GJ, Freund SM, James LC. Retrovirology 10 81 (2013)
  56. Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Branigan E, Plechanovová A, Jaffray EG, Naismith JH, Hay RT. Nat Struct Mol Biol 22 597-602 (2015)
  57. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. J Biol Chem 285 29599-29607 (2010)
  58. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, Kurimoto E, Tanaka K, Wakatsuki S, Kato K. Structure 18 138-147 (2010)
  59. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. O'Rourke JG, Gareau JR, Ochaba J, Song W, Raskó T, Reverter D, Lee J, Monteys AM, Pallos J, Mee L, Vashishtha M, Apostol BL, Nicholson TP, Illes K, Zhu YZ, Dasso M, Bates GP, Difiglia M, Davidson B, Wanker EE, Marsh JL, Lima CD, Steffan JS, Thompson LM. Cell Rep 4 362-375 (2013)
  60. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Cappadocia L, Pichler A, Lima CD. Nat Struct Mol Biol 22 968-975 (2015)
  61. Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. Sun H, Hunter T. J Biol Chem 287 42071-42083 (2012)
  62. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway. Ahner A, Gong X, Schmidt BZ, Peters KW, Rabeh WM, Thibodeau PH, Lukacs GL, Frizzell RA. Mol Biol Cell 24 74-84 (2013)
  63. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. Wang M, Cheng D, Peng J, Pickart CM. EMBO J 25 1710-1719 (2006)
  64. SUMO modification of PCNA is controlled by DNA. Parker JL, Bucceri A, Davies AA, Heidrich K, Windecker H, Ulrich HD. EMBO J 27 2422-2431 (2008)
  65. Quality control of a transcriptional regulator by SUMO-targeted degradation. Wang Z, Prelich G. Mol Cell Biol 29 1694-1706 (2009)
  66. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Metzger MB, Liang YH, Das R, Mariano J, Li S, Li J, Kostova Z, Byrd RA, Ji X, Weissman AM. Mol Cell 50 516-527 (2013)
  67. Capturing a substrate in an activated RING E3/E2-SUMO complex. Streich FC, Lima CD. Nature 536 304-308 (2016)
  68. Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. Mukherjee S, Thomas M, Dadgar N, Lieberman AP, Iñiguez-Lluhí JA. J Biol Chem 284 21296-21306 (2009)
  69. Ubiquitin chain elongation requires E3-dependent tracking of the emerging conjugate. Kelly A, Wickliffe KE, Song L, Fedrigo I, Rape M. Mol Cell 56 232-245 (2014)
  70. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Brown NG, VanderLinden R, Watson ER, Qiao R, Grace CR, Yamaguchi M, Weissmann F, Frye JJ, Dube P, Ei Cho S, Actis ML, Rodrigues P, Fujii N, Peters JM, Stark H, Schulman BA. Proc Natl Acad Sci U S A 112 5272-5279 (2015)
  71. The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. Békés M, Prudden J, Srikumar T, Raught B, Boddy MN, Salvesen GS. J Biol Chem 286 10238-10247 (2011)
  72. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ, Pichler A. Nat Struct Mol Biol 22 959-967 (2015)
  73. Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance. Ouyang J, Garner E, Hallet A, Nguyen HD, Rickman KA, Gill G, Smogorzewska A, Zou L. Mol Cell 57 108-122 (2015)
  74. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Mohideen F, Capili AD, Bilimoria PM, Yamada T, Bonni A, Lima CD. Nat Struct Mol Biol 16 945-952 (2009)
  75. Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae. Klug H, Xaver M, Chaugule VK, Koidl S, Mittler G, Klein F, Pichler A. Mol Cell 50 625-636 (2013)
  76. An acetylation switch regulates SUMO-dependent protein interaction networks. Ullmann R, Chien CD, Avantaggiati ML, Muller S. Mol Cell 46 759-770 (2012)
