1yvj Citations

Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog.

Blood 106 996-1002 (2005)
Cited: 110 times
EuropePMC logo PMID: 15831699

Abstract

Jak (Janus kinase) family nonreceptor tyrosine kinases are central mediators of cytokine signaling. The Jak kinases exhibit distinct cytokine receptor association profiles and so transduce different signals. Jak3 expression is limited to the immune system, where it plays a key role in signal transduction from cytokine receptors containing the common gamma-chain, gammac. Patients unable to signal via gammac present with severe combined immunodeficiency (SCID). The finding that Jak3 mutations result in SCID has made it a target for development of lymphocyte-specific immunosuppressants. Here, we present the crystal structure of the Jak3 kinase domain in complex with staurosporine analog AFN941. The kinase domain is in the active conformation, with both activation loop tyrosine residues phosphorylated. The phosphate group on pTyr981 in the activation loop is in part coordinated by an arginine residue in the regulatory C-helix, suggesting a direct mechanism by which the active position of the C-helix is induced by phosphorylation of the activation loop. Such a direct coupling has not been previously observed in tyrosine kinases and may be unique to Jak kinases. The crystal structure provides a detailed view of the Jak3 active site and will facilitate computational and structure-directed approaches to development of Jak3-specific inhibitors.

Reviews - 1yvj mentioned but not cited (4)

  1. JAK3: a two-faced player in hematological disorders. Cornejo MG, Boggon TJ, Mercher T. Int J Biochem Cell Biol 41 2376-2379 (2009)
  2. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. Haan C, Behrmann I, Haan S. J Cell Mol Med 14 504-527 (2010)
  3. The use of structural biology in Janus kinase targeted drug discovery. Alicea-Velázquez NL, Boggon TJ. Curr Drug Targets 12 546-555 (2011)
  4. The Exploration of Chirality for Improved Druggability within the Human Kinome. Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. J Med Chem 63 441-469 (2020)

Articles - 1yvj mentioned but not cited (25)

