1yij Citations

Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance.

Cell 121 257-70 (2005)
Related entries: 1yhq, 1yi2, 1yit, 1yj9, 1yjn, 1yjw

Cited: 269 times
EuropePMC logo PMID: 15851032

Abstract

Crystal structures of H. marismortui large ribosomal subunits containing the mutation G2099A (A2058 in E. coli) with erythromycin, azithromycin, clindamycin, virginiamycin S, and telithromycin bound explain why eubacterial ribosomes containing the mutation A2058G are resistant to them. Azithromycin binds almost identically to both G2099A and wild-type subunits, but the erythromycin affinity increases by more than 10(4)-fold, implying that desolvation of the N2 of G2099 accounts for the low wild-type affinity for macrolides. All macrolides bind similarly to the H. marismortui subunit, but their binding differs significantly from what has been reported in the D. radioidurans subunit. The synergy in the binding of streptogramins A and B appears to result from a reorientation of the base of A2103 (A2062, E. coli) that stacks between them. The structure of large subunit containing a three residue deletion mutant of L22 shows a change in the L22 structure and exit tunnel shape that illuminates its macrolide resistance phenotype.

Reviews - 1yij mentioned but not cited (2)

  1. The macrolide antibiotic renaissance. Dinos GP. Br J Pharmacol 174 2967-2983 (2017)
  2. Targeting Antibiotic Resistance. Chellat MF, Raguž L, Riedl R. Angew Chem Int Ed Engl 55 6600-6626 (2016)

Articles - 1yij mentioned but not cited (10)

  1. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, Rozenberg H, Bashan A, Yonath A. Proc Natl Acad Sci U S A 112 E5805-14 (2015)
  2. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Svetlov MS, Syroegin EA, Aleksandrova EV, Atkinson GC, Gregory ST, Mankin AS, Polikanov YS. Nat Chem Biol 17 412-420 (2021)
  3. Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs. Chawla M, Abdel-Azeim S, Oliva R, Cavallo L. Nucleic Acids Res 42 714-726 (2014)
  4. Desmethyl Macrolides: Synthesis and Evaluation of 4,10-Didesmethyl Telithromycin. Velvadapu V, Glassford I, Lee M, Paul T, Debrosse C, Klepacki D, Small MC, Mackerell AD, Andrade RB. ACS Med Chem Lett 3 211-215 (2012)
  5. Desmethyl Macrolide Analogues to Address Antibiotic Resistance: Total Synthesis and Biological Evaluation of 4,8,10-Tridesmethyl Telithromycin. Velvadapu V, Paul T, Wagh B, Klepacki D, Guvench O, Mackerell A, Andrade RB. ACS Med Chem Lett 2 68-72 (2011)
  6. Structural signatures of antibiotic binding sites on the ribosome. David-Eden H, Mankin AS, Mandel-Gutfreund Y. Nucleic Acids Res 38 5982-5994 (2010)
  7. Desmethyl Macrolides: Synthesis and Evaluation of 4,8-Didesmethyl Telithromycin. Wagh B, Paul T, Glassford I, Debrosse C, Klepacki D, Small MC, Mackerell AD, Andrade RB. ACS Med Chem Lett 3 1013-1018 (2012)
  8. Desmethyl macrolides: synthesis and evaluation of 4-desmethyl telithromycin. Glassford I, Lee M, Wagh B, Velvadapu V, Paul T, Sandelin G, DeBrosse C, Klepacki D, Small MC, MacKerell AD, Andrade RB. ACS Med Chem Lett 5 1021-1026 (2014)
  9. Flexibility-rigidity index for protein-nucleic acid flexibility and fluctuation analysis. Opron K, Xia K, Burton Z, Wei GW. J Comput Chem 37 1283-1295 (2016)
  10. Macrolide-peptide conjugates as probes of the path of travel of the nascent peptides through the ribosome. Washington AZ, Benicewicz DB, Canzoneri JC, Fagan CE, Mwakwari SC, Maehigashi T, Dunham CM, Oyelere AK. ACS Chem Biol 9 2621-2631 (2014)


Reviews citing this publication (68)

  1. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Wilson DN. Nat Rev Microbiol 12 35-48 (2014)
  2. Aptamers come of age - at last. Bunka DH, Stockley PG. Nat Rev Microbiol 4 588-596 (2006)
  3. The bacterial ribosome as a target for antibiotics. Poehlsgaard J, Douthwaite S. Nat Rev Microbiol 3 870-881 (2005)
  4. New antibiotics from bacterial natural products. Clardy J, Fischbach MA, Walsh CT. Nat Biotechnol 24 1541-1550 (2006)