  77. Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Zhu S, Goeres J, Sixt KM, Békés M, Zhang XD, Salvesen GS, Matunis MJ. Mol Cell 33 570-580 (2009)
  78. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. Sekiyama N, Ikegami T, Yamane T, Ikeguchi M, Uchimura Y, Baba D, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M. J Biol Chem 283 35966-35975 (2008)
  79. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Santiago A, Li D, Zhao LY, Godsey A, Liao D. Mol Biol Cell 24 2739-2752 (2013)
  80. The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. Wälde S, Thakar K, Hutten S, Spillner C, Nath A, Rothbauer U, Wiemann S, Kehlenbach RH. Traffic 13 218-233 (2012)
  81. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Wiehe K, Pierce B, Tong WW, Hwang H, Mintseris J, Weng Z. Proteins 69 719-725 (2007)
  82. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Dürr P, Hermann M, Zwerschke W. J Cell Biochem 107 293-302 (2009)
  83. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Huang DT, Zhuang M, Ayrault O, Schulman BA. Nat Struct Mol Biol 15 280-287 (2008)
  84. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. Duda DM, van Waardenburg RC, Borg LA, McGarity S, Nourse A, Waddell MB, Bjornsti MA, Schulman BA. J Mol Biol 369 619-630 (2007)
  85. Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. Mascle XH, Germain-Desprez D, Huynh P, Estephan P, Aubry M. J Biol Chem 282 10190-10202 (2007)
  86. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A, Melchior F. Nat Commun 7 11482 (2016)
  87. The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Wang J, Hu W, Cai S, Lee B, Song J, Chen Y. Mol Cell 27 228-237 (2007)
  88. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Berndsen CE, Wiener R, Yu IW, Ringel AE, Wolberger C. Nat Chem Biol 9 154-156 (2013)
  89. Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. Namanja AT, Li YJ, Su Y, Wong S, Lu J, Colson LT, Wu C, Li SS, Chen Y. J Biol Chem 287 3231-3240 (2012)
  90. Regulation of Wnt signaling by the nuclear pore complex. Shitashige M, Satow R, Honda K, Ono M, Hirohashi S, Yamada T. Gastroenterology 134 1961-71, 1971.e1-4 (2008)
  91. Evolution of a signalling system that incorporates both redundancy and diversity: Arabidopsis SUMOylation. Chosed R, Mukherjee S, Lois LM, Orth K. Biochem J 398 521-529 (2006)
  92. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Vethantham V, Rao N, Manley JL. Genes Dev 22 499-511 (2008)
  93. Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. Lin DY, Diao J, Chen J. Proc Natl Acad Sci U S A 109 1925-1930 (2012)
  94. Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates. Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J. EMBO J 27 804-816 (2008)
  95. Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies. Wohlschlegel JA, Johnson ES, Reed SI, Yates JR. J Proteome Res 5 761-770 (2006)
  96. Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A. J Mol Biol 425 1318-1329 (2013)
  97. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin. Grau-Bové X, Sebé-Pedrós A, Ruiz-Trillo I. Mol Biol Evol 32 726-739 (2015)
  98. Decreased recognition of SUMO-sensitive target genes following modification of SF-1 (NR5A1). Campbell LA, Faivre EJ, Show MD, Ingraham JG, Flinders J, Gross JD, Ingraham HA. Mol Cell Biol 28 7476-7486 (2008)
