1ytu Citations

Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein.

Nature 434 666-70 (2005)
Cited: 377 times
EuropePMC logo PMID: 15800629

Abstract

RNA interference (RNAi) is a conserved sequence-specific gene regulatory mechanism mediated by the RNA-induced silencing complex (RISC), which is composed of a single-stranded guide RNA and an Argonaute protein. The PIWI domain, a highly conserved motif within Argonaute, has been shown to adopt an RNase H fold critical for the endonuclease cleavage activity of RISC. Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stranded RNA, thereby identifying the binding pocket for guide-strand 5'-end recognition and providing insight into guide-strand-mediated messenger RNA target recognition. The phosphorylated 5' end of the guide RNA is anchored within a highly conserved basic pocket, supplemented by the carboxy-terminal carboxylate and a bound divalent cation. The first nucleotide from the 5' end of the guide RNA is unpaired and stacks over a conserved tyrosine residue, whereas successive nucleotides form a four-base-pair RNA duplex. Mutation of the corresponding amino acids that contact the 5' phosphate in human Ago2 resulted in attenuated mRNA cleavage activity. Our structure of the Piwi-RNA complex, and that determined elsewhere, provide direct support for the 5' region of the guide RNA serving as a nucleation site for pairing with target mRNA and for a fixed distance separating the RISC-mediated mRNA cleavage site from the anchored 5' end of the guide RNA.

Reviews - 1ytu mentioned but not cited (3)

  1. RNA-binding proteins: modular design for efficient function. Lunde BM, Moore C, Varani G. Nat Rev Mol Cell Biol 8 479-490 (2007)
  2. Structural and functional modules in RNA interference. Nowotny M, Yang W. Curr Opin Struct Biol 19 286-293 (2009)
  3. A Structural View of miRNA Biogenesis and Function. Leitão AL, Enguita FJ. Noncoding RNA 8 10 (2022)

Articles - 1ytu mentioned but not cited (7)

  1. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Nature 434 666-670 (2005)
  2. Accurate prediction of peptide binding sites on protein surfaces. Petsalaki E, Stark A, García-Urdiales E, Russell RB, Russell RB. PLoS Comput Biol 5 e1000335 (2009)
  3. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Kinch LN, Grishin NV. Biol Direct 4 2 (2009)
  4. Structural Dynamics of Human Argonaute2 and Its Interaction with siRNAs Designed to Target Mutant tdp43. Bhandare V, Ramaswamy A. Adv Bioinformatics 2016 8792814 (2016)
  5. Prokaryotic Argonaute from Archaeoglobus fulgidus interacts with DNA as a homodimer. Golovinas E, Rutkauskas D, Manakova E, Jankunec M, Silanskas A, Sasnauskas G, Zaremba M. Sci Rep 11 4518 (2021)
  6. Structural basis for sequence-specific recognition of guide and target strands by the Archaeoglobus fulgidus Argonaute protein. Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Grybauskas A, Gražulis S, Zaremba M. Sci Rep 13 6123 (2023)
  7. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system. Zhen X, Xu X, Ye L, Xie S, Huang Z, Yang S, Wang Y, Li J, Long F, Ouyang S. Nat Commun 15 450 (2024)


Reviews citing this publication (122)

  1. MicroRNAs: target recognition and regulatory functions. Bartel DP. Cell 136 215-233 (2009)
  2. Origins and Mechanisms of miRNAs and siRNAs. Carthew RW, Sontheimer EJ. Cell 136 642-655 (2009)
  3. Regulation of microRNA biogenesis. Ha M, Kim VN. Nat Rev Mol Cell Biol 15 509-524 (2014)
  4. Biogenesis of small RNAs in animals. Kim VN, Han J, Siomi MC. Nat Rev Mol Cell Biol 10 126-139 (2009)
  5. Metazoan MicroRNAs. Bartel DP. Cell 173 20-51 (2018)
  6. Regulation of microRNA function in animals. Gebert LFR, MacRae IJ. Nat Rev Mol Cell Biol 20 21-37 (2019)
  7. Argonaute proteins: key players in RNA silencing. Hutvagner G, Simard MJ. Nat Rev Mol Cell Biol 9 22-32 (2008)
  8. Repression of protein synthesis by miRNAs: how many mechanisms? Pillai RS, Bhattacharyya SN, Filipowicz W. Trends Cell Biol 17 118-126 (2007)
  9. Illuminating the silence: understanding the structure and function of small RNAs. Rana TM. Nat Rev Mol Cell Biol 8 23-36 (2007)
  10. RNAi therapeutics: a potential new class of pharmaceutical drugs. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. Nat Chem Biol 2 711-719 (2006)
  11. RNA-mediated epigenetic regulation of gene expression. Holoch D, Moazed D. Nat Rev Genet 16 71-84 (2015)
  12. MicroRNA function: multiple mechanisms for a tiny RNA? Pillai RS. RNA 11 1753-1761 (2005)
  13. RNAi therapeutics: principles, prospects and challenges. Aagaard L, Rossi JJ. Adv Drug Deliv Rev 59 75-86 (2007)
  14. Small RNA sorting: matchmaking for Argonautes. Czech B, Hannon GJ. Nat Rev Genet 12 19-31 (2011)
  15. A three-dimensional view of the molecular machinery of RNA interference. Jinek M, Doudna JA. Nature 457 405-412 (2009)
  16. PIWI-interacting RNAs: small RNAs with big functions. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. Nat Rev Genet 20 89-108 (2019)
  17. The chemical evolution of oligonucleotide therapies of clinical utility. Khvorova A, Watts JK. Nat Biotechnol 35 238-248 (2017)
  18. A parsimonious model for gene regulation by miRNAs. Djuranovic S, Nahvi A, Green R. Science 331 550-553 (2011)
  19. Post-transcriptional gene silencing by siRNAs and miRNAs. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Curr Opin Struct Biol 15 331-341 (2005)
  20. RNAi: the nuts and bolts of the RISC machine. Filipowicz W. Cell 122 17-20 (2005)
  21. Dicing and slicing: the core machinery of the RNA interference pathway. Hammond SM. FEBS Lett 579 5822-5829 (2005)
  22. The Argonaute protein family. Höck J, Meister G. Genome Biol 9 210 (2008)
  23. On the origin and functions of RNA-mediated silencing: from protists to man. Cerutti H, Casas-Mollano JA. Curr Genet 50 81-99 (2006)
  24. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Engels BM, Hutvagner G. Oncogene 25 6163-6169 (2006)
  25. siRNA delivery systems for cancer treatment. Oh YK, Park TG. Adv Drug Deliv Rev 61 850-862 (2009)
  26. Origins and evolution of eukaryotic RNA interference. Shabalina SA, Koonin EV. Trends Ecol Evol 23 578-587 (2008)
  27. Designing chemically modified oligonucleotides for targeted gene silencing. Deleavey GF, Damha MJ. Chem Biol 19 937-954 (2012)
  28. Slicer and the argonautes. Tolia NH, Joshua-Tor L. Nat Chem Biol 3 36-43 (2007)
  29. Evolution of plant microRNAs and their targets. Axtell MJ, Bowman JL. Trends Plant Sci 13 343-349 (2008)
  30. MicroRNAs in disease and potential therapeutic applications. Soifer HS, Rossi JJ, Saetrom P. Mol Ther 15 2070-2079 (2007)
  31. The evolutionary journey of Argonaute proteins. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. Nat Struct Mol Biol 21 743-753 (2014)
  32. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Corley M, Burns MC, Yeo GW. Mol Cell 78 9-29 (2020)
  33. The silent treatment: siRNAs as small molecule drugs. Dykxhoorn DM, Palliser D, Lieberman J. Gene Ther 13 541-552 (2006)
  34. RNase E: at the interface of bacterial RNA processing and decay. Mackie GA. Nat Rev Microbiol 11 45-57 (2013)