  5. One core, two shells: bacterial and eukaryotic ribosomes. Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. Nat Struct Mol Biol 19 560-567 (2012)
  6. The A-Z of bacterial translation inhibitors. Wilson DN. Crit Rev Biochem Mol Biol 44 393-433 (2009)
  7. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. Roberts MC. FEMS Microbiol Lett 282 147-159 (2008)
  8. Structural basis of the translational elongation cycle. Voorhees RM, Ramakrishnan V. Annu Rev Biochem 82 203-236 (2013)
  9. Natural Products as Platforms To Overcome Antibiotic Resistance. Rossiter SE, Fletcher MH, Wuest WM. Chem Rev 117 12415-12474 (2017)
  10. Multi-targeting by monotherapeutic antibacterials. Silver LL. Nat Rev Drug Discov 6 41-55 (2007)
  11. The evolving role of chemical synthesis in antibacterial drug discovery. Wright PM, Seiple IB, Myers AG. Angew Chem Int Ed Engl 53 8840-8869 (2014)
  12. Structure and Function of the Mitochondrial Ribosome. Greber BJ, Ban N. Annu Rev Biochem 85 103-132 (2016)
  13. The oxazolidinones: past, present, and future. Shaw KJ, Barbachyn MR. Ann N Y Acad Sci 1241 48-70 (2011)
  14. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu Rev Biochem 87 451-478 (2018)
  15. Combination therapies for combating antimicrobial resistance. Fischbach MA. Curr Opin Microbiol 14 519-523 (2011)
  16. How Macrolide Antibiotics Work. Vázquez-Laslop N, Mankin AS. Trends Biochem Sci 43 668-684 (2018)
  17. Programmed drug-dependent ribosome stalling. Ramu H, Mankin A, Vazquez-Laslop N. Mol Microbiol 71 811-824 (2009)
  18. Drugs targeting the ribosome. Hermann T. Curr Opin Struct Biol 15 355-366 (2005)
  19. Antibiotics and the ribosome. Tenson T, Mankin A. Mol Microbiol 59 1664-1677 (2006)
  20. High-resolution structure of the eukaryotic 80S ribosome. Yusupova G, Yusupov M. Annu Rev Biochem 83 467-486 (2014)
  21. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Polacek N, Mankin AS. Crit Rev Biochem Mol Biol 40 285-311 (2005)
  22. Resistance to Macrolide Antibiotics in Public Health Pathogens. Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Cold Spring Harb Perspect Med 6 a025395 (2016)
  23. Antibiotics that target protein synthesis. McCoy LS, Xie Y, Tor Y. Wiley Interdiscip Rev RNA 2 209-232 (2011)
  24. Species-specific antibiotic-ribosome interactions: implications for drug development. Wilson DN, Harms JM, Nierhaus KH, Schlünzen F, Fucini P. Biol Chem 386 1239-1252 (2005)
  25. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Crit Rev Microbiol 43 1-30 (2017)
  26. The genomic enzymology of antibiotic resistance. Morar M, Wright GD. Annu Rev Genet 44 25-51 (2010)
  27. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Kannan K, Mankin AS. Ann N Y Acad Sci 1241 33-47 (2011)
  28. Target protection as a key antibiotic resistance mechanism. Wilson DN, Hauryliuk V, Atkinson GC, O'Neill AJ. Nat Rev Microbiol 18 637-648 (2020)
  29. Macrolide myths. Mankin AS. Curr Opin Microbiol 11 414-421 (2008)
  30. Improving on nature: antibiotics that target the ribosome. Sutcliffe JA. Curr Opin Microbiol 8 534-542 (2005)
  31. Structure-based drug design meets the ribosome. Franceschi F, Duffy EM. Biochem Pharmacol 71 1016-1025 (2006)
  32. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. Front Mol Biosci 5 48 (2018)
  33. Correlating ribosome function with high-resolution structures. Bashan A, Yonath A. Trends Microbiol 16 326-335 (2008)
  34. Methicillin-resistant Staphylococcus aureus: a pervasive pathogen highlights the need for new antimicrobial development. Morell EA, Balkin DM. Yale J Biol Med 83 223-233 (2010)
  35. Advances in SELEX and application of aptamers in the central nervous system. Yang Y, Yang D, Schluesener HJ, Zhang Z. Biomol Eng 24 583-592 (2007)
  36. On the specificity of antibiotics targeting the large ribosomal subunit. Wilson DN. Ann N Y Acad Sci 1241 1-16 (2011)
  37. The roles of RNA in the synthesis of protein. Moore PB, Steitz TA. Cold Spring Harb Perspect Biol 3 a003780 (2011)