  99. A novel SUMO1-specific interacting motif in dipeptidyl peptidase 9 (DPP9) that is important for enzymatic regulation. Pilla E, Möller U, Sauer G, Mattiroli F, Melchior F, Geiss-Friedlander R. J Biol Chem 287 44320-44329 (2012)
  100. Architecture of the cytoplasmic face of the nuclear pore. Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Science 376 eabm9129 (2022)
  101. Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. Windecker H, Ulrich HD. J Mol Biol 376 221-231 (2008)
  102. Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP. Otsuka S, Iwasaka S, Yoneda Y, Takeyasu K, Yoshimura SH. Proc Natl Acad Sci U S A 105 16101-16106 (2008)
  103. Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Martin SF, Tatham MH, Hay RT, Samuel ID. Protein Sci 17 777-784 (2008)
  104. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design. Gilbreth RN, Truong K, Madu I, Koide A, Wojcik JB, Li NS, Piccirilli JA, Chen Y, Koide S. Proc Natl Acad Sci U S A 108 7751-7756 (2011)
  105. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. Minde DP, Radli M, Forneris F, Maurice MM, Rüdiger SG. PLoS One 8 e77257 (2013)
  106. Nedd4-WW domain-binding protein 5 (Ndfip1) is associated with neuronal survival after acute cortical brain injury. Sang Q, Kim MH, Kumar S, Bye N, Morganti-Kossman MC, Gunnersen J, Fuller S, Howitt J, Hyde L, Beissbarth T, Scott HS, Silke J, Tan SS. J Neurosci 26 7234-7244 (2006)
  107. Structural and functional characterization of the phosphorylation-dependent interaction between PML and SUMO1. Cappadocia L, Mascle XH, Bourdeau V, Tremblay-Belzile S, Chaker-Margot M, Lussier-Price M, Wada J, Sakaguchi K, Aubry M, Ferbeyre G, Omichinski JG. Structure 23 126-138 (2015)
  108. Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Sriramachandran AM, Meyer-Teschendorf K, Pabst S, Ulrich HD, Gehring NH, Hofmann K, Praefcke GJK, Dohmen RJ. Nat Commun 10 3678 (2019)
  109. Insights into ubiquitin-conjugating enzyme/ co-activator interactions from the structure of the Pex4p:Pex22p complex. Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M. EMBO J 31 391-402 (2012)
  110. Stat1 and SUMO modification. Song L, Bhattacharya S, Yunus AA, Lima CD, Schindler C. Blood 108 3237-3244 (2006)
  111. The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Yang SH, Sharrocks AD. Mol Cell Biol 30 2193-2205 (2010)
  112. SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy. Park MA, Seok YJ, Jeong G, Lee JS. Nucleic Acids Res 36 263-283 (2008)
  113. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M. J Mol Biol 359 137-147 (2006)
  114. SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on DAXX. Holmstrom SR, Chupreta S, So AY, Iñiguez-Lluhí JA. Mol Endocrinol 22 2061-2075 (2008)
  115. Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation. Grünwald M, Bono F. EMBO J 30 427-438 (2011)
  116. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS One 5 e15805 (2010)
  117. Modulation of K11-linkage formation by variable loop residues within UbcH5A. Bosanac I, Phu L, Pan B, Zilberleyb I, Maurer B, Dixit VM, Hymowitz SG, Kirkpatrick DS. J Mol Biol 408 420-431 (2011)
  118. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D. EMBO J 37 e98306 (2018)
  119. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. Tateishi Y, Ariyoshi M, Igarashi R, Hara H, Mizuguchi K, Seto A, Nakai A, Kokubo T, Tochio H, Shirakawa M. J Biol Chem 284 2435-2447 (2009)