  35. Identification and characterization of small RNAs involved in RNA silencing. Aravin A, Tuschl T. FEBS Lett 579 5830-5840 (2005)
  36. Therapeutic siRNA: principles, challenges, and strategies. Gavrilov K, Saltzman WM. Yale J Biol Med 85 187-200 (2012)
  37. Host-virus interaction: a new role for microRNAs. Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK. Retrovirology 3 68 (2006)
  38. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Miyoshi K, Miyoshi T, Siomi H. Mol Genet Genomics 284 95-103 (2010)
  39. MicroRNAs: biogenesis and molecular functions. Liu X, Fortin K, Mourelatos Z. Brain Pathol 18 113-121 (2008)
  40. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. Eulalio A, Tritschler F, Izaurralde E. RNA 15 1433-1442 (2009)
  41. Evolutionary Ecology of Prokaryotic Immune Mechanisms. van Houte S, Buckling A, Westra ER. Microbiol Mol Biol Rev 80 745-763 (2016)
  42. Therapeutic potential for microRNAs. Esau CC, Monia BP. Adv Drug Deliv Rev 59 101-114 (2007)
  43. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. Hutvagner G. FEBS Lett 579 5850-5857 (2005)
  44. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. Shukla S, Sumaria CS, Pradeepkumar PI. ChemMedChem 5 328-349 (2010)
  45. MicroRNA Processing and Human Cancer. Ohtsuka M, Ling H, Doki Y, Mori M, Calin GA. J Clin Med 4 1651-1667 (2015)
  46. Protein interactions and complexes in human microRNA biogenesis and function. Perron MP, Provost P. Front Biosci 13 2537-2547 (2008)
  47. Argonaute: A scaffold for the function of short regulatory RNAs. Parker JS, Barford D. Trends Biochem Sci 31 622-630 (2006)
  48. Small RNAs: regulators and guardians of the genome. Chu CY, Rana TM. J Cell Physiol 213 412-419 (2007)
  49. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Ernst C, Odom DT, Kutter C. Nat Commun 8 1411 (2017)
  50. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Mohibi S, Chen X, Zhang J. Pharmacol Ther 203 107390 (2019)
  51. microRNA-guided posttranscriptional gene regulation. Chen PY, Meister G. Biol Chem 386 1205-1218 (2005)
  52. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Nakanishi K. Wiley Interdiscip Rev RNA 7 637-660 (2016)
  53. RNA silencing in Chlamydomonas: mechanisms and tools. Schroda M. Curr Genet 49 69-84 (2006)
  54. Eukaryotic Argonautes come into focus. Kuhn CD, Joshua-Tor L. Trends Biochem Sci 38 263-271 (2013)
  55. Structural Foundations of RNA Silencing by Argonaute. Sheu-Gruttadauria J, MacRae IJ. J Mol Biol 429 2619-2639 (2017)
  56. Structure and function of argonaute proteins. Hall TM. Structure 13 1403-1408 (2005)
  57. Allele-specific RNA interference for neurological disease. Rodriguez-Lebron E, Paulson HL. Gene Ther 13 576-581 (2006)
  58. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Dykxhoorn DM, Lieberman J. Annu Rev Biomed Eng 8 377-402 (2006)
  59. MicroRNA metabolism in plants. Chen X. Curr Top Microbiol Immunol 320 117-136 (2008)
  60. Argonautes confront new small RNAs. Faehnle CR, Joshua-Tor L. Curr Opin Chem Biol 11 569-577 (2007)
  61. Epigenetics and microRNAs. Saetrom P, Snøve O, Rossi JJ. Pediatr Res 61 17R-23R (2007)
  62. RNA interference and innate immunity. Sioud M. Adv Drug Deliv Rev 59 153-163 (2007)
  63. Mammalian piRNAs: Biogenesis, function, and mysteries. Fu Q, Wang PJ. Spermatogenesis 4 e27889 (2014)
  64. Structural insights into RNA interference. Sashital DG, Doudna JA. Curr Opin Struct Biol 20 90-97 (2010)
  65. microRNA strand selection: Unwinding the rules. Medley JC, Panzade G, Zinovyeva AY. Wiley Interdiscip Rev RNA 12 e1627 (2021)
  66. Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Blackwell E, Ceman S. Mol Reprod Dev 79 163-175 (2012)
  67. Target RNAs Strike Back on MicroRNAs. Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Front Genet 9 435 (2018)
  68. Pathways through the small RNA world of plants. Herr AJ. FEBS Lett 579 5879-5888 (2005)
  69. Ancestral roles of small RNAs: an Ago-centric perspective. Joshua-Tor L, Hannon GJ. Cold Spring Harb Perspect Biol 3 a003772 (2011)
  70. MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. Virtue A, Wang H, Yang XF. J Hematol Oncol 5 66 (2012)
  71. Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. Gagnon KT, Corey DR. Nucleic Acid Ther 22 3-16 (2012)
  72. Antiviral effects of human microRNAs and conservation of their target sites. Russo A, Potenza N. FEBS Lett 585 2551-2555 (2011)
  73. Ancient endo-siRNA pathways reveal new tricks. Claycomb JM. Curr Biol 24 R703-15 (2014)
  74. The Argonautes. Joshua-Tor L. Cold Spring Harb Symp Quant Biol 71 67-72 (2006)
  75. A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Kanellopoulou C, Monticelli S. Semin Cancer Biol 18 79-88 (2008)
  76. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. Burroughs AM, Ando Y, Ando Y, Aravind L. Wiley Interdiscip Rev RNA 5 141-181 (2014)
  77. Argonaute and GW182 proteins: an effective alliance in gene silencing. Pfaff J, Meister G. Biochem Soc Trans 41 855-860 (2013)
  78. MicroRNA-target interactions: new insights from genome-wide approaches. Lee D, Shin C. Ann N Y Acad Sci 1271 118-128 (2012)
  79. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Lisitskaya L, Aravin AA, Kulbachinskiy A. Nat Commun 9 5165 (2018)
  80. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Müller M, Fazi F, Ciaudo C. Front Cell Dev Biol 7 360 (2019)
  81. RNA interference: a chemist's perspective. Gaynor JW, Campbell BJ, Cosstick R. Chem Soc Rev 39 4169-4184 (2010)
  82. Silence of the transcripts: RNA interference in medicine. Barik S. J Mol Med (Berl) 83 764-773 (2005)
  83. Structural domains in RNAi. Collins RE, Cheng X. FEBS Lett 579 5841-5849 (2005)
  84. Antiviral RNAi in Insects and Mammals: Parallels and Differences. Schuster S, Miesen P, van Rij RP. Viruses 11 E448 (2019)
  85. Small non-coding RNAs as magic bullets. Eckstein F. Trends Biochem Sci 30 445-452 (2005)
  86. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. Neumeier J, Meister G. Front Plant Sci 11 526455 (2020)
  87. Context-specific microRNA function in developmental complexity. Carroll AP, Tooney PA, Cairns MJ. J Mol Cell Biol 5 73-84 (2013)
  88. Endoribonucleases--enzymes gaining spotlight in mRNA metabolism. Li WM, Barnes T, Lee CH. FEBS J 277 627-641 (2010)
  89. RNA interference technologies and therapeutics: from basic research to products. López-Fraga M, Martínez T, Jiménez A. BioDrugs 23 305-332 (2009)
  90. Structural biology of RNA silencing and its functional implications. Patel DJ, Ma JB, Yuan YR, Ye K, Pei Y, Kuryavyi V, Malinina L, Meister G, Tuschl T. Cold Spring Harb Symp Quant Biol 71 81-93 (2006)
  91. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Das A, Samidurai A, Salloum FN. Front Cardiovasc Med 5 73 (2018)
  92. Biogenesis, evolution and functional targets of microRNA-125a. Potenza N, Russo A. Mol Genet Genomics 288 381-389 (2013)
  93. DNA silencing by prokaryotic Argonaute proteins adds a new layer of defense against invading nucleic acids. Willkomm S, Makarova KS, Grohmann D. FEMS Microbiol Rev 42 376-387 (2018)