  38. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Golkar T, Zieliński M, Berghuis AM. Front Microbiol 9 1942 (2018)
  39. Nascent peptide in the "birth canal" of the ribosome. Mankin AS. Trends Biochem Sci 31 11-13 (2006)
  40. Context-Specific Action of Ribosomal Antibiotics. Vázquez-Laslop N, Mankin AS. Annu Rev Microbiol 72 185-207 (2018)
  41. Ribosome protection by ABC-F proteins-Molecular mechanism and potential drug design. Ero R, Kumar V, Su W, Gao YG. Protein Sci 28 684-693 (2019)
  42. Speculative strategies for new antibacterials: all roads should not lead to Rome. Shapiro S. J Antibiot (Tokyo) 66 371-386 (2013)
  43. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. Dmitriev SE, Vladimirov DO, Lashkevich KA. Biochemistry (Mosc) 85 1389-1421 (2020)
  44. The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance. McCusker KP, Fujimori DG. ACS Chem Biol 7 64-72 (2012)
  45. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C, Coricovac D, Horhat D, Poenaru M, Dehelean C. Antibiotics (Basel) 10 401 (2021)
  46. Elements of ribosomal drug resistance and specificity. Blaha GM, Polikanov YS, Steitz TA. Curr Opin Struct Biol 22 750-758 (2012)
  47. ABC-F translation factors: from antibiotic resistance to immune response. Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. FEBS Lett 595 675-706 (2021)
  48. Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Van Bambeke F, Harms JM, Van Laethem Y, Tulkens PM. Expert Opin Pharmacother 9 267-283 (2008)
  49. Pulling the Brakes on Fast and Furious Multiple Drug-Resistant (MDR) Bacteria. Khan AA, Manzoor KN, Sultan A, Saeed M, Rafique M, Noushad S, Talib A, Rentschler S, Deigner HP. Int J Mol Sci 22 E859 (2021)
  50. A Bright Future for Antibiotics? Matzov D, Bashan A, Yonath A. Annu Rev Biochem 86 567-583 (2017)
  51. Crystallizing new approaches for antimicrobial drug discovery. Schmid MB. Biochem Pharmacol 71 1048-1056 (2006)
  52. Biological implications of the ribosome's stunning stereochemistry. Zimmerman E, Yonath A. Chembiochem 10 63-72 (2009)
  53. The Case against Antibiotics and for Anti-Virulence Therapeutics. Hotinger JA, Morris ST, May AE. Microorganisms 9 2049 (2021)
  54. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. Yonath A. J R Soc Interface 6 Suppl 5 S575-85 (2009)
  55. Ribosome's mode of function: myths, facts and recent results. Wekselman I, Davidovich C, Agmon I, Zimmerman E, Rozenberg H, Bashan A, Berisio R, Yonath A. J Pept Sci 15 122-130 (2009)
  56. Antibiotics targeting bacterial ribosomal subunit biogenesis. Champney WS. J Antimicrob Chemother 75 787-806 (2020)
  57. Advanced Methods for Studying Structure and Interactions of Macrolide Antibiotics. Jednačak T, Mikulandra I, Novak P. Int J Mol Sci 21 E7799 (2020)
  58. Ribosomal Antibiotics: Contemporary Challenges. Auerbach-Nevo T, Baram D, Bashan A, Belousoff M, Breiner E, Davidovich C, Cimicata G, Eyal Z, Halfon Y, Krupkin M, Matzov D, Metz M, Rufayda M, Peretz M, Pick O, Pyetan E, Rozenberg H, Shalev-Benami M, Wekselman I, Zarivach R, Zimmerman E, Assis N, Bloch J, Israeli H, Kalaora R, Lim L, Sade-Falk O, Shapira T, Taha-Salaime L, Tang H, Yonath A. Antibiotics (Basel) 5 E24 (2016)
  59. 3D-QSAR and molecular docking for the discovery of ketolide derivatives. Ruan ZX, Huangfu DS, Xu XJ, Sun PH, Chen WM. Expert Opin Drug Discov 8 427-444 (2013)
  60. Ribosomal tunnel and translation regulation. Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Biochemistry (Mosc) 75 1501-1516 (2010)
  61. Does the ribosome have initiation and elongation modes of translation? Tenson T, Hauryliuk V. Mol Microbiol 72 1310-1315 (2009)
  62. Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes. Hecht SM. J Mol Biol 434 167211 (2022)
  63. From replication to cultivation: hot news from Haloarchaea. Soppa J. Curr Opin Microbiol 8 737-744 (2005)
  64. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Ero R, Yan XF, Gao YG. Int J Mol Sci 22 5356 (2021)
