1yxq Citations

Structural basis of swinholide A binding to actin.

Chem Biol 12 287-91 (2005)

Abstract

Marine toxins targeting the actin cytoskeleton represent a new and promising class of anti-cancer compounds. Here we present a 2.0 A resolution structure of swinholide A, a marine macrolide, bound to two actin molecules. The structure demonstrates that the actin dimer in the complex does not represent a physiologically relevant entity, for the two actin molecules do not interact with each other. The swinholide A actin binding site is the same as that targeted by toxins of the trisoxazole family and numerous actin binding proteins, highlighting the importance of this site in actin polymerization. The observed structure reveals the mechanism of action of swinholide A and provides a structural framework about which to design new agents directed at the cytoskeleton.

Reviews - 1yxq mentioned but not cited (2)

  1. Actin structure and function. Dominguez R, Holmes KC. Annu Rev Biophys 40 169-186 (2011)
  2. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, Elkafas SS, Abdel Fattah NF, Hessien M. Rev Med Virol 33 e2403 (2023)

Articles - 1yxq mentioned but not cited (5)

  1. Identification of transient hub proteins and the possible structural basis for their multiple interactions. Higurashi M, Ishida T, Kinoshita K. Protein Sci. 17 72-78 (2008)
  2. Flavonoids affect actin functions in cytoplasm and nucleus. Böhl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO. Biophys. J. 93 2767-2780 (2007)
  3. Structural basis for the slow dynamics of the actin filament pointed end. Narita A, Oda T, Maéda Y. EMBO J. 30 1230-1237 (2011)
  4. The structural determinants of macrolide-actin binding: in silico insights. Melville JL, Moal IH, Baker-Glenn C, Shaw PE, Pattenden G, Hirst JD. Biophys. J. 92 3862-3867 (2007)
  5. Single-molecule nanopore sensing of actin dynamics and drug binding. Wang X, Wilkinson MD, Lin X, Ren R, Willison KR, Ivanov AP, Baum J, Edel JB. Chem Sci 11 970-979 (2019)


Reviews citing this publication (11)

  1. Marine natural products. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR. Nat Prod Rep 24 31-86 (2007)
  2. The structures of type I polyketide synthases. Keatinge-Clay AT. Nat Prod Rep 29 1050-1073 (2012)
  3. Biosynthesis of polyketides by trans-AT polyketide synthases. Helfrich EJ, Piel J. Nat Prod Rep 33 231-316 (2016)
  4. Marine natural products that interfere with multiple cytoskeletal protein interactions. Kita M, Kigoshi H. Nat Prod Rep 32 534-542 (2015)
  5. Natural products from the Lithistida: a review of the literature since 2000. Winder PL, Pomponi SA, Wright AE. Mar Drugs 9 2643-2682 (2011)
  6. Stabilization of protein-protein interactions in drug discovery. Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Expert Opin Drug Discov 12 925-940 (2017)
  7. Cellular Mechanotransduction: From Tension to Function. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Front Physiol 9 824 (2018)
  8. Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. Gao J, Nakamura F. Int J Mol Sci 23 2118 (2022)
  9. Actin-Interacting Amphidinolides: Syntheses and Mechanisms of Action of Amphidinolides X, J, and K. Costa AM. Molecules 28 5249 (2023)
  10. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Gago F. Mar Drugs 21 100 (2023)
  11. Cyanobacteria: A Promising Source of Antifungal Metabolites. do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Mar Drugs 21 359 (2023)

Articles citing this publication (25)