  1. Covalent docking of large libraries for the discovery of chemical probes. London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, Gibold L, Cimermančič P, Bonnet R, Shoichet BK, Taunton J. Nat Chem Biol 10 1066-1072 (2014)
  2. Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Boggon TJ, Li Y, Manley PW, Eck MJ. Blood 106 996-1002 (2005)
  3. Structural basis for the recognition of c-Src by its inactivator Csk. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Cell 134 124-134 (2008)
  4. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  5. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). Jiang JK, Ghoreschi K, Deflorian F, Chen Z, Perreira M, Pesu M, Smith J, Nguyen DT, Liu EH, Leister W, Costanzi S, O'Shea JJ, Thomas CJ. J Med Chem 51 8012-8018 (2008)
  6. JAK Kinases in Health and Disease: An Update. Laurence A, Pesu M, Silvennoinen O, O'Shea J. Open Rheumatol J 6 232-244 (2012)
  7. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket. Forster M, Chaikuad A, Bauer SM, Holstein J, Robers MB, Corona CR, Gehringer M, Pfaffenrot E, Ghoreschi K, Knapp S, Laufer SA. Cell Chem Biol 23 1335-1340 (2016)
  8. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. Goedken ER, Argiriadi MA, Banach DL, Fiamengo BA, Foley SE, Frank KE, George JS, Harris CM, Hobson AD, Ihle DC, Marcotte D, Merta PJ, Michalak ME, Murdock SE, Tomlinson MJ, Voss JW. J Biol Chem 290 4573-4589 (2015)
  9. Development of Selective Covalent Janus Kinase 3 Inhibitors. Tan L, Akahane K, McNally R, Reyskens KM, Ficarro SB, Liu S, Herter-Sprie GS, Koyama S, Pattison MJ, Labella K, Johannessen L, Akbay EA, Wong KK, Frank DA, Marto JA, Look TA, Arthur JS, Eck MJ, Gray NS. J Med Chem 58 6589-6606 (2015)
  10. Alignment of protein structures in the presence of domain motions. Mosca R, Brannetti B, Schneider TR. BMC Bioinformatics 9 352 (2008)
  11. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities. Losdyck E, Hornakova T, Springuel L, Degryse S, Gielen O, Cools J, Constantinescu SN, Flex E, Tartaglia M, Renauld JC, Knoops L. J Biol Chem 290 29022-29034 (2015)
  12. Fedratinib in myelofibrosis. Mullally A, Hood J, Harrison C, Mesa R. Blood Adv 4 1792-1800 (2020)
  13. Identification of a novel inhibitor of JAK2 tyrosine kinase by structure-based virtual screening. Kiss R, Polgár T, Kirabo A, Sayyah J, Figueroa NC, List AF, Sokol L, Zuckerman KS, Gali M, Bisht KS, Sayeski PP, Keseru GM. Bioorg Med Chem Lett 19 3598-3601 (2009)
  14. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL. Degryse S, Bornschein S, de Bock CE, Leroy E, Vanden Bempt M, Demeyer S, Jacobs K, Geerdens E, Gielen O, Soulier J, Harrison CJ, Constantinescu SN, Cools J. Blood 131 421-425 (2018)
  15. Z3, a novel Jak2 tyrosine kinase small-molecule inhibitor that suppresses Jak2-mediated pathologic cell growth. Sayyah J, Magis A, Ostrov DA, Allan RW, Braylan RC, Sayeski PP. Mol Cancer Ther 7 2308-2318 (2008)
  16. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats. Kim BH, Kim M, Yin CH, Jee JG, Sandoval C, Lee H, Bach EA, Hahm DH, Baeg GH. Br J Pharmacol 164 106-118 (2011)
  17. Structure-based drug design and AutoDock study of potential protein tyrosine kinase inhibitors. Ali HI, Nagamatsu T, Akaho E. Bioinformation 5 368-374 (2011)
  18. NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3. Kim BH, Jee JG, Yin CH, Sandoval C, Jayabose S, Kitamura D, Bach EA, Baeg GH. Mol Cancer 9 36 (2010)
  19. In Silico Investigation of the Anti-Tumor Mechanisms of Epigallocatechin-3-Gallate. Wang W, Xiong X, Li X, Zhang Q, Yang W, Du L. Molecules 24 E1445 (2019)
  20. Hyperactivation of Oncogenic JAK3 Mutants Depend on ATP Binding to the Pseudokinase Domain. Raivola J, Hammarén HM, Virtanen AT, Bulleeraz V, Ward AC, Silvennoinen O. Front Oncol 8 560 (2018)
  21. Computational analyses of JAK1 kinase domain: subtle changes in the catalytic cleft influence inhibitor specificity. Zhang X, Hu Y, Yuan Z. Biochem Biophys Res Commun 370 72-76 (2008)
  22. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. Kim BH, Yi EH, Jee JG, Jeong AJ, Sandoval C, Park IC, Baeg GH, Ye SK. J Cell Mol Med 24 7427-7438 (2020)
  23. An aggregate analysis of many predicted structures to reduce errors in protein structure comparison caused by conformational flexibility. Godshall BG, Tang Y, Yang W, Chen BY. BMC Struct Biol 13 Suppl 1 S10 (2013)
  24. LCC-09, a Novel Salicylanilide Derivative, Exerts Anti-Inflammatory Effect in Vascular Endothelial Cells. Angom RS, Zhu J, Wu ATH, Sumitra MR, Pham V, Dutta S, Wang E, Madamsetty VS, Perez-Cordero GD, Huang HS, Mukhopadhyay D, Wang Y. J Inflamm Res 14 4551-4565 (2021)
  25. Molecular docking analysis of Indole based diaza-sulphonamides with JAK-3 protein. Nautiyal M, Sekaran K, Sekaran S, Rengasamy G, Veeraraghavan VP, Eswaramoorthy R. Bioinformation 19 74-78 (2023)


Reviews citing this publication (25)