  65. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Adv Sci (Weinh) 10 e2206154 (2023)
  66. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. RSC Med Chem 14 624-643 (2023)
  67. Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Kisly I, Tamm T. Comput Struct Biotechnol J 21 1249-1261 (2023)
  68. The 2009 Nobel Prize in Chemistry: Thomas A. Steitz and the structure of the ribosome. Zhao P. Yale J Biol Med 84 125-129 (2011)

Articles citing this publication (189)

  1. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. Antimicrob Agents Chemother 50 2500-2505 (2006)
  2. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Dunkle JA, Xiong L, Mankin AS, Cate JH. Proc Natl Acad Sci U S A 107 17152-17157 (2010)
  3. Natural products version 2.0: connecting genes to molecules. Walsh CT, Fischbach MA. J Am Chem Soc 132 2469-2493 (2010)
  4. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. Science 334 941-948 (2011)
  5. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Toh SM, Xiong L, Arias CA, Villegas MV, Lolans K, Quinn J, Mankin AS. Mol Microbiol 64 1506-1514 (2007)
  6. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. Mol Microbiol 57 1064-1073 (2005)
  7. Molecular mechanism of drug-dependent ribosome stalling. Vazquez-Laslop N, Thum C, Mankin AS. Mol Cell 30 190-202 (2008)
  8. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. Nature 515 283-286 (2014)
  9. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P. Proc Natl Acad Sci U S A 105 13339-13344 (2008)
  10. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Bulkley D, Innis CA, Blaha G, Steitz TA. Proc Natl Acad Sci U S A 107 17158-17163 (2010)
  11. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2'-O-methylations in 16S and 23S rRNAs. Johansen SK, Maus CE, Plikaytis BB, Douthwaite S. Mol Cell 23 173-182 (2006)
  12. Molecular mechanisms of antibiotic resistance. Wright GD. Chem Commun (Camb) 47 4055-4061 (2011)
  13. A platform for the discovery of new macrolide antibiotics. Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, Yabu K, Allu SR, Fukuzaki T, Carlsen PN, Kitamura Y, Zhou X, Condakes ML, Szczypiński FT, Green WD, Myers AG. Nature 533 338-345 (2016)
  14. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. Gürel G, Blaha G, Moore PB, Steitz TA. J Mol Biol 389 146-156 (2009)
  15. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Yu AM, Choi YH, Tu MJ. Pharmacol Rev 72 862-898 (2020)
  16. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. Vázquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS. EMBO J 29 3108-3117 (2010)
  17. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. Sidhu AB, Sun Q, Nkrumah LJ, Dunne MW, Sacchettini JC, Fidock DA. J Biol Chem 282 2494-2504 (2007)
  18. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. Toh SM, Xiong L, Bae T, Mankin AS. RNA 14 98-106 (2008)
  19. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Kannan K, Vázquez-Laslop N, Mankin AS. Cell 151 508-520 (2012)
  20. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Prokhorova I, Altman RB, Djumagulov M, Shrestha JP, Urzhumtsev A, Ferguson A, Chang CT, Yusupov M, Blanchard SC, Yusupova G. Proc Natl Acad Sci U S A 114 E10899-E10908 (2017)
  21. The general mode of translation inhibition by macrolide antibiotics. Kannan K, Kanabar P, Schryer D, Florin T, Oh E, Bahroos N, Tenson T, Weissman JS, Mankin AS. Proc Natl Acad Sci U S A 111 15958-15963 (2014)
  22. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Bolam DN, Roberts S, Proctor MR, Turkenburg JP, Dodson EJ, Martinez-Fleites C, Yang M, Davis BG, Davies GJ, Gilbert HJ. Proc Natl Acad Sci U S A 104 5336-5341 (2007)
  23. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Smith LK, Mankin AS. Antimicrob Agents Chemother 52 1703-1712 (2008)
  24. Tertiary interactions within the ribosomal exit tunnel. Kosolapov A, Deutsch C. Nat Struct Mol Biol 16 405-411 (2009)