  120. Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK. Li X, Vadrevu S, Dunlop A, Day J, Advant N, Troeger J, Klussmann E, Jaffrey E, Hay RT, Adams DR, Houslay MD, Baillie GS. Biochem J 428 55-65 (2010)
  121. Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. Escobar-Cabrera E, Okon M, Lau DK, Dart CF, Bonvin AM, McIntosh LP. J Biol Chem 286 19816-19829 (2011)
  122. ATPase-dependent control of the Mms21 SUMO ligase during DNA repair. Bermúdez-López M, Pociño-Merino I, Sánchez H, Bueno A, Guasch C, Almedawar S, Bru-Virgili S, Garí E, Wyman C, Reverter D, Colomina N, Torres-Rosell J. PLoS Biol 13 e1002089 (2015)
  123. Crystal structure of the N-terminal domain of Nup358/RanBP2. Kassube SA, Stuwe T, Lin DH, Antonuk CD, Napetschnig J, Blobel G, Hoelz A. J Mol Biol 423 752-765 (2012)
  124. Sumoylation-dependent control of homotypic and heterotypic synergy by the Kruppel-type zinc finger protein ZBP-89. Chupreta S, Brevig H, Bai L, Merchant JL, Iñiguez-Lluhí JA. J Biol Chem 282 36155-36166 (2007)
  125. Characterization of a ras-related nuclear protein (Ran protein) up-regulated in shrimp antiviral immunity. Han F, Zhang X. Fish Shellfish Immunol 23 937-944 (2007)
  126. Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Sekiyama N, Arita K, Ikeda Y, Hashiguchi K, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M. Proteins 78 1491-1502 (2010)
  127. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. Mukherjee S, Cruz-Rodríguez O, Bolton E, Iñiguez-Lluhí JA. J Biol Chem 287 31195-31206 (2012)
  128. Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores. Sun C, Fu G, Ciziene D, Stewart M, Musser SM. Proc Natl Acad Sci U S A 110 E1584-93 (2013)
  129. Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80. Anamika, Spyracopoulos L. J Biol Chem 291 4417-4428 (2016)
  130. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex. Sakin V, Richter SM, Hsiao HH, Urlaub H, Melchior F. J Biol Chem 290 23589-23602 (2015)
  131. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM)-type zinc fingers in ZNF261 and ZNF198. Guzzo CM, Ringel A, Cox E, Uzoma I, Zhu H, Blackshaw S, Wolberger C, Matunis MJ. PLoS One 9 e105271 (2014)
  132. Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress. van Waardenburg RC, Duda DM, Lancaster CS, Schulman BA, Bjornsti MA. Mol Cell Biol 26 4958-4969 (2006)
  133. Mechanism of ubiquitin transfer promoted by TRAF6. Fu TM, Shen C, Li Q, Zhang P, Wu H. Proc Natl Acad Sci U S A 115 1783-1788 (2018)
  134. Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4. Xu Y, Plechanovová A, Simpson P, Marchant J, Leidecker O, Kraatz S, Hay RT, Matthews SJ. Nat Commun 5 4217 (2014)
  135. Crystal Structure of a Ube2S-Ubiquitin Conjugate. Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J. PLoS One 11 e0147550 (2016)
  136. Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex. Petroski MD, Kleiger G, Deshaies RJ. Mol Cell 24 523-534 (2006)
  137. Insights into Ubiquitination from the Unique Clamp-like Binding of the RING E3 AO7 to the E2 UbcH5B. Li S, Liang YH, Mariano J, Metzger MB, Stringer DK, Hristova VA, Li J, Randazzo PA, Tsai YC, Ji X, Weissman AM. J Biol Chem 290 30225-30239 (2015)
  138. Protein-protein interactions regulate Ubl conjugation. Knipscheer P, Sixma TK. Curr Opin Struct Biol 17 665-673 (2007)