  1. The molecular details of cytokine signaling via the JAK/STAT pathway. Morris R, Kershaw NJ, Babon JJ. Protein Sci 27 1984-2009 (2018)
  2. Structural biology of shared cytokine receptors. Wang X, Lupardus P, Laporte SL, Garcia KC. Annu Rev Immunol 27 29-60 (2009)
  3. Myeloproliferative disorders. Levine RL, Gilliland DG. Blood 112 2190-2198 (2008)
  4. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Pardanani A. Leukemia 22 23-30 (2008)
  5. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Sánchez C, Méndez C, Salas JA. Nat Prod Rep 23 1007-1045 (2006)
  6. Therapeutic targeting of Janus kinases. Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. Immunol Rev 223 132-142 (2008)
  7. Jaks and cytokine receptors--an intimate relationship. Haan C, Kreis S, Margue C, Behrmann I. Biochem Pharmacol 72 1538-1546 (2006)
  8. Jak2: normal function and role in hematopoietic disorders. Ihle JN, Gilliland DG. Curr Opin Genet Dev 17 8-14 (2007)
  9. JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Vainchenker W, Dusa A, Constantinescu SN. Semin Cell Dev Biol 19 385-393 (2008)
  10. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Meyer SC, Levine RL. Clin Cancer Res 20 2051-2059 (2014)
  11. IRAK-4 inhibitors for inflammation. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC. Curr Top Med Chem 9 724-737 (2009)
  12. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. Kurdi M, Booz GW. J Cardiovasc Pharmacol 50 126-141 (2007)
  13. Protein kinase inhibition of clinically important staurosporine analogues. Gani OA, Engh RA. Nat Prod Rep 27 489-498 (2010)
  14. JAK and MPL mutations in myeloid malignancies. Tefferi A. Leuk Lymphoma 49 388-397 (2008)
  15. The role of Janus kinases in haemopoiesis and haematological malignancy. Khwaja A. Br J Haematol 134 366-384 (2006)
  16. The JAK kinases: not just another kinase drug discovery target. Wilks AF. Semin Cell Dev Biol 19 319-328 (2008)
  17. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders. Bahia MS, Kaur M, Silakari P, Silakari O. Cell Signal 27 1039-1055 (2015)
  18. New insights into the structure and function of the pseudokinase domain in JAK2. Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R, Hubbard SR. Biochem Soc Trans 41 1002-1007 (2013)
  19. Jak2 inhibitors: rationale and role as therapeutic agents in hematologic malignancies. Sayyah J, Sayeski PP. Curr Oncol Rep 11 117-124 (2009)
  20. Stat5 as a diagnostic marker for leukemia. Lewis RS, Ward AC. Expert Rev Mol Diagn 8 73-82 (2008)
  21. JAK2 inhibitors: A reality? A hope? Apostolidou E, Kantarjian HM, Verstovsek S. Clin Lymphoma Myeloma 9 Suppl 3 S340-5 (2009)
  22. Progress toward JAK1-selective inhibitors. Menet CJ, Mammoliti O, López-Ramos M. Future Med Chem 7 203-235 (2015)
  23. JAK2 and MPL mutations in myeloproliferative neoplasms. Koppikar P, Levine RL. Acta Haematol 119 218-225 (2008)
  24. Are peptides a solution for the treatment of hyperactivated JAK3 pathways? Dullius A, Rocha CM, Laufer S, de Souza CFV, Goettert MI. Inflammopharmacology 27 433-452 (2019)
  25. Cytokine-mediated signalling and early defects in lymphoid development. Giliani S, Mella P, Savoldi G, Mazzolari E. Curr Opin Allergy Clin Immunol 5 519-524 (2005)

Articles citing this publication (56)