  94. From early lessons to new frontiers: the worm as a treasure trove of small RNA biology. Youngman EM, Claycomb JM. Front Genet 5 416 (2014)
  95. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Biochemistry (Mosc) 83 483-497 (2018)
  96. Non-coding RNAs in the plant response to abiotic stress. Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA. Planta 236 943-958 (2012)
  97. Potential use of RNA interference in cancer therapy. Phalon C, Rao DD, Nemunaitis J. Expert Rev Mol Med 12 e26 (2010)
  98. RNAi: a potential therapy for the dominantly inherited nucleotide repeat diseases. Denovan-Wright EM, Davidson BL. Gene Ther 13 525-531 (2006)
  99. Target selectivity in mRNA silencing. Aronin N. Gene Ther 13 509-516 (2006)
  100. A prokaryotic twist on argonaute function. Willkomm S, Zander A, Gust A, Grohmann D. Life (Basel) 5 538-553 (2015)
  101. Of social molecules: The interactive assembly of ASH1 mRNA-transport complexes in yeast. Niedner A, Edelmann FT, Niessing D. RNA Biol 11 998-1009 (2014)
  102. Relationship between retroviral replication and RNA interference machineries. Moelling K, Matskevich A, Jung JS. Cold Spring Harb Symp Quant Biol 71 365-368 (2006)
  103. Therapeutic potential of siRNA and DNAzymes in cancer. Karnati HK, Yalagala RS, Undi R, Pasupuleti SR, Gutti RK. Tumour Biol 35 9505-9521 (2014)
  104. Behind the scenes of a small RNA gene-silencing pathway. Ku G, McManus MT. Hum Gene Ther 19 17-26 (2008)
  105. Regulatory RNAs: future perspectives in diagnosis, prognosis, and individualized therapy. Perron MP, Boissonneault V, Gobeil LA, Ouellet DL, Provost P. Methods Mol Biol 361 311-326 (2007)
  106. Anatomy of four human Argonaute proteins. Nakanishi K. Nucleic Acids Res 50 6618-6638 (2022)
  107. Chemistry, structure and function of approved oligonucleotide therapeutics. Egli M, Manoharan M. Nucleic Acids Res 51 2529-2573 (2023)
  108. Small RNAs in flower development. Wollmann H, Weigel D. Eur J Cell Biol 89 250-257 (2010)
  109. Short interfering RNA-mediated gene silencing; towards successful application in human patients. Siomi MC. Adv Drug Deliv Rev 61 668-671 (2009)
  110. Silencing transposable elements in the Drosophila germline. Yang F, Xi R. Cell Mol Life Sci 74 435-448 (2017)
  111. Conformational Dynamics of Ago-Mediated Silencing Processes. Willkomm S, Restle T. Int J Mol Sci 16 14769-14785 (2015)
  112. MOV10L1 in piRNA processing and gene silencing of retrotransposons during spermatogenesis. Zhu X, Zhi E, Li Z. Reproduction 149 R229-35 (2015)
  113. RNAi pathway integration in Caenorhabditis elegans development. Azimzadeh Jamalkandi S, Masoudi-Nejad A. Funct Integr Genomics 11 389-405 (2011)
  114. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Ban T, Zhu JK, Melcher K, Xu HE. Cell Mol Life Sci 72 1045-1058 (2015)
  115. An introduction to PIWI-interacting RNAs (piRNAs) in the context of metazoan small RNA silencing pathways. Haase AD. RNA Biol 19 1094-1102 (2022)
  116. miR-155-3p: processing by-product or rising star in immunity and cancer? Dawson O, Piccinini AM. Open Biol 12 220070 (2022)
  117. Argonaute and Argonaute-Bound Small RNAs in Stem Cells. Zhai L, Wang L, Teng F, Zhou L, Zhang W, Xiao J, Liu Y, Deng W. Int J Mol Sci 17 208 (2016)
  118. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Sala L, Chandrasekhar S, Vidigal JA. Front Biosci (Landmark Ed) 25 1-42 (2020)
  119. Is the Efficiency of RNA Silencing Evolutionarily Regulated? Ui-Tei K. Int J Mol Sci 17 E719 (2016)
  120. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. Zhou Y, Fang Y, Dai C, Wang Y. J Mol Med (Berl) 99 1681-1690 (2021)
  121. The Clustered Regularly Interspaced Short Palindromic Repeat System and Argonaute: An Emerging Bacterial Immunity System for Defense Against Natural Transformation? Liu M, Huang M, Wang M, Zhu D, Jia R, Chen S, Zhang L, Pan L, Cheng A. Front Microbiol 11 593301 (2020)
  122. When Argonaute takes out the ribonuclease sword. Nakanishi K. J Biol Chem 300 105499 (2023)

Articles citing this publication (245)

  1. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Cell 123 631-640 (2005)
  2. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. Cell 133 116-127 (2008)
  3. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Cell 123 607-620 (2005)
  4. A human snoRNA with microRNA-like functions. Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G. Mol Cell 32 519-528 (2008)
  5. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC. Cell 133 128-141 (2008)
  6. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS. RNA 12 1197-1205 (2006)
  7. The role of PACT in the RNA silencing pathway. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. EMBO J 25 522-532 (2006)
  8. The crystal structure of human Argonaute2. Schirle NT, MacRae IJ. Science 336 1037-1040 (2012)
  9. Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Frank F, Sonenberg N, Nagar B. Nature 465 818-822 (2010)
  10. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Nature 456 921-926 (2008)
  11. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H. Genes Dev 20 1732-1743 (2006)
  12. Target RNA-directed trimming and tailing of small silencing RNAs. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. Science 328 1534-1539 (2010)
  13. A role for small RNAs in DNA double-strand break repair. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y. Cell 149 101-112 (2012)
  14. Identification of novel argonaute-associated proteins. Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Lührmann R, Tuschl T. Curr Biol 15 2149-2155 (2005)
  15. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Nat Struct Mol Biol 18 529-536 (2011)
  16. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD. PLoS Biol 3 e236 (2005)
  17. The structure of human argonaute-2 in complex with miR-20a. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L. Cell 150 100-110 (2012)
  18. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ. Nature 461 754-761 (2009)
  19. Structure of the guide-strand-containing argonaute silencing complex. Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. Nature 456 209-213 (2008)
  20. Molecular basis for target RNA recognition and cleavage by human RISC. Ameres SL, Martinez J, Schroeder R. Cell 130 101-112 (2007)
  21. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Parker JS, Roe SM, Barford D. Nature 434 663-666 (2005)
  22. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR. Proc Natl Acad Sci U S A 104 13513-13518 (2007)
  23. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. Grün D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. PLoS Comput Biol 1 e13 (2005)
  24. A genome-wide map of conserved microRNA targets in C. elegans. Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray N, Macmenamin P, Kao HL, Gunsalus KC, Pachter L, Piano F, Rajewsky N. Curr Biol 16 460-471 (2006)
  25. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y. Mol Cell 39 292-299 (2010)
  26. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC. Genes Dev 19 2837-2848 (2005)