  139. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Oberle C, Blattner C. Curr Genomics 11 184-198 (2010)
  140. Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci. Mazur MJ, Spears BJ, Djajasaputra A, van der Gragt M, Vlachakis G, Beerens B, Gassmann W, van den Burg HA. Front Plant Sci 8 2043 (2017)
  141. SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Mohiuddin M, Evans TJ, Rahman MM, Keka IS, Tsuda M, Sasanuma H, Takeda S. Proc Natl Acad Sci U S A 115 12793-12798 (2018)
  142. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. EMBO J 39 e104863 (2020)
  143. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR, Kulathu Y. EMBO J 41 e111015 (2022)
  144. Identification of biochemically distinct properties of the small ubiquitin-related modifier (SUMO) conjugation pathway in Plasmodium falciparum. Reiter K, Mukhopadhyay D, Zhang H, Boucher LE, Kumar N, Bosch J, Matunis MJ. J Biol Chem 288 27724-27736 (2013)
  145. Strategies to Identify Recognition Signals and Targets of SUMOylation. Da Silva-Ferrada E, Lopitz-Otsoa F, Lang V, Rodríguez MS, Matthiesen R. Biochem Res Int 2012 875148 (2012)
  146. Research Support, U.S. Gov't, P.H.S. Beginning at the end with SUMO. Matunis MJ, Pickart CM. Nat Struct Mol Biol 12 565-566 (2005)
  147. A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Saether T, Pattabiraman DR, Alm-Kristiansen AH, Vogt-Kielland LT, Gonda TJ, Gabrielsen OS. Oncogene 30 212-222 (2011)
  148. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. J Biol Chem 288 36312-36327 (2013)
  149. Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9. Hewitt WM, Lountos GT, Zlotkowski K, Dahlhauser SD, Saunders LB, Needle D, Tropea JE, Zhan C, Wei G, Ma B, Nussinov R, Waugh DS, Schneekloth JS. Angew Chem Int Ed Engl 55 5703-5707 (2016)
  150. Stability of thioester intermediates in ubiquitin-like modifications. Song J, Wang J, Jozwiak AA, Hu W, Swiderski PM, Chen Y. Protein Sci 18 2492-2499 (2009)
  151. The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. Ryu H, Sun XX, Chen Y, Li Y, Wang X, Dai RS, Zhu HM, Klimek J, David L, Fedorov LM, Azuma Y, Sears RC, Dai MS. EMBO Rep 22 e50684 (2021)
  152. A holistic approach to protein docking. Qin S, Zhou HX. Proteins 69 743-749 (2007)
  153. Development of a high-throughput screen to detect inhibitors of TRPS1 sumoylation. Brandt M, Szewczuk LM, Zhang H, Hong X, McCormick PM, Lewis TS, Graham TI, Hung ST, Harper-Jones AD, Kerrigan JJ, Wang DY, Dul E, Hou W, Ho TF, Meek TD, Cheung MH, Johanson KO, Jones CS, Schwartz B, Kumar S, Oliff AI, Kirkpatrick RB. Assay Drug Dev Technol 11 308-325 (2013)
  154. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. Wesalo JS, Luo J, Morihiro K, Liu J, Deiters A. Chembiochem 21 141-148 (2020)
  155. RWD Domain as an E2 (Ubc9)-Interaction Module. Alontaga AY, Ambaye ND, Li YJ, Vega R, Chen CH, Bzymek KP, Williams JC, Hu W, Chen Y. J Biol Chem 290 16550-16559 (2015)
  156. SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. Chen A, Wang PY, Yang YC, Huang YH, Yeh JJ, Chou YH, Cheng JT, Hong YR, Li SS. J Cell Biochem 98 895-911 (2006)
  157. A high throughput mutagenic analysis of yeast sumo structure and function. Newman HA, Meluh PB, Lu J, Vidal J, Carson C, Lagesse E, Gray JJ, Boeke JD, Matunis MJ. PLoS Genet 13 e1006612 (2017)