  1. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ. Cancer Cell 11 217-227 (2007)
  2. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, Friedrich DC, Kryukov G, Carter SL, McKenna A, Sivachenko A, Rosenberg M, Kiezun A, Voet D, Lawrence M, Lichtenstein LT, Gentry JG, Huang FW, Fostel J, Farlow D, Barbie D, Gandhi L, Lander ES, Gray SW, Joffe S, Janne P, Garber J, MacConaill L, Lindeman N, Rollins B, Kantoff P, Fisher SA, Gabriel S, Getz G, Garraway LA. Nat Med 20 682-688 (2014)
  3. Structural basis for the autoinhibition of focal adhesion kinase. Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ. Cell 129 1177-1187 (2007)
  4. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ. Cancer Cell 10 65-75 (2006)
  5. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G, Finke C, Mak CC, Mesa R, Zhu H, Soll R, Gilliland DG, Tefferi A. Leukemia 21 1658-1668 (2007)
  6. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, Xu CF, Neubert TA, Skoda RC, Hubbard SR, Silvennoinen O. Nat Struct Mol Biol 18 971-976 (2011)
  7. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Nat Struct Mol Biol 19 754-759 (2012)
  8. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I, Zerwes HG. Chem Biol 18 314-323 (2011)
  9. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, Fantino E, Rossjohn J, Lucet IS. J Mol Biol 387 219-232 (2009)
  10. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Lupardus PJ, Ultsch M, Wallweber H, Bir Kohli P, Johnson AR, Eigenbrot C. Proc Natl Acad Sci U S A 111 8025-8030 (2014)
  11. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  12. Plasma gelsolin is a marker and therapeutic agent in animal sepsis. Lee PS, Waxman AB, Cotich KL, Chung SW, Perrella MA, Stossel TP. Crit Care Med 35 849-855 (2007)
  13. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Fröhling S, Cullen D, Polakiewicz RD, Bernard OA, Boggon TJ, Lee BH, Gilliland DG. Blood 108 2770-2779 (2006)
  14. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, Marque F, Régnier CH, De Pover A, Ryckelynck H, Bhagwat N, Koppikar P, Goel A, Wyder L, Tavares G, Baffert F, Pissot-Soldermann C, Manley PW, Gaul C, Voshol H, Levine RL, Sellers WR, Hofmann F, Radimerski T. Cancer Discov 2 512-523 (2012)
  15. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Azam M, Nardi V, Shakespeare WC, Metcalf CA, Bohacek RS, Wang Y, Sundaramoorthi R, Sliz P, Veach DR, Bornmann WG, Clarkson B, Dalgarno DC, Sawyer TK, Daley GQ. Proc Natl Acad Sci U S A 103 9244-9249 (2006)
  16. Gö6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Grandage VL, Everington T, Linch DC, Khwaja A. Br J Haematol 135 303-316 (2006)
  17. FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Elliott NE, Cleveland SM, Grann V, Janik J, Waldmann TA, Davé UP. Blood 118 3911-3921 (2011)
  18. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. PLoS One 5 e11157 (2010)
  19. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC. Structure 19 45-55 (2011)
  20. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. EMBO J 25 4763-4772 (2006)
  21. Global analysis of human nonreceptor tyrosine kinase specificity using high-density peptide microarrays. Deng Y, Alicea-Velázquez NL, Bannwarth L, Lehtonen SI, Boggon TJ, Cheng HC, Hytönen VP, Turk BE. J Proteome Res 13 4339-4346 (2014)
  22. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Varghese LN, Ungureanu D, Liau NP, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM. Biochem J 458 395-405 (2014)
  23. Pharmacophore and Virtual Screening of JAK3 inhibitors. Rajeswari M, Santhi N, Bhuvaneswari V. Bioinformation 10 157-163 (2014)