  27. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. RNA 13 1894-1910 (2007)
  28. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T. RNA 14 2580-2596 (2008)
  29. Improved targeting of miRNA with antisense oligonucleotides. Davis S, Lollo B, Freier S, Esau C. Nucleic Acids Res 34 2294-2304 (2006)
  30. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ. Mol Cell 19 405-419 (2005)
  31. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Wee LM, Flores-Jasso CF, Flores-Jasso CF, Salomon WE, Zamore PD. Cell 151 1055-1067 (2012)
  32. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. RNA 16 43-56 (2010)
  33. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, Babu BR, Højland T, Abramov M, Van Aerschot A, Odadzic D, Smicius R, Haas J, Andree C, Barman J, Wenska M, Srivastava P, Zhou C, Honcharenko D, Hess S, Müller E, Bobkov GV, Mikhailov SN, Fava E, Meyer TF, Chattopadhyaya J, Zerial M, Engels JW, Herdewijn P, Wengel J, Kjems J. Nucleic Acids Res 37 2867-2881 (2009)
  34. Structure of yeast Argonaute with guide RNA. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ. Nature 486 368-374 (2012)
  35. Rice MicroRNA effector complexes and targets. Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y. Plant Cell 21 3421-3435 (2009)
  36. DNA-guided DNA interference by a prokaryotic Argonaute. Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J. Nature 507 258-261 (2014)
  37. Functional polarity is introduced by Dicer processing of short substrate RNAs. Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA. Nucleic Acids Res 33 4140-4156 (2005)
  38. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF. Mol Cell 45 303-313 (2012)
  39. Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, Doukas T, Paranjape S, Polacek C, dos Santos FB, Jalili R, Babrzadeh F, Gharizadeh B, Grimm D, Kay M, Koike S, Sarnow P, Ronaghi M, Ding SW, Harris E, Chow M, Diamond MS, Kirkegaard K, Glenn JS, Fire AZ. PLoS Pathog 6 e1000764 (2010)
  40. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I. Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, Micura R, Tuschl T, Hartmann G, Patel DJ. Nat Struct Mol Biol 17 781-787 (2010)
  41. 3' end formation of PIWI-interacting RNAs in vitro. Kawaoka S, Izumi N, Katsuma S, Tomari Y. Mol Cell 43 1015-1022 (2011)
  42. Discovering the first microRNA-targeted drug. Lindow M, Kauppinen S. J Cell Biol 199 407-412 (2012)
  43. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Su H, Trombly MI, Chen J, Wang X. Genes Dev 23 304-317 (2009)
  44. The N domain of Argonaute drives duplex unwinding during RISC assembly. Kwak PB, Tomari Y. Nat Struct Mol Biol 19 145-151 (2012)
  45. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG. Nat Struct Mol Biol 14 897-903 (2007)
  46. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S. BMC Genomics 9 451 (2008)
  47. A Dynamic Search Process Underlies MicroRNA Targeting. Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo C. Cell 162 96-107 (2015)
  48. Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Ye R, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou X, Qi Y. Mol Cell 46 859-870 (2012)
  49. Bacterial argonaute samples the transcriptome to identify foreign DNA. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Mol Cell 51 594-605 (2013)
  50. Phosphorylation of human Argonaute proteins affects small RNA binding. Rüdel S, Wang Y, Lenobel R, Körner R, Hsiao HH, Urlaub H, Patel D, Meister G. Nucleic Acids Res 39 2330-2343 (2011)
  51. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A. Nucleic Acids Res 39 5157-5163 (2011)
  52. A multifunctional human Argonaute2-specific monoclonal antibody. Rüdel S, Flatley A, Weinmann L, Kremmer E, Meister G. RNA 14 1244-1253 (2008)
  53. Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Chen PY, Weinmann L, Gaidatzis D, Pei Y, Zavolan M, Tuschl T, Meister G. RNA 14 263-274 (2008)
  54. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. Naito Y, Yoshimura J, Morishita S, Ui-Tei K. BMC Bioinformatics 10 392 (2009)
  55. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Proc Natl Acad Sci U S A 111 652-657 (2014)
  56. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Rehwinkel J, Natalin P, Stark A, Brennecke J, Cohen SM, Izaurralde E. Mol Cell Biol 26 2965-2975 (2006)
  57. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Makarova KS, Wolf YI, van der Oost J, Koonin EV. Biol Direct 4 29 (2009)
  58. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Parker JS, Parizotto EA, Wang M, Roe SM, Barford D. Mol Cell 33 204-214 (2009)
  59. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. BMC Genomics 14 234 (2013)
  60. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Ismail IH, Gagné JP, Caron MC, McDonald D, Xu Z, Masson JY, Poirier GG, Hendzel MJ. Nucleic Acids Res 40 5497-5510 (2012)
  61. siRNA repositioning for guide strand selection by human Dicer complexes. Noland CL, Ma E, Doudna JA. Mol Cell 43 110-121 (2011)
  62. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J. Nucleic Acids Res 43 5120-5129 (2015)
  63. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K. Nucleic Acids Res 36 7100-7109 (2008)
  64. The making of a slicer: activation of human Argonaute-1. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L. Cell Rep 3 1901-1909 (2013)
  65. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. Proc Natl Acad Sci U S A 108 10466-10471 (2011)
  66. Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Patzel V, Rutz S, Dietrich I, Köberle C, Scheffold A, Kaufmann SH. Nat Biotechnol 23 1440-1444 (2005)
  67. A Tetrahymena Piwi bound to mature tRNA 3' fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. Couvillion MT, Bounova G, Purdom E, Speed TP, Collins K. Mol Cell 48 509-520 (2012)
  68. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. De N, Young L, Lau PW, Meisner NC, Morrissey DV, MacRae IJ. Mol Cell 50 344-355 (2013)
  69. A systematic analysis of the effect of target RNA structure on RNA interference. Westerhout EM, Berkhout B. Nucleic Acids Res 35 4322-4330 (2007)
  70. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, Garin J, Bastien O, Voinnet O, Hakimi MA. PLoS Pathog 6 e1000920 (2010)
  71. Binding and cleavage specificities of human Argonaute2. Lima WF, Wu H, Nichols JG, Sun H, Murray HM, Crooke ST. J Biol Chem 284 26017-26028 (2009)
  72. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. Miyoshi K, Okada TN, Siomi H, Siomi MC. RNA 15 1282-1291 (2009)
  73. MicroRNAs in gene regulation: when the smallest governs it all. Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P. J Biomed Biotechnol 2006 69616 (2006)
  74. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein. Simon B, Kirkpatrick JP, Eckhardt S, Reuter M, Rocha EA, Andrade-Navarro MA, Sehr P, Pillai RS, Carlomagno T. Structure 19 172-180 (2011)
  75. The evolution of core proteins involved in microRNA biogenesis. Murphy D, Dancis B, Brown JR. BMC Evol Biol 8 92 (2008)