  158. Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity. Ries LK, Sander B, Deol KK, Letzelter MA, Strieter ER, Lorenz S. J Biol Chem 294 6113-6129 (2019)
  159. Binding properties of SUMO-interacting motifs (SIMs) in yeast. Jardin C, Horn AH, Sticht H. J Mol Model 21 50 (2015)
  160. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells. Raghunayakula S, Subramonian D, Dasso M, Kumar R, Zhang XD. PLoS One 10 e0144508 (2015)
  161. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Zhu S, Zhang H, Matunis MJ. Exp Cell Res 312 1042-1049 (2006)
  162. Global Analysis of SUMO-Binding Proteins Identifies SUMOylation as a Key Regulator of the INO80 Chromatin Remodeling Complex. Cox E, Hwang W, Uzoma I, Hu J, Guzzo CM, Jeong J, Matunis MJ, Qian J, Zhu H, Blackshaw S. Mol Cell Proteomics 16 812-823 (2017)
  163. RanBP2: a tumor suppressor with a new twist on TopoII, SUMO, and centromeres. Navarro MS, Bachant J. Cancer Cell 13 293-295 (2008)
  164. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR. Oregioni A, Stieglitz B, Kelly G, Rittinger K, Frenkiel T. Sci Rep 7 43748 (2017)
  165. E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2. Anandapadamanaban M, Kyriakidis NC, Csizmók V, Wallenhammar A, Espinosa AC, Ahlner A, Round AR, Trewhella J, Moche M, Wahren-Herlenius M, Sunnerhagen M. J Biol Chem 294 11404-11419 (2019)
  166. The RanBP2/RanGAP1*SUMO1/Ubc9 complex: a multisubunit E3 ligase at the intersection of sumoylation and the RanGTPase cycle. Flotho A, Werner A. Nucleus 3 429-432 (2012)
  167. Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality. Tedeschi G, Albani E, Borroni EM, Parini V, Brucculeri AM, Maffioli E, Negri A, Nonnis S, Maccarrone M, Levi-Setti PE. J Assist Reprod Genet 34 225-238 (2017)
  168. Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs. Varejão N, Lascorz J, Codina-Fabra J, Bellí G, Borràs-Gas H, Torres-Rosell J, Reverter D. Nat Commun 12 7013 (2021)
  169. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1. He Y, Yang Z, Zhao CS, Xiao Z, Gong Y, Li YY, Chen Y, Du Y, Feng D, Altman A, Li Y. Elife 10 e67123 (2021)
  170. The SUMO Conjugation Complex Self-Assembles into Nuclear Bodies Independent of SIZ1 and COP1. Mazur MJ, Kwaaitaal M, Mateos MA, Maio F, Kini RK, Prins M, van den Burg HA. Plant Physiol 179 168-183 (2019)
  171. An in vitro Förster resonance energy transfer-based high-throughput screening assay for inhibitors of protein-protein interactions in SUMOylation pathway. Song Y, Liao J. Assay Drug Dev Technol 10 336-343 (2012)
  172. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes. Im HJ, Sharrocks AD, Lin X, Yan D, Kim J, van Wijnen AJ, Hipskind RA. Open Access Rheumatol 1 151-161 (2009)
  173. Entropy-driven mechanism of an E3 ligase. Truong K, Su Y, Song J, Chen Y. Biochemistry 50 5757-5766 (2011)
  174. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K. Rout MK, Lee BL, Lin A, Xiao W, Spyracopoulos L. Sci Rep 8 7002 (2018)
  175. Covalent Capturing of Transient SUMO-SIM Interactions Using Unnatural Amino Acid Mutagenesis and Photocrosslinking. Taupitz KF, Dörner W, Mootz HD. Chemistry 23 5978-5982 (2017)
  176. Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes. Welsh KA, Bolhuis DL, Nederstigt AE, Boyer J, Temple BRS, Bonacci T, Gu L, Ordureau A, Harper JW, Steimel JP, Zhang Q, Emanuele MJ, Harrison JS, Brown NG. EMBO J 41 e108823 (2022)