  25. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Llano-Sotelo B, Dunkle J, Klepacki D, Zhang W, Fernandes P, Cate JH, Mankin AS. Antimicrob Agents Chemother 54 4961-4970 (2010)
  26. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Ramu H, Vázquez-Laslop N, Klepacki D, Dai Q, Piccirilli J, Micura R, Mankin AS. Mol Cell 41 321-330 (2011)
  27. Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Arenz S, Ramu H, Gupta P, Berninghausen O, Beckmann R, Vázquez-Laslop N, Mankin AS, Wilson DN. Nat Commun 5 3501 (2014)
  28. Drug sensing by the ribosome induces translational arrest via active site perturbation. Arenz S, Meydan S, Starosta AL, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN. Mol Cell 56 446-452 (2014)
  29. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR. PLoS One 7 e38320 (2012)
  30. Structure-activity relationships of diverse oxazolidinones for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Locke JB, Finn J, Hilgers M, Morales G, Rahawi S, G C K, Picazo JJ, Im W, Shaw KJ, Stein JL. Antimicrob Agents Chemother 54 5337-5343 (2010)
  31. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Cagliero C, Mouline C, Cloeckaert A, Payot S. Antimicrob Agents Chemother 50 3893-3896 (2006)
  32. Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Sothiselvam S, Liu B, Han W, Ramu H, Klepacki D, Atkinson GC, Brauer A, Remm M, Tenson T, Schulten K, Vázquez-Laslop N, Mankin AS. Proc Natl Acad Sci U S A 111 9804-9809 (2014)
  33. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Zaman S, Fitzpatrick M, Lindahl L, Zengel J. Mol Microbiol 66 1039-1050 (2007)
  34. Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. Polikanov YS, Starosta AL, Juette MF, Altman RB, Terry DS, Lu W, Burnett BJ, Dinos G, Reynolds KA, Blanchard SC, Steitz TA, Wilson DN. Mol Cell 58 832-844 (2015)
  35. Induction of erm(C) expression by noninducing antibiotics. Bailey M, Chettiath T, Mankin AS. Antimicrob Agents Chemother 52 866-874 (2008)
  36. Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. Blaha G, Gürel G, Schroeder SJ, Moore PB, Steitz TA. J Mol Biol 379 505-519 (2008)
  37. Catalytic mechanism of human alpha-galactosidase. Guce AI, Clark NE, Salgado EN, Ivanen DR, Kulminskaya AA, Brumer H, Garman SC. J Biol Chem 285 3625-3632 (2010)
  38. A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. Chiba S, Lamsa A, Pogliano K. EMBO J 28 3461-3475 (2009)
  39. Antibiotic susceptibility of mammalian mitochondrial translation. Zhang L, Ging NC, Komoda T, Hanada T, Suzuki T, Watanabe K. FEBS Lett 579 6423-6427 (2005)
  40. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Starosta AL, Karpenko VV, Shishkina AV, Mikolajka A, Sumbatyan NV, Schluenzen F, Korshunova GA, Bogdanov AA, Wilson DN. Chem Biol 17 504-514 (2010)
  41. Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB. Morar M, Bhullar K, Hughes DW, Junop M, Wright GD. Structure 17 1649-1659 (2009)
  42. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain. Hidalgo Á, Carvajal A, Vester B, Pringle M, Naharro G, Rubio P. Antimicrob Agents Chemother 55 3330-3337 (2011)
  43. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Siibak T, Peil L, Xiong L, Mankin A, Remme J, Tenson T. Antimicrob Agents Chemother 53 563-571 (2009)
  44. Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Dharia NV, Plouffe D, Bopp SE, González-Páez GE, Lucas C, Salas C, Soberon V, Bursulaya B, Kochel TJ, Bacon DJ, Winzeler EA. Genome Res 20 1534-1544 (2010)
  45. Role of antibiotic ligand in nascent peptide-dependent ribosome stalling. Vázquez-Laslop N, Klepacki D, Mulhearn DC, Ramu H, Krasnykh O, Franzblau S, Mankin AS. Proc Natl Acad Sci U S A 108 10496-10501 (2011)
  46. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V, Atkinson GC, Hauryliuk V, Wilson DN. Proc Natl Acad Sci U S A 115 8978-8983 (2018)
  47. Differences in the path to exit the ribosome across the three domains of life. Dao Duc K, Batra SS, Bhattacharya N, Cate JHD, Song YS. Nucleic Acids Res 47 4198-4210 (2019)