  76. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Nakanishi K, Ascano M, Gogakos T, Ishibe-Murakami S, Serganov AA, Briskin D, Morozov P, Tuschl T, Patel DJ. Cell Rep 3 1893-1900 (2013)
  77. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Rossi L, Salvetti A, Lena A, Batistoni R, Deri P, Pugliesi C, Loreti E, Gremigni V. Dev Genes Evol 216 335-346 (2006)
  78. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. Boland A, Tritschler F, Heimstädt S, Izaurralde E, Weichenrieder O. EMBO Rep 11 522-527 (2010)
  79. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Baillat D, Shiekhattar R. Mol Cell Biol 29 4144-4155 (2009)
  80. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. Sipa K, Sochacka E, Kazmierczak-Baranska J, Maszewska M, Janicka M, Nowak G, Nawrot B. RNA 13 1301-1316 (2007)
  81. Inosine in DNA and RNA. Alseth I, Dalhus B, Bjørås M. Curr Opin Genet Dev 26 116-123 (2014)
  82. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Wang W, Yoshikawa M, Han BW, Izumi N, Tomari Y, Weng Z, Zamore PD. Mol Cell 56 708-716 (2014)
  83. Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. Frank F, Hauver J, Sonenberg N, Nagar B. EMBO J 31 3588-3595 (2012)
  84. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Poulsen C, Vaucheret H, Brodersen P. Plant Cell 25 22-37 (2013)
  85. A bacterial Argonaute with noncanonical guide RNA specificity. Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. Proc Natl Acad Sci U S A 113 4057-4062 (2016)
  86. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Biscans A, Coles A, Haraszti R, Echeverria D, Hassler M, Osborn M, Khvorova A. Nucleic Acids Res 47 1082-1096 (2019)
  87. Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. Webster A, Li S, Hur JK, Wachsmuth M, Bois JS, Perkins EM, Patel DJ, Aravin AA. Mol Cell 59 564-575 (2015)
  88. Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs. Torres AG, Fabani MM, Vigorito E, Williams D, Al-Obaidi N, Wojciechowski F, Hudson RH, Seitz O, Gait MJ. Nucleic Acids Res 40 2152-2167 (2012)
  89. Specific residues at every third position of siRNA shape its efficient RNAi activity. Katoh T, Suzuki T. Nucleic Acids Res 35 e27 (2007)
  90. Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, Willems M, Steger J, Fauster K, Micura R, Borgonie G, Ladurner P. Dev Biol 334 198-212 (2009)
  91. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK. EMBO J 34 581-592 (2015)
  92. Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Robbins MA, Li M, Leung I, Li H, Boyer DV, Song Y, Behlke MA, Rossi JJ. Nat Biotechnol 24 566-571 (2006)
  93. High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2. Becker WR, Ober-Reynolds B, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. Mol Cell 75 741-755.e11 (2019)
  94. Molecular dissection of human Argonaute proteins by DNA shuffling. Schürmann N, Trabuco LG, Bender C, Russell RB, Russell RB, Grimm D. Nat Struct Mol Biol 20 818-826 (2013)
  95. Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins. Pérez-Cano L, Fernández-Recio J. Proteins 78 25-35 (2010)
  96. The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. Cora E, Pandey RR, Xiol J, Taylor J, Sachidanandam R, McCarthy AA, Pillai RS. RNA 20 773-781 (2014)
  97. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Xu HJ, Chen T, Ma XF, Xue J, Pan PL, Zhang XC, Cheng JA, Zhang CX. Insect Mol Biol 22 635-647 (2013)
  98. The PIWI protein acts as a predictive marker for human gastric cancer. Wang Y, Liu Y, Shen X, Zhang X, Chen X, Yang C, Gao H. Int J Clin Exp Pathol 5 315-325 (2012)
  99. How to slice: snapshots of Argonaute in action. Parker JS. Silence 1 3 (2010)
  100. Predicting microRNA targeting efficacy in Drosophila. Agarwal V, Subtelny AO, Thiru P, Ulitsky I, Bartel DP. Genome Biol 19 152 (2018)
  101. Single-molecule FRET supports the two-state model of Argonaute action. Zander A, Holzmeister P, Klose D, Tinnefeld P, Grohmann D. RNA Biol 11 45-56 (2014)
  102. Sorting out small RNAs. Kim VN. Cell 133 25-26 (2008)
  103. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Miyoshi T, Ito K, Murakami R, Uchiumi T. Nat Commun 7 11846 (2016)
  104. 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Haraszti RA, Roux L, Coles AH, Turanov AA, Alterman JF, Echeverria D, Godinho BMDC, Aronin N, Khvorova A. Nucleic Acids Res 45 7581-7592 (2017)
  105. Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute. Swarts DC, Szczepaniak M, Sheng G, Chandradoss SD, Zhu Y, Timmers EM, Zhang Y, Zhao H, Lou J, Wang Y, Joo C, van der Oost J. Mol Cell 65 985-998.e6 (2017)
  106. Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii. Zander A, Willkomm S, Ofer S, van Wolferen M, Egert L, Buchmeier S, Stöckl S, Tinnefeld P, Schneider S, Klingl A, Albers SV, Werner F, Grohmann D. Nat Microbiol 2 17034 (2017)
  107. MicroRNA: A matter of life or death. Wang Z. World J Biol Chem 1 41-54 (2010)
  108. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, Weidhaas JB. Nat Commun 7 10954 (2016)
  109. Precursor microRNA-programmed silencing complex assembly pathways in mammals. Liu X, Jin DY, McManus MT, Mourelatos Z. Mol Cell 46 507-517 (2012)
  110. Roles of the 5'-phosphate sensor domain in RNase E. Garrey SM, Mackie GA. Mol Microbiol 80 1613-1624 (2011)
  111. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. Klum SM, Chandradoss SD, Schirle NT, Joo C, MacRae IJ. EMBO J 37 75-88 (2018)
  112. siRNA Design Software for a Target Gene-Specific RNA Interference. Naito Y, Ui-Tei K. Front Genet 3 102 (2012)
  113. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Dorner S, Lum L, Kim M, Paro R, Beachy PA, Green R. Proc Natl Acad Sci U S A 103 11880-11885 (2006)
  114. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ, Carrington JC. PLoS One 8 e77181 (2013)
  115. Allosteric regulation of Argonaute proteins by miRNAs. Djuranovic S, Zinchenko MK, Hur JK, Nahvi A, Brunelle JL, Rogers EJ, Green R. Nat Struct Mol Biol 17 144-150 (2010)
  116. Multilayer checkpoints for microRNA authenticity during RISC assembly. Kawamata T, Yoda M, Tomari Y. EMBO Rep 12 944-949 (2011)
  117. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. Pinder BD, Smibert CA. EMBO Rep 14 80-86 (2013)
  118. A single argonaute gene participates in exogenous and endogenous RNAi and controls cellular functions in the basal fungus Mucor circinelloides. Cervantes M, Vila A, Nicolás FE, Moxon S, de Haro JP, Dalmay T, Torres-Martínez S, Ruiz-Vázquez RM. PLoS One 8 e69283 (2013)
  119. Modulation of thermal stability can enhance the potency of siRNA. Addepalli H, Meena, Peng CG, Wang G, Fan Y, Charisse K, Jayaprakash KN, Rajeev KG, Pandey RK, Lavine G, Zhang L, Jahn-Hofmann K, Hadwiger P, Manoharan M, Maier MA. Nucleic Acids Res 38 7320-7331 (2010)
  120. The Expanded Universe of Prokaryotic Argonaute Proteins. Ryazansky S, Kulbachinskiy A, Aravin AA. mBio 9 e01935-18 (2018)
  121. A 5'-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Seitz H, Tushir JS, Zamore PD. Silence 2 4 (2011)
  122. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Schraivogel D, Schindler SG, Danner J, Kremmer E, Pfaff J, Hannus S, Depping R, Meister G. Nucleic Acids Res 43 7447-7461 (2015)