  1. Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. Mouilleron S, Guettler S, Langer CA, Treisman R, McDonald NQ. EMBO J. 27 3198-3208 (2008)
  2. Structures of microfilament destabilizing toxins bound to actin provide insight into toxin design and activity. Allingham JS, Zampella A, D'Auria MV, Rayment I. Proc. Natl. Acad. Sci. U.S.A. 102 14527-14532 (2005)
  3. The crystal structure of a cross-linked actin dimer suggests a detailed molecular interface in F-actin. Kudryashov DS, Sawaya MR, Adisetiyo H, Norcross T, Hegyi G, Reisler E, Yeates TO. Proc. Natl. Acad. Sci. U.S.A. 102 13105-13110 (2005)
  4. Crystal structure of polymerization-competent actin. Klenchin VA, Khaitlina SY, Rayment I. J. Mol. Biol. 362 140-150 (2006)
  5. INTEGRATED APPROACHES TO THE CONFIGURATIONAL ASSIGNMENT OF MARINE NATURAL PRODUCTS. Molinski TF, Morinaka BI. Tetrahedron 68 9307-9343 (2012)
  6. The absolute configuration of rhizopodin and its inhibition of actin polymerization by dimerization. Hagelueken G, Albrecht SC, Steinmetz H, Jansen R, Heinz DW, Kalesse M, Schubert WD. Angew. Chem. Int. Ed. Engl. 48 595-598 (2009)
  7. Structure-Based Stabilization of Non-native Protein-Protein Interactions of Coronavirus Nucleocapsid Proteins in Antiviral Drug Design. Lin SM, Lin SC, Hsu JN, Chang CK, Chien CM, Wang YS, Wu HY, Jeng US, Kehn-Hall K, Hou MH. J Med Chem 63 3131-3141 (2020)
  8. Swinholide J, a potent cytotoxin from the marine sponge Theonella swinhoei. De Marino S, Festa C, D'Auria MV, Cresteil T, Debitus C, Zampella A. Mar Drugs 9 1133-1141 (2011)
  9. Two molecules of lobophorolide cooperate to stabilize an actin dimer using both their "ring" and "tail" region. Blain JC, Mok YF, Kubanek J, Allingham JS. Chem. Biol. 17 802-807 (2010)
  10. Development of highly cytotoxic and actin-depolymerizing biotin derivatives of aplyronine A. Kita M, Hirayama Y, Sugiyama M, Kigoshi H. Angew. Chem. Int. Ed. Engl. 50 9871-9874 (2011)
  11. Isoswinholide B and swinholide K, potently cytotoxic dimeric macrolides from Theonella swinhoei. Sinisi A, Calcinai B, Cerrano C, Dien HA, Zampella A, D'Amore C, Renga B, Fiorucci S, Taglialatela-Scafati O. Bioorg. Med. Chem. 21 5332-5338 (2013)
  12. Structural and biochemical studies of actin in complex with synthetic macrolide tail analogues. Pereira JH, Petchprayoon C, Hoepker AC, Moriarty NW, Fink SJ, Cecere G, Paterson I, Adams PD, Marriott G. ChemMedChem 9 2286-2293 (2014)
  13. Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. Holzinger A, Blaas K. Methods Mol. Biol. 1365 243-261 (2016)
  14. Formal Synthesis of Premisakinolide A and C(19)-C(32) of Swinholide A via Site-Selective C-H Allylation and Crotylation of Unprotected Diols. Shin I, Krische MJ. Org. Lett. 17 4686-4689 (2015)
  15. Binding of Red Clover Isoflavones to Actin as A Potential Mechanism of Anti-Metastatic Activity Restricting the Migration of Cancer Cells. Budryn G, Grzelczyk J, Pérez-Sánchez H. Molecules 23 (2018)
  16. Actin Isoform Composition and Binding Factors Fine-Tune Regulatory Impact of Mical Enzymes. Martin JL, Khan A, Grintsevich EE. Int J Mol Sci 24 16651 (2023)
  17. Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Tee YH, Goh WJ, Yong X, Ong HT, Hu J, Tay IYY, Shi S, Jalal S, Barnett SFH, Kanchanawong P, Huang W, Yan J, Lim YAB, Thiagarajan V, Mogilner A, Bershadsky AD. Nat Commun 14 776 (2023)
  18. Development of a novel inducer of protein-protein interactions based on aplyronine A. Ohyoshi T, Takano A, Namiki M, Ogura T, Miyazaki Y, Ebihara Y, Takeno K, Hayakawa I, Kigoshi H. Chem. Commun. (Camb.) 54 9537-9540 (2018)
  19. Equatorial Assembly of the Cell-Division Actomyosin Ring in the Absence of Cytokinetic Spatial Cues. Lim TC, Hatano T, Kamnev A, Balasubramanian MK, Chew TG. Curr. Biol. 28 955-962.e3 (2018)
  20. Influencing the Actin Dynamics in Plant Cells by Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. Holzinger A. Methods Mol Biol 2364 177-198 (2022)
  21. Molecular dynamics and high throughput binding free energy calculation of anti-actin anticancer drugs-New insights for better design. L R, R PK, M M SM. Comput Biol Chem 64 47-55 (2016)
  22. PHACTR1 promotes the mobility of papillary thyroid carcinoma cells by inducing F-actin formation. Zang L, Song Y, Tian Y, Hu N. Heliyon 9 e20461 (2023)
  23. Pointed-end processive elongation of actin filaments by Vibrio effectors VopF and VopL. Kudryashova E, Ankita, Ulrichs H, Shekhar S, Kudryashov DS. Sci Adv 8 eadc9239 (2022)
  24. Synthesis and Biological Activities of Aplyronine A Analogues toward the Development of Antitumor Protein-Protein Interaction Inducers between Actin and Tubulin: Conjugation of the C1-C9 Macrolactone Part and the C24-C34 Side Chain. Futaki K, Takahashi M, Tanabe K, Fujieda A, Kigoshi H, Kita M. ACS Omega 4 8598-8613 (2019)
  25. Synthetic polyamines: new compounds specific to actin dynamics for mammalian cell and fission yeast. Riveline D, Thiagarajan R, Lehn JM, Carlier MF. Bioarchitecture 4 144-148 (2014)