  48. Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Binet R, Maurelli AT. Antimicrob Agents Chemother 51 4267-4275 (2007)
  49. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. Diner EJ, Hayes CS. J Mol Biol 386 300-315 (2009)
  50. Pharmacokinetics of solithromycin (CEM-101) after single or multiple oral doses and effects of food on single-dose bioavailability in healthy adult subjects. Still JG, Schranz J, Degenhardt TP, Scott D, Fernandes P, Gutierrez MJ, Clark K. Antimicrob Agents Chemother 55 1997-2003 (2011)
  51. Historical Article Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Yonath A. Angew Chem Int Ed Engl 49 4341-4354 (2010)
  52. A synthetic antibiotic class overcoming bacterial multidrug resistance. Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, Terwilliger DW, Testolin G, Pote AR, Wu KJY, Ladley RP, Chatman K, Mankin AS, Polikanov YS, Myers AG. Nature 599 507-512 (2021)
  53. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. Fulle S, Gohlke H. J Mol Biol 387 502-517 (2009)
  54. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. Svetlov MS, Plessa E, Chen CW, Bougas A, Krokidis MG, Dinos GP, Polikanov YS. RNA 25 600-606 (2019)
  55. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Noeske J, Huang J, Olivier NB, Giacobbe RA, Zambrowski M, Cate JH. Antimicrob Agents Chemother 58 5269-5279 (2014)
  56. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. Nucleic Acids Res 40 360-370 (2012)
  57. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Belousoff MJ, Shapira T, Bashan A, Zimmerman E, Rozenberg H, Arakawa K, Kinashi H, Yonath A. Proc Natl Acad Sci U S A 108 2717-2722 (2011)
  58. Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: selectivity in the ribosome macrolide binding pocket. Harvey CJ, Puglisi JD, Pande VS, Cane DE, Khosla C. J Am Chem Soc 134 12259-12265 (2012)
  59. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: opportunities, limitations, and mechanistic hypotheses. Borisova SA, Zhang C, Takahashi H, Zhang H, Wong AW, Thorson JS, Liu HW. Angew Chem Int Ed Engl 45 2748-2753 (2006)
  60. Kinetics of drug-ribosome interactions defines the cidality of macrolide antibiotics. Svetlov MS, Vázquez-Laslop N, Mankin AS. Proc Natl Acad Sci U S A 114 13673-13678 (2017)
  61. Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest. Murina V, Kasari M, Hauryliuk V, Atkinson GC. Nucleic Acids Res 46 3753-3763 (2018)
  62. Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. Lawrence MG, Lindahl L, Zengel JM. J Bacteriol 190 5862-5869 (2008)
  63. Structural basis for cross-resistance to ribosomal PTC antibiotics. Davidovich C, Bashan A, Yonath A. Proc Natl Acad Sci U S A 105 20665-20670 (2008)
  64. Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui. Gürel G, Blaha G, Steitz TA, Moore PB. Antimicrob Agents Chemother 53 5010-5014 (2009)
  65. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M, Wekselman I, Zimmerman E, Xiong L, Klepacki D, Arakawa K, Kinashi H, Mankin AS, Yonath A. Proc Natl Acad Sci U S A 107 1983-1988 (2010)
  66. Nascent peptide assists the ribosome in recognizing chemically distinct small molecules. Gupta P, Liu B, Klepacki D, Gupta V, Schulten K, Mankin AS, Vázquez-Laslop N. Nat Chem Biol 12 153-158 (2016)
  67. Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22. Moore SD, Sauer RT. Proc Natl Acad Sci U S A 105 18261-18266 (2008)
  68. Synthetic group A streptogramin antibiotics that overcome Vat resistance. Li Q, Pellegrino J, Lee DJ, Tran AA, Chaires HA, Wang R, Park JE, Ji K, Chow D, Zhang N, Brilot AF, Biel JT, van Zundert G, Borrelli K, Shinabarger D, Wolfe C, Murray B, Jacobson MP, Mühle E, Chesneau O, Fraser JS, Seiple IB. Nature 586 145-150 (2020)
  69. The in vitro characterization of the erythronolide mycarosyltransferase EryBV and its utility in macrolide diversification. Zhang C, Fu Q, Albermann C, Li L, Thorson JS. Chembiochem 8 385-390 (2007)
  70. The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole. Schroeder SJ, Blaha G, Tirado-Rives J, Steitz TA, Moore PB. J Mol Biol 367 1471-1479 (2007)