  123. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. Quévillon Huberdeau M, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, Piquet S, Strieder N, Engelmann JC, Jannot G, Deutzmann R, Simard MJ, Meister G. EMBO J 36 2088-2106 (2017)
  124. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. Ameres SL, Hung JH, Xu J, Weng Z, Zamore PD. RNA 17 54-63 (2011)
  125. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Dykxhoorn DM, Schlehuber LD, London IM, Lieberman J. Proc Natl Acad Sci U S A 103 5953-5958 (2006)
  126. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Zhang D, Xiong H, Shan J, Xia X, Trudeau VL. Biol Direct 3 48 (2008)
  127. Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing. Dallas A, Ilves H, Ge Q, Kumar P, Shorenstein J, Kazakov SA, Cuellar TL, McManus MT, Behlke MA, Johnston BH. Nucleic Acids Res 40 9255-9271 (2012)
  128. A potential protein-RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus Argonaute with externally bound siRNA. Yuan YR, Pei Y, Chen HY, Tuschl T, Patel DJ. Structure 14 1557-1565 (2006)
  129. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Burroughs AM, Iyer LM, Aravind L. Biol Direct 8 13 (2013)
  130. Expression determinants of mammalian argonaute proteins in mediating gene silencing. Valdmanis PN, Gu S, Schüermann N, Sethupathy P, Grimm D, Kay MA. Nucleic Acids Res 40 3704-3713 (2012)
  131. The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets. Lambert NJ, Gu SG, Zahler AM. Nucleic Acids Res 39 4827-4835 (2011)
  132. Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. Yang X, Sierant M, Janicka M, Peczek L, Martinez C, Hassell T, Li N, Li X, Wang T, Nawrot B. ACS Chem Biol 7 1214-1220 (2012)
  133. Structures of RNA complexes with the Escherichia coli RNA pyrophosphohydrolase RppH unveil the basis for specific 5'-end-dependent mRNA decay. Vasilyev N, Serganov A. J Biol Chem 290 9487-9499 (2015)
  134. The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects. Kamola PJ, Nakano Y, Takahashi T, Wilson PA, Ui-Tei K. PLoS Comput Biol 11 e1004656 (2015)
  135. Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 In Vivo. Segal M, Biscans A, Gilles ME, Anastasiadou E, De Luca R, Lim J, Khvorova A, Slack FJ. Mol Ther Nucleic Acids 19 267-277 (2020)
  136. Structural evolution and functional diversification analyses of argonaute protein. Wei KF, Wu LJ, Chen J, Chen YF, Xie DX. J Cell Biochem 113 2576-2585 (2012)
  137. Accommodation of Helical Imperfections in Rhodobacter sphaeroides Argonaute Ternary Complexes with Guide RNA and Target DNA. Liu Y, Esyunina D, Olovnikov I, Teplova M, Kulbachinskiy A, Aravin AA, Patel DJ. Cell Rep 24 453-462 (2018)
  138. E-cadherin is transcriptionally activated via suppression of ZEB1 transcriptional repressor by small RNA-mediated gene silencing. Mazda M, Nishi K, Naito Y, Ui-Tei K. PLoS One 6 e28688 (2011)
  139. Expansion of genes encoding piRNA-associated argonaute proteins in the pea aphid: diversification of expression profiles in different plastic morphs. Lu HL, Tanguy S, Rispe C, Gauthier JP, Walsh T, Gordon K, Edwards O, Tagu D, Chang CC, Jaubert-Possamai S. PLoS One 6 e28051 (2011)
  140. RNase H-mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Matzen K, Elzaouk L, Matskevich AA, Nitzsche A, Heinrich J, Moelling K. Nat Biotechnol 25 669-674 (2007)
  141. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs. Mutisya D, Selvam C, Lunstad BD, Pallan PS, Haas A, Leake D, Egli M, Rozners E. Nucleic Acids Res 42 6542-6551 (2014)
  142. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. PLoS Genet 10 e1004286 (2014)
  143. Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 'Slicer' independent and can be mediated by Ago1. Vickers TA, Lima WF, Wu H, Nichols JG, Linsley PS, Crooke ST. Nucleic Acids Res 37 6927-6941 (2009)
  144. Reconstitution of an Argonaute-dependent small RNA biogenesis pathway reveals a handover mechanism involving the RNA exosome and the exonuclease QIP. Xue Z, Yuan H, Guo J, Liu Y. Mol Cell 46 299-310 (2012)
  145. Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains. Masliah G, Maris C, König SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Weiler J, Holla A, Hunziker J, Meisner-Kober N, Schuler B, Jeschke G, Allain FH. EMBO J 37 e97089 (2018)
  146. The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo. Biscans A, Coles A, Echeverria D, Khvorova A. J Control Release 302 116-125 (2019)
  147. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Yi T, Arthanari H, Akabayov B, Song H, Papadopoulos E, Qi HH, Jedrychowski M, Güttler T, Guo C, Luna RE, Gygi SP, Huang SA, Wagner G. Nat Commun 6 7194 (2015)
  148. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Koopal B, Potocnik A, Mutte SK, Aparicio-Maldonado C, Lindhoud S, Vervoort JJM, Brouns SJJ, Swarts DC. Cell 185 1471-1486.e19 (2022)
  149. Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex. Holoch D, Moazed D. Nat Struct Mol Biol 22 328-335 (2015)
  150. Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1. Mui Chan C, Zhou C, Brunzelle JS, Huang RH. Proc Natl Acad Sci U S A 106 17699-17704 (2009)
  151. Identification of RNA silencing components in soybean and sorghum. Liu X, Lu T, Dou Y, Yu B, Zhang C. BMC Bioinformatics 15 4 (2014)
  152. AtRLI2 is an endogenous suppressor of RNA silencing. Sarmiento C, Nigul L, Kazantseva J, Buschmann M, Truve E. Plant Mol Biol 61 153-163 (2006)
  153. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. Hauptmann J, Kater L, Löffler P, Merkl R, Meister G. RNA 20 1532-1538 (2014)
  154. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish. Chen GR, Sive H, Bartel DP. Mol Cell 68 1095-1107.e5 (2017)
  155. The Conservation of the Germline Multipotency Program, from Sponges to Vertebrates: A Stepping Stone to Understanding the Somatic and Germline Origins. Fierro-Constaín L, Schenkelaars Q, Gazave E, Haguenauer A, Rocher C, Ereskovsky A, Borchiellini C, Renard E. Genome Biol Evol 9 474-488 (2017)
  156. Domain motions of Argonaute, the catalytic engine of RNA interference. Ming D, Wall ME, Sanbonmatsu KY. BMC Bioinformatics 8 470 (2007)
  157. RNA interference tolerates 2'-fluoro modifications at the Argonaute2 cleavage site. Muhonen P, Tennilä T, Azhayeva E, Parthasarathy RN, Janckila AJ, Väänänen HK, Azhayev A, Laitala-Leinonen T. Chem Biodivers 4 858-873 (2007)
  158. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Biscans A, Caiazzi J, Davis S, McHugh N, Sousa J, Khvorova A. Nucleic Acids Res 48 7665-7680 (2020)
  159. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs. Mutisya D, Hardcastle T, Cheruiyot SK, Pallan PS, Kennedy SD, Egli M, Kelley ML, Smith AVB, Rozners E. Nucleic Acids Res 45 8142-8155 (2017)
  160. Interactions between the non-seed region of siRNA and RNA-binding RLC/RISC proteins, Ago and TRBP, in mammalian cells. Takahashi T, Zenno S, Ishibashi O, Takizawa T, Saigo K, Ui-Tei K. Nucleic Acids Res 42 5256-5269 (2014)
  161. Molecular Properties, Functional Mechanisms, and Applications of Sliced siRNA. Sun G, Yeh SY, Yuan CW, Chiu MJ, Yung BS, Yen Y. Mol Ther Nucleic Acids 4 e221 (2015)