  177. Recombinant adenovirus encoding FAT10 small interfering RNA inhibits HCC growth in vitro and in vivo. Chen J, Yang L, Chen H, Yuan T, Liu M, Chen P. Exp Mol Pathol 96 207-211 (2014)
  178. SUMO assay with peptide arrays on solid support: insights into SUMO target sites. Schwamborn K, Knipscheer P, van Dijk E, van Dijk WJ, Sixma TK, Meloen RH, Langedijk JP. J Biochem 144 39-49 (2008)
  179. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in Drosophila. Parikh RY, Lin H, Gangaraju VK. J Biol Chem 293 9140-9147 (2018)
  180. Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations. Zhen Y, Qin G, Luo C, Jiang H, Yu K, Chen G. PLoS One 9 e101663 (2014)
  181. Functional reconstitution of a tunable E3-dependent sumoylation pathway in Escherichia coli. O'Brien SP, DeLisa MP. PLoS One 7 e38671 (2012)
  182. Investigating molecular crowding within nuclear pores using polarization-PALM. Fu G, Tu LC, Zilman A, Musser SM. Elife 6 e28716 (2017)
  183. Proteomic analysis to characterize differential mouse strain sensitivity to cadmium-induced forelimb teratogenesis. Chen H, Boontheung P, Loo RR, Xie Y, Loo JA, Rao JY, Collins MD. Birth Defects Res A Clin Mol Teratol 82 187-199 (2008)
  184. SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in Candida albicans. Yan M, Nie X, Wang H, Gao N, Liu H, Chen J. Mol Microbiol 98 69-89 (2015)
  185. article-commentary Structural biology: A protein engagement RING. Lima CD, Schulman BA. Nature 489 43-44 (2012)
  186. Biosynthesis of SUMOylated Proteins in Bacteria Using the Trypanosoma brucei Enzymatic System. Iribarren PA, Berazategui MA, Cazzulo JJ, Alvarez VE. PLoS One 10 e0134950 (2015)
  187. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. Kaur K, Park H, Pandey N, Azuma Y, De Guzman RN. J Biol Chem 292 10230-10238 (2017)
  188. The Cellular Distribution of RanGAP1 Is Regulated by CRM1-Mediated Nuclear Export in Mammalian Cells. Cha K, Sen P, Raghunayakula S, Zhang XD. PLoS One 10 e0141309 (2015)
  189. Workshop on RanBP2/Nup358 and acute necrotizing encephalopathy. Palazzo AF, Joseph J, Lim M, Thakur KT. Nucleus 13 154-169 (2022)
  190. A disulphide bond in the E2 enzyme Pex4p modulates ubiquitin-conjugating activity. Williams C, van den Berg M, Stanley WA, Wilmanns M, Distel B. Sci Rep 3 2212 (2013)
  191. A stable chemical SUMO1-Ubc9 conjugate specifically binds as a thioester mimic to the RanBP2-E3 ligase complex. Sommer S, Ritterhoff T, Melchior F, Mootz HD. Chembiochem 16 1183-1189 (2015)
  192. Comment Divide and conquer: the E2 active site. Knipscheer P, Sixma TK. Nat Struct Mol Biol 13 474-476 (2006)
  193. Evolutionary divergence of the nuclear pore complex from fungi to metazoans. Chopra K, Bawaria S, Chauhan R. Protein Sci 28 571-586 (2019)
  194. Protein-protein docking: progress in CAPRI rounds 6-12 using a combination of methods: the introduction of steered solvated molecular dynamics. Heifetz A, Pal S, Smith GR. Proteins 69 816-822 (2007)
  195. Homology Modelling of Human E1 Ubiquitin Activating Enzyme. Brahemi G, Burger AM, Westwell AD, Brancale A. Lett Drug Des Discov 7 57-62 (2010)
  196. Induction of anti-tumor immunity by dendritic cells transduced with FAT10 recombinant adenovirus in mice. Yang Z, Wu D, Zhou D, Jiao F, Yang W, Huan Y. Cell Immunol 293 17-21 (2015)