  71. Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm. Douthwaite S, Jalava J, Jakobsen L. Mol Microbiol 58 613-622 (2005)
  72. The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Pawlowski AC, Stogios PJ, Koteva K, Skarina T, Evdokimova E, Savchenko A, Wright GD. Nat Commun 9 112 (2018)
  73. Thoughts on how to think (and talk) about RNA structure. Vicens Q, Kieft JS. Proc Natl Acad Sci U S A 119 e2112677119 (2022)
  74. Autofix for backward-fit sidechains: using MolProbity and real-space refinement to put misfits in their place. Headd JJ, Immormino RM, Keedy DA, Emsley P, Richardson DC, Richardson JS. J Struct Funct Genomics 10 83-93 (2009)
  75. Historical Article From the structure and function of the ribosome to new antibiotics (Nobel Lecture). Steitz TA. Angew Chem Int Ed Engl 49 4381-4398 (2010)
  76. Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size. Sothiselvam S, Neuner S, Rigger L, Klepacki D, Micura R, Vázquez-Laslop N, Mankin AS. Cell Rep 16 1789-1799 (2016)
  77. Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Rudra P, Hurst-Hess KR, Cotten KL, Partida-Miranda A, Ghosh P. Proc Natl Acad Sci U S A 117 629-634 (2020)
  78. Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Johansson M, Chen J, Tsai A, Kornberg G, Puglisi JD. Cell Rep 7 1534-1546 (2014)
  79. Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Korczynska M, Mukhtar TA, Wright GD, Berghuis AM. Proc Natl Acad Sci U S A 104 10388-10393 (2007)
  80. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Matzov D, Eyal Z, Benhamou RI, Shalev-Benami M, Halfon Y, Krupkin M, Zimmerman E, Rozenberg H, Bashan A, Fridman M, Yonath A. Nucleic Acids Res 45 10284-10292 (2017)
  81. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. Lovmar M, Nilsson K, Lukk E, Vimberg V, Tenson T, Ehrenberg M. EMBO J 28 736-744 (2009)
  82. Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors. Cocozaki AI, Altman RB, Huang J, Buurman ET, Kazmirski SL, Doig P, Prince DB, Blanchard SC, Cate JH, Ferguson AD. Proc Natl Acad Sci U S A 113 8188-8193 (2016)
  83. Specific effects of ribosome-tethered molecular chaperones on programmed -1 ribosomal frameshifting. Muldoon-Jacobs KL, Dinman JD. Eukaryot Cell 5 762-770 (2006)
  84. Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. Lee HY, Khosla C. PLoS Biol 5 e45 (2007)
  85. Capreomycin susceptibility is increased by TlyA-directed 2'-O-methylation on both ribosomal subunits. Monshupanee T, Johansen SK, Dahlberg AE, Douthwaite S. Mol Microbiol 85 1194-1203 (2012)
  86. Engineered biosynthesis of hybrid macrolide polyketides containing D-angolosamine and D-mycaminose moieties. Schell U, Haydock SF, Kaja AL, Carletti I, Lill RE, Read E, Sheehan LS, Low L, Fernandez MJ, Grolle F, McArthur HA, Sheridan RM, Leadlay PF, Wilkinson B, Gaisser S. Org Biomol Chem 6 3315-3327 (2008)
  87. Exit tunnel modulation as resistance mechanism of S. aureus erythromycin resistant mutant. Halfon Y, Matzov D, Eyal Z, Bashan A, Zimmerman E, Kjeldgaard J, Ingmer H, Yonath A. Sci Rep 9 11460 (2019)
  88. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. Dedkova LM, Hecht SM. J Am Chem Soc 141 6430-6447 (2019)
  89. Attenuation-based dual-fluorescent-protein reporter for screening translation inhibitors. Osterman IA, Prokhorova IV, Sysoev VO, Boykova YV, Efremenkova OV, Svetlov MS, Kolb VA, Bogdanov AA, Sergiev PV, Dontsova OA. Antimicrob Agents Chemother 56 1774-1783 (2012)
  90. Telithromycin resistance in Streptococcus pneumoniae is conferred by a deletion in the leader sequence of erm(B) that increases rRNA methylation. Wolter N, Smith AM, Farrell DJ, Northwood JB, Douthwaite S, Klugman KP. Antimicrob Agents Chemother 52 435-440 (2008)
  91. Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome. Ishida H, Hayward S. Biophys J 95 5962-5973 (2008)
  92. S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene. Onoue N, Yamashita Y, Nagao N, Goto DB, Onouchi H, Naito S. J Biol Chem 286 14903-14912 (2011)