  162. The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to Argonaute2. Felice KM, Salzman DW, Shubert-Coleman J, Jensen KP, Furneaux HM. Biochem J 422 329-341 (2009)
  163. The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Kuzin A, Kundu M, Brody T, Odenwald WF. Dev Biol 310 35-43 (2007)
  164. miRNA-like duplexes as RNAi triggers with improved specificity. Betancur JG, Yoda M, Tomari Y. Front Genet 3 127 (2012)
  165. Effects of local mRNA structure on posttranscriptional gene silencing. Rudnick SI, Swaminathan J, Sumaroka M, Liebhaber S, Gewirtz AM. Proc Natl Acad Sci U S A 105 13787-13792 (2008)
  166. FMRP regulates miR196a-mediated repression of HOXB8 via interaction with the AGO2 MID domain. Li Y, Tang W, Zhang LR, Zhang CY. Mol Biosyst 10 1757-1764 (2014)
  167. Modulation of microRNA Activity by Semi-microRNAs. Plante I, Plé H, Landry P, Gunaratne PH, Provost P. Front Genet 3 99 (2012)
  168. Thermodynamic Control of Small RNA-Mediated Gene Silencing. Ui-Tei K, Nishi K, Takahashi T, Nagasawa T. Front Genet 3 101 (2012)
  169. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. Genes (Basel) 3 702-741 (2012)
  170. The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv). Liu X, Tang S, Jia G, Schnable JC, Su H, Tang C, Zhi H, Diao X. J Exp Bot 67 3237-3249 (2016)
  171. Crystal structure of the NurA-dAMP-Mn2+ complex. Chae J, Kim YC, Cho Y. Nucleic Acids Res 40 2258-2270 (2012)
  172. Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties. Willkomm S, Zander A, Grohmann D, Restle T. PLoS One 11 e0164695 (2016)
  173. Clarifying mammalian RISC assembly in vitro. Tan GS, Garchow BG, Liu X, Metzler D, Kiriakidou M. BMC Mol Biol 12 19 (2011)
  174. Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles. Biscans A, Haraszti RA, Echeverria D, Miller R, Didiot MC, Nikan M, Roux L, Aronin N, Khvorova A. Mol Ther 26 1520-1528 (2018)
  175. Nucleotide bias of DCL and AGO in plant anti-virus gene silencing. Ho T, Wang L, Huang L, Li Z, Pallett DW, Dalmay T, Ohshima K, Walsh JA, Wang H. Protein Cell 1 847-858 (2010)
  176. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes. Sheng G, Gogakos T, Wang J, Zhao H, Serganov A, Juranek S, Tuschl T, Patel DJ, Wang Y. Nucleic Acids Res 45 9149-9163 (2017)
  177. Kinetic analysis of the effects of target structure on siRNA efficiency. Chen J, Zhang W. J Chem Phys 137 225102 (2012)
  178. Research Support, Non-U.S. Gov't The true core of RNA silencing revealed. Sasaki HM, Tomari Y. Nat Struct Mol Biol 19 657-660 (2012)
  179. Viral suppression of RNA silencing: 2b wins the Golden Fleece by defeating Argonaute. Ruiz-Ferrer V, Voinnet O. Bioessays 29 319-323 (2007)
  180. Argonaute MID domain takes centre stage. Faehnle CR, Joshua-Tor L. EMBO Rep 11 564-565 (2010)
  181. Improved serum stability and biophysical properties of siRNAs following chemical modifications. Cho IS, Kim J, Lim DH, Ahn HC, Kim H, Lee KB, Lee YS. Biotechnol Lett 30 1901-1908 (2008)
  182. Optimal choice of functional and off-target effect-reduced siRNAs for RNAi therapeutics. Ui-Tei K. Front Genet 4 107 (2013)
  183. Purification of pre-miR-29 by a new O-phospho-l-tyrosine affinity chromatographic strategy optimized using design of experiments. Afonso A, Pereira P, Queiroz JA, Sousa Â, Sousa F. J Chromatogr A 1343 119-127 (2014)
  184. Distinct Functions of Argonaute Slicer in siRNA Maturation and Heterochromatin Formation. Jain R, Iglesias N, Moazed D. Mol Cell 63 191-205 (2016)
  185. GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Arif A, Bailey S, Izumi N, Anzelon TA, Ozata DM, Andersson C, Gainetdinov I, MacRae IJ, Tomari Y, Zamore PD. Nature 608 618-625 (2022)
  186. Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses. Trubetskoy VS, Griffin JB, Nicholas AL, Nord EM, Xu Z, Peterson RM, Wooddell CI, Rozema DB, Wakefield DH, Lewis DL, Kanner SB. Nucleic Acids Res 45 1469-1478 (2017)
  187. RNA interference by 2',5'-linked nucleic acid duplexes in mammalian cells. Prakash TP, Kraynack B, Baker BF, Swayze EE, Bhat B. Bioorg Med Chem Lett 16 3238-3240 (2006)
  188. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5. Ehsani A, Saetrom P, Zhang J, Alluin J, Li H, Snøve O, Aagaard L, Rossi JJ. Mol Ther 18 796-802 (2010)
  189. Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro. Hunt EA, Evans TC, Tanner NA. PLoS One 13 e0203073 (2018)
  190. Deep Sequencing Analyses of DsiRNAs Reveal the Influence of 3' Terminal Overhangs on Dicing Polarity, Strand Selectivity, and RNA Editing of siRNAs. Zhou J, Song MS, Jacobi AM, Behlke MA, Wu X, Rossi JJ. Mol Ther Nucleic Acids 1 e17 (2012)
  191. Structural and biochemical insights into small RNA 3' end trimming by Arabidopsis SDN1. Chen J, Liu L, You C, Gu J, Ruan W, Zhang L, Gan J, Cao C, Huang Y, Chen X, Ma J. Nat Commun 9 3585 (2018)
  192. A MC motif in silkworm Argonaute 1 is indispensible for translation repression. Zhu L, Masaki Y, Tatsuke T, Li Z, Mon H, Xu J, Lee JM, Kusakabe T. Insect Mol Biol 22 320-330 (2013)
  193. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. Bhagwat B, Chi M, Su L, Tang H, Tang G, Xiang Y. J Genet Genomics 40 261-270 (2013)
  194. Nonviral transfection of mouse calvarial organ in vitro using Accell-modified siRNA. Gupta AK, Eshraghi Y, Gliniak C, Gosain AK. Plast Reconstr Surg 125 494-501 (2010)
  195. Structural basis for 5'-end-specific recognition of single-stranded DNA by the R3H domain from human Sμbp-2. Jaudzems K, Jia X, Yagi H, Zhulenkovs D, Graham B, Otting G, Liepinsh E. J Mol Biol 424 42-53 (2012)
  196. Synthesis and silencing properties of siRNAs possessing lipophilic groups at their 3'-termini. Ueno Y, Kawada K, Naito T, Shibata A, Yoshikawa K, Kim HS, Wataya Y, Kitade Y. Bioorg Med Chem 16 7698-7704 (2008)
  197. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus. Kitamura S, Fujishima K, Sato A, Tsuchiya D, Tomita M, Kanai A. Biochem J 426 337-344 (2010)
  198. Congress Demystifying small RNA pathways. Pasquinelli AE. Dev Cell 10 419-424 (2006)
  199. Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Chung BY, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC. Sci Rep 9 11091 (2019)
  200. Innovative developments and emerging technologies in RNA therapeutics. Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. RNA Biol 19 313-332 (2022)
  201. Mammalian Argonaute-DNA binding? Smalheiser NR, Gomes OL. Biol Direct 10 27 (2014)
  202. Comment Structural biology: Tracing Argonaute binding. Bouasker S, Simard MJ. Nature 461 743-744 (2009)
  203. Genomic identification, rapid evolution, and expression of Argonaute genes in the tilapia, Oreochromis niloticus. Tao W, Sun L, Chen J, Shi H, Wang D. Dev Genes Evol 226 339-348 (2016)
  204. Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes. Zhou X, Guo H, Chen K, Cheng H, Zhou R. Genetica 138 805-812 (2010)
  205. Impact of sustained RNAi-mediated suppression of cellular cofactor Tat-SF1 on HIV-1 replication in CD4+ T cells. Green VA, Arbuthnot P, Weinberg MS. Virol J 9 272 (2012)