  197. Molecular dynamics simulations reveal a new role for a conserved active site asparagine in a ubiquitin-conjugating enzyme. Wilson RH, Zamfir S, Sumner I. J Mol Graph Model 76 403-411 (2017)
  198. Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation. Streich FC, Lima CD. Methods Mol Biol 1844 169-196 (2018)
  199. Terminal differentiation of cortical neurons rapidly remodels RanGAP-mediated nuclear transport system. Fujiwara K, Hasegawa K, Oka M, Yoneda Y, Yoshikawa K. Genes Cells 21 1176-1194 (2016)
  200. Aurora B SUMOylation Is Restricted to Centromeres in Early Mitosis and Requires RANBP2. Di Cesare E, Moroni S, Bartoli J, Damizia M, Giubettini M, Koerner C, Krenn V, Musacchio A, Lavia P. Cells 12 372 (2023)
  201. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. BMC Syst Biol 7 24 (2013)
  202. Localization Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines Predict Their Functional Importance. Gong X, Nie Q, Xiao Y, Xiang JW, Wang L, Liu F, Fu JL, Liu Y, Yang L, Gan Y, Chen H, Luo Z, Qi R, Chen Z, Tang X, Li DW. Curr Mol Med 18 516-522 (2018)
  203. Observation of an E2 (Ubc9)-homodimer by crystallography. Alontaga AY, Ambaye ND, Li YJ, Vega R, Chen CH, Bzymek KP, Williams JC, Hu W, Chen Y. Data Brief 7 195-200 (2016)
  204. SUMOylated RanGAP1 prepared by click chemistry. van Treel ND, Mootz HD. J Pept Sci 20 121-127 (2014)
  205. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. Godneeva B, Ninova M, Fejes-Toth K, Aravin A. Elife 12 RP89493 (2023)
  206. Tag-team SUMO wrestling. Duda DM, Schulman BA. Mol Cell 18 612-614 (2005)
  207. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Acuña ML, García-Morin A, Orozco-Sepúlveda R, Ontiveros C, Flores A, Diaz AV, Gutiérrez-Zubiate I, Patil AR, Alvarado LA, Roy S, Russell WK, Rosas-Acosta G. Sci Rep 13 2309 (2023)
  208. An EF-hands protein, centrin-1, is an EGTA-sensitive SUMO-interacting protein in mouse testis. Tanaka N, Goto M, Kawasaki A, Sasano T, Eto K, Nishi R, Sugasawa K, Abe S, Saitoh H. Cell Biochem Funct 28 604-612 (2010)
  209. Structural study of UFL1-UFC1 interaction uncovers the role of UFL1 N-terminal helix in ufmylation. Banerjee S, Varga JK, Kumar M, Zoltsman G, Rotem-Bamberger S, Cohen-Kfir E, Isupov MN, Rosenzweig R, Schueler-Furman O, Wiener R. EMBO Rep 24 e56920 (2023)
  210. UBC9 Mutant Reveals the Impact of Protein Dynamics on Substrate Selectivity and SUMO Chain Linkages. Wright CM, Whitaker RH, Onuiri JE, Blackburn T, McGarity S, Bjornsti MA, Placzek WJ. Biochemistry 58 621-632 (2019)
  211. Cellular targets and lysine selectivity of the HERC5 ISG15 ligase. Zhao X, Perez JM, Faull PA, Chan C, Munting FW, Canadeo LA, Cenik C, Huibregtse JM. iScience 27 108820 (2024)
  212. Human SUMOylation Pathway Is Critical for Influenza B Virus. Dang R, Rodgers VGJ, García-Sastre A, Liao J. Viruses 14 314 (2022)
  213. Molecular mechanism of K65 acetylation-induced attenuation of Ubc9 and the NDSM interaction. Naik MT, Kang M, Ho CC, Liao PH, Hsieh YL, Naik NM, Wang SH, Chang I, Shih HM, Huang TH. Sci Rep 7 17391 (2017)
  214. RanBP2/Nup358 Mediates Sumoylation of STAT1 and Antagonizes Interferon-α-Mediated Antiviral Innate Immunity. Li J, Su L, Jiang J, Wang YE, Ling Y, Qiu Y, Yu H, Huang Y, Wu J, Jiang S, Zhang T, Palazzo AF, Shen Q. Int J Mol Sci 25 299 (2023)
  215. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. J Biol Chem 299 104870 (2023)