  24. Analysis of Jak2 catalytic function by peptide microarrays: the role of the JH2 domain and V617F mutation. Sanz A, Ungureanu D, Pekkala T, Ruijtenbeek R, Touw IP, Hilhorst R, Silvennoinen O. PLoS One 6 e18522 (2011)
  25. Phosphorylation of human Jak3 at tyrosines 904 and 939 positively regulates its activity. Cheng H, Ross JA, Frost JA, Kirken RA. Mol Cell Biol 28 2271-2282 (2008)
  26. Crystal Structure of a Complex of the Intracellular Domain of Interferon λ Receptor 1 (IFNLR1) and the FERM/SH2 Domains of Human JAK1. Zhang D, Wlodawer A, Lubkowski J. J Mol Biol 428 4651-4668 (2016)
  27. Strategic use of conformational bias and structure based design to identify potent JAK3 inhibitors with improved selectivity against the JAK family and the kinome. Lynch SM, DeVicente J, Hermann JC, Jaime-Figueroa S, Jin S, Kuglstatter A, Li H, Lovey A, Menke J, Niu L, Patel V, Roy D, Soth M, Steiner S, Tivitmahaisoon P, Vu MD, Yee C. Bioorg Med Chem Lett 23 2793-2800 (2013)
  28. Transforming JAK1 mutations exhibit differential signalling, FERM domain requirements and growth responses to interferon-γ. Gordon GM, Lambert QT, Daniel KG, Reuther GW. Biochem J 432 255-265 (2010)
  29. Simplified staurosporine analogs as potent JAK3 inhibitors. Yang SM, Malaviya R, Wilson LJ, Argentieri R, Chen X, Yang C, Wang B, Cavender D, Murray WV. Bioorg Med Chem Lett 17 326-331 (2007)
  30. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Poulsen A, William A, Blanchard S, Lee A, Nagaraj H, Wang H, Teo E, Tan E, Goh KC, Dymock B. J Comput Aided Mol Des 26 437-450 (2012)
  31. Dual inhibitors of Janus kinase 2 and 3 (JAK2/3): designing by pharmacophore- and docking-based virtual screening approach. Jasuja H, Chadha N, Kaur M, Silakari O. Mol Divers 18 253-267 (2014)
  32. Novel gamma-secretase inhibitors uncover a common nucleotide-binding site in JAK3, SIRT2, and PS1. Wu F, Schweizer C, Rudinskiy N, Taylor DM, Kazantsev A, Luthi-Carter R, Fraering PC. FASEB J 24 2464-2474 (2010)
  33. Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling. Shomin CD, Meyer SC, Ghosh I. Bioorg Med Chem 17 6196-6202 (2009)
  34. Targeting kinases for the treatment of inflammatory diseases. Müller S, Knapp S. Expert Opin Drug Discov 5 867-881 (2010)
  35. Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives. Shallal HM, Russu WA. Eur J Med Chem 46 2043-2057 (2011)
  36. Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain. Hall T, Emmons TL, Chrencik JE, Gormley JA, Weinberg RA, Leone JW, Hirsch JL, Saabye MJ, Schindler JF, Day JE, Williams JM, Kiefer JR, Lightle SA, Harris MS, Guru S, Fischer HD, Tomasselli AG. Protein Expr Purif 69 54-63 (2010)
  37. 2-Aminopyrazolo[1,5-a]pyrimidines as potent and selective inhibitors of JAK2. Ledeboer MW, Pierce AC, Duffy JP, Gao H, Messersmith D, Salituro FG, Nanthakumar S, Come J, Zuccola HJ, Swenson L, Shlyakter D, Mahajan S, Hoock T, Fan B, Tsai WJ, Kolaczkowski E, Carrier S, Hogan JK, Zessis R, Pazhanisamy S, Bennani YL. Bioorg Med Chem Lett 19 6529-6533 (2009)
  38. Inhibition of Janus kinases by tyrosine phosphorylation inhibitor, Tyrphostin AG-490. Rashid S, Bibi N, Parveen Z, Shafique S. J Biomol Struct Dyn 33 2368-2379 (2015)
  39. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. Brasca MG, Nesi M, Avanzi N, Ballinari D, Bandiera T, Bertrand J, Bindi S, Canevari G, Carenzi D, Casero D, Ceriani L, Ciomei M, Cirla A, Colombo M, Cribioli S, Cristiani C, Della Vedova F, Fachin G, Fasolini M, Felder ER, Galvani A, Isacchi A, Mirizzi D, Motto I, Panzeri A, Pesenti E, Vianello P, Gnocchi P, Donati D. Bioorg Med Chem 22 4998-5012 (2014)