  206. In vivo activity and duration of short interfering RNAs containing a synthetic 5'-phosphate. Kenski DM, Willingham AT, Haringsma HJ, Li JJ, Flanagan WM. Nucleic Acid Ther 22 90-95 (2012)
  207. MicroRNA-binding is required for recruitment of human Argonaute 2 to stress granules and P-bodies. Pare JM, López-Orozco J, Hobman TC. Biochem Biophys Res Commun 414 259-264 (2011)
  208. Structural and functional analyses reveal the contributions of the C- and N-lobes of Argonaute protein to selectivity of RNA target cleavage. Dayeh DM, Kruithoff BC, Nakanishi K. J Biol Chem 293 6308-6325 (2018)
  209. Why Is a High Temperature Needed by Thermus thermophilus Argonaute During mRNA Silencing: A Theoretical Study. Liu Y, Yu Z, Zhu J, Wang S, Xu D, Han W. Front Chem 6 223 (2018)
  210. Chemically modified siRNAs and miRNAs bearing urea/thiourea-bridged aromatic compounds at their 3'-end for RNAi therapy. Kitamura Y, Masegi Y, Ogawa S, Nakashima R, Akao Y, Ueno Y, Kitade Y. Bioorg Med Chem 21 4494-4501 (2013)
  211. Essential notes regarding the design of functional siRNAs for efficient mammalian RNAi. Ui-Tei K, Naito Y, Saigo K. J Biomed Biotechnol 2006 65052 (2006)
  212. Exploring the RNA-bound and RNA-free human Argonaute-2 by molecular dynamics simulation method. Kong R, Xu L, Piao L, Zhang D, Hou TJ, Chang S. Chem Biol Drug Des 90 753-763 (2017)
  213. Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley (Hordeum vulgare L.). Hamar É, Szaker HM, Kis A, Dalmadi Á, Miloro F, Szittya G, Taller J, Gyula P, Csorba T, Havelda Z, Havelda Z. Biomolecules 10 E929 (2020)
  214. Molecular basis for the immunostimulatory potency of small interfering RNAs. Sioud M, Furset G. J Biomed Biotechnol 2006 23429 (2006)
  215. Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Willkomm S, Jakob L, Kramm K, Graus V, Neumeier J, Meister G, Grohmann D. Nat Commun 13 3825 (2022)
  216. Variation and Evolution in the Glutamine-Rich Repeat Region of Drosophila Argonaute-2. Palmer WH, Obbard DJ. G3 (Bethesda) 6 2563-2572 (2016)
  217. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. Seroussi U, Lugowski A, Wadi L, Lao RX, Willis AR, Zhao W, Sundby AE, Charlesworth AG, Reinke AW, Claycomb JM. Elife 12 e83853 (2023)
  218. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model. Linke LM, Wilusz J, Pabilonia KL, Fruehauf J, Magnuson R, Olea-Popelka F, Triantis J, Landolt G, Salman M. AMB Express 6 16 (2016)
  219. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Mol Biol 56 854-873 (2022)
  220. Thermodynamic basis of selectivity in guide-target-mismatched RNA interference. Joseph TT, Osman R. Proteins 80 1283-1298 (2012)
  221. ARGONAUTE SUBFAMILY GENES IN THE SMALL BROWN PLANTHOPPER, Laodelphax striatellus (HEMIPTERA: DELPHACIDAE). Zhou YR, Li LY, Li JM, Sun ZT, Xie L, Chen JP. Arch Insect Biochem Physiol 91 37-51 (2016)
  222. An evolutionarily conserved stop codon enrichment at the 5' ends of mammalian piRNAs. Bornelöv S, Czech B, Hannon GJ. Nat Commun 13 2118 (2022)
  223. Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target. Wang Z, Wang Y, Liu T, Wang Y, Zhang W. RNA 25 620-629 (2019)
  224. NgAgo possesses guided DNA nicking activity. Lee KZ, Mechikoff MA, Kikla A, Liu A, Pandolfi P, Fitzgerald K, Gimble FS, Solomon KV. Nucleic Acids Res 49 9926-9937 (2021)
  225. Noncovalent Attachment of Chemical Moieties to siRNAs Using Peptide Nucleic Acid as a Complementary Linker. Jin W, Jain A, Liu H, Zhao Z, Cheng K. ACS Appl Bio Mater 1 643-651 (2018)
  226. Synthesis and gene silencing properties of siRNAs containing terminal amide linkages. Gaglione M, Mercurio ME, Potenza N, Mosca N, Russo A, Novellino E, Cosconati S, Messere A. Biomed Res Int 2014 901617 (2014)
  227. Unexpected binding behaviors of bacterial Argonautes in human cells cast doubts on their use as targetable gene regulators. O'Geen H, Ren C, Coggins NB, Bates SL, Segal DJ. PLoS One 13 e0193818 (2018)
  228. Auto-inhibition and activation of a short Argonaute-associated TIR-APAZ defense system. Guo L, Huang P, Li Z, Shin YC, Yan P, Lu M, Chen M, Xiao Y. Nat Chem Biol (2023)
  229. Chemical optimization of siRNA for safe and efficient silencing of placental sFLT1. Davis SM, Hariharan VN, Lo A, Turanov AA, Echeverria D, Sousa J, McHugh N, Biscans A, Alterman JF, Karumanchi SA, Moore MJ, Khvorova A. Mol Ther Nucleic Acids 29 135-149 (2022)
  230. Crystallization and preliminary X-ray analysis of Escherichia coli RNase HI-dsRNA complexes. Loukachevitch LV, Egli M. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 84-88 (2007)
  231. Designer siRNAs to overcome the challenges from the RNAi pathway. Jayasena SD. J RNAi Gene Silencing 2 109-117 (2005)
  232. Dissection and prediction of RNA-binding sites on proteins. Pérez-Cano L, Fernández-Recio J. Biomol Concepts 1 345-355 (2010)
  233. Solution-state structure of a fully alternately 2'-F/2'-OMe modified 42-nt dimeric siRNA construct. Podbevsek P, Allerson CR, Bhat B, Plavec J. Nucleic Acids Res 38 7298-7307 (2010)
  234. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy. Maiti M, Nauwelaerts K, Lescrinier E, Herdewijn P. Chemistry 17 1519-1528 (2011)
  235. A robust model for quantitative prediction of the silencing efficacy of wild-type and A-to-I edited miRNAs. Tian S, Terai G, Kobayashi Y, Kimura Y, Abe H, Asai K, Ui-Tei K. RNA Biol 17 264-280 (2020)
  236. A study on the fundamental factors determining the efficacy of siRNAs with high C/G contents. Liao JY, Yin JQ, Chen F, Liu TG, Yue JC. Cell Mol Biol Lett 13 283-302 (2008)
  237. Cellular Approaches in Investigating Argonaute2-Dependent RNA Silencing. Zhang C, Seo J, Nakamura T. Methods Mol Biol 1680 205-215 (2018)
  238. Structural insights into Drosophila-C3PO complex assembly and 'Dynamic Side Port' model in substrate entry and release. Mo X, Yang X, Yuan YA. Nucleic Acids Res 46 8590-8604 (2018)
  239. Activation mechanism of a short argonaute-TIR prokaryotic immune system. Ni D, Lu X, Stahlberg H, Ekundayo B. Sci Adv 9 eadh9002 (2023)
  240. Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli. Olina A, Agapov A, Yudin D, Sutormin D, Galivondzhyan A, Kuzmenko A, Severinov K, Aravin AA, Kulbachinskiy A. Microbiol Spectr 11 e0414622 (2023)
  241. Bacterial Argonaute nucleases reveal different modes of DNA targeting in vitro and in vivo. Lisitskaya L, Kropocheva E, Agapov A, Prostova M, Panteleev V, Yudin D, Ryazansky S, Kuzmenko A, Aravin AA, Esyunina D, Kulbachinskiy A. Nucleic Acids Res 51 5106-5124 (2023)
  242. Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects. Naeem M, Alkhnbashi OS. Int J Mol Sci 24 6261 (2023)
  243. N-terminal region of Drosophila melanogaster Argonaute2 forms amyloid-like aggregates. Narita H, Shima T, Iizuka R, Uemura S. BMC Biol 21 78 (2023)
  244. Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute. Gao X, Shang K, Zhu K, Wang L, Mu Z, Fu X, Yu X, Qin B, Zhu H, Ding W, Cui S. Nature (2023)
  245. Research progress in mitochondrial gene editing technology. Wang Y, Wang Y, Chen Y, Yan Q, Lin A. Zhejiang Da Xue Xue Bao Yi Xue Ban 52 460-472 (2023)