  40. Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor. Argiriadi MA, Goedken ER, Banach D, Borhani DW, Burchat A, Dixon RW, Marcotte D, Overmeyer G, Pivorunas V, Sadhukhan R, Sousa S, Moore NS, Tomlinson M, Voss J, Wang L, Wishart N, Woller K, Talanian RV. BMC Struct Biol 12 22 (2012)
  41. Synthetic staurosporines via a ring closing metathesis strategy as potent JAK3 inhibitors and modulators of allergic responses. Wilson LJ, Malaviya R, Yang C, Argentieri R, Wang B, Chen X, Murray WV, Cavender D. Bioorg Med Chem Lett 19 3333-3338 (2009)
  42. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1). Ostrovskyi D, Rumpf T, Eib J, Lumbroso A, Slynko I, Klaeger S, Heinzlmeir S, Forster M, Gehringer M, Pfaffenrot E, Bauer SM, Schmidtkunz K, Wenzler S, Metzger E, Kuster B, Laufer S, Schüle R, Sippl W, Breit B, Jung M. Future Med Chem 8 1537-1551 (2016)
  43. Letter Jak3 contributes to the activation of ALK and Stat3 in ALK(+) anaplastic large cell lymphoma. Amin HM, Lin Q, Lai R. Lab Invest 86 417-9; author reply 420-1 (2006)
  44. Imatinib modulates pro-inflammatory microenvironment with angiostatic effects in experimental lung carcinogenesis. Puri S, Kaur G, Piplani H, Sanyal SN, Vaish V. Inflammopharmacology 28 231-252 (2020)
  45. Ligand-based and e-pharmacophore modeling, 3D-QSAR and hierarchical virtual screening to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3). Kaur M, Silakari O. J Biomol Struct Dyn 35 3043-3060 (2017)
  46. Letter Understanding the chemically-reactive proteome. Jones LH. Mol Biosyst 12 1728-1730 (2016)
  47. Development of a high-throughput cell-based reporter assay for screening of JAK3 inhibitors. Yin CH, Bach EA, Baeg GH. J Biomol Screen 16 443-449 (2011)
  48. Alkylation of Staurosporine to Derive a Kinase Probe for Fluorescence Applications. Disney AJ, Kellam B, Dekker LV. ChemMedChem 11 972-979 (2016)
  49. Design, synthesis, and SAR study of highly potent, selective, irreversible covalent JAK3 inhibitors. He L, Shao M, Wang T, Lan T, Zhang C, Chen L. Mol Divers 22 343-358 (2018)
  50. Synthesis and structure-activity relationships of 4-fluorophenyl-imidazole p38α MAPK, CK1δ and JAK2 kinase inhibitors. Seerden JP, Leusink-Ionescu G, Woudenberg-Vrenken T, Dros B, Molema G, Kamps JA, Kellogg RM. Bioorg Med Chem Lett 24 3412-3418 (2014)
  51. Molecular dynamics and integrated pharmacophore-based identification of dual [Formula: see text] inhibitors. Kaur M, Singh PK, Singh M, Bahadur R, Silakari O. Mol Divers 22 95-112 (2018)
  52. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: designing, synthesis and biological evaluation. Kaur M, Singh M, Silakari O. Future Med Chem 9 1193-1211 (2017)
  53. Editorial Unique advantage of Janus kinase 3 as a target for selective and nontoxic immunosuppression. Stepkowski SM, Kirken RA. Expert Rev Clin Immunol 1 307-310 (2005)
  54. Inhibition of STAT3 activation by KT-18618 via the disruption of the interaction between JAK3 and STAT3. Shin DS, Jung SN, Yun J, Lee CW, Han DC, Kim B, Min YK, Kang NS, Kwon BM. Biochem Pharmacol 89 62-73 (2014)
  55. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation. Yu W, Weber DJ, MacKerell AD. J Chem Theory Comput 19 3007-3021 (2023)
  56. Structural Analysis of Janus Tyrosine Kinase Variants in Hematological Malignancies: Implications for Drug Development and Opportunities for Novel Therapeutic Strategies. Rodriguez Moncivais OJ, Chavez SA, Estrada Jimenez VH, Sun S, Li L, Kirken RA, Rodriguez G. Int J Mol Sci 24 14573 (2023)