  93. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Crowe-McAuliffe C, Murina V, Turnbull KJ, Kasari M, Mohamad M, Polte C, Takada H, Vaitkevicius K, Johansson J, Ignatova Z, Atkinson GC, O'Neill AJ, Hauryliuk V, Wilson DN. Nat Commun 12 3577 (2021)
  94. Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli. Zhang G, Li Y, Fang L, Pfeifer BA. Sci Adv 1 e1500077 (2015)
  95. The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation. Lawrence MG, Shamsuzzaman M, Kondopaka M, Pascual C, Zengel JM, Lindahl L. Nucleic Acids Res 44 5798-5810 (2016)
  96. Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted. Tu D, Blaha G, Moore PB, Steitz TA. Extremophiles 9 427-435 (2005)
  97. Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. Starosta AL, Qin H, Mikolajka A, Leung GY, Schwinghammer K, Nicolaou KC, Chen DY, Cooperman BS, Wilson DN. Chem Biol 16 1087-1096 (2009)
  98. 23S rRNA 2058A-->G alteration mediates ketolide resistance in combination with deletion in L22. Berisio R, Corti N, Pfister P, Yonath A, Böttger EC. Antimicrob Agents Chemother 50 3816-3823 (2006)
  99. Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. Bommakanti AS, Lindahl L, Zengel JM. RNA 14 460-464 (2008)
  100. Time-resolved binding of azithromycin to Escherichia coli ribosomes. Petropoulos AD, Kouvela EC, Starosta AL, Wilson DN, Dinos GP, Kalpaxis DL. J Mol Biol 385 1179-1192 (2009)
  101. Total synthesis of (-)-4,8,10-tridesmethyl telithromycin. Velvadapu V, Paul T, Wagh B, Glassford I, DeBrosse C, Andrade RB. J Org Chem 76 7516-7527 (2011)
  102. Deoxysugar pathway interchange for erythromycin analogues heterologously produced through Escherichia coli. Jiang M, Zhang H, Park SH, Li Y, Pfeifer BA. Metab Eng 20 92-100 (2013)
  103. Free and bound state structures of 6-O-methyl homoerythromycins and epitope mapping of their interactions with ribosomes. Novak P, Barber J, Cikos A, Arsic B, Plavec J, Lazarevski G, Tepes P, Kosutić-Hulita N. Bioorg Med Chem 17 5857-5867 (2009)
  104. On the relationship between the protein structure and protein dynamics. Lu CH, Huang SW, Lai YL, Lin CP, Shih CH, Huang CC, Hsu WL, Hwang JK. Proteins 72 625-634 (2008)
  105. Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance. Fong DH, Burk DL, Blanchet J, Yan AY, Berghuis AM. Structure 25 750-761.e5 (2017)
  106. Development, antibiotic production, and ribosome assembly in Streptomyces venezuelae are impacted by RNase J and RNase III deletion. Jones SE, Leong V, Ortega J, Elliot MA. J Bacteriol 196 4253-4267 (2014)
  107. On the mechanism of action of 9-O-arylalkyloxime derivatives of 6-O-mycaminosyltylonolide, a new class of 16-membered macrolide antibiotics. Karahalios P, Kalpaxis DL, Fu H, Katz L, Wilson DN, Dinos GP. Mol Pharmacol 70 1271-1280 (2006)
  108. The ribosome as a drug target. Böttger EC. Trends Biotechnol 24 145-147 (2006)
  109. Distinct mode of interaction of a novel ketolide antibiotic that displays enhanced antimicrobial activity. Kouvela EC, Kalpaxis DL, Wilson DN, Dinos GP. Antimicrob Agents Chemother 53 1411-1419 (2009)
  110. Base pairs and pseudo pairs observed in RNA-ligand complexes. Kondo J, Westhof E. J Mol Recognit 23 241-252 (2010)
  111. Impact of ribosomal modification on the binding of the antibiotic telithromycin using a combined grand canonical monte carlo/molecular dynamics simulation approach. Small MC, Lopes P, Andrade RB, Mackerell AD. PLoS Comput Biol 9 e1003113 (2013)
  112. Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Svetlov MS, Koller TO, Meydan S, Shankar V, Klepacki D, Polacek N, Guydosh NR, Vázquez-Laslop N, Wilson DN, Mankin AS. Nat Commun 12 2803 (2021)
  113. Insights into the mode of action of novel fluoroketolides, potent inhibitors of bacterial protein synthesis. Krokidis MG, Márquez V, Wilson DN, Kalpaxis DL, Dinos GP. Antimicrob Agents Chemother 58 472-480 (2014)
  114. The molecular choreography of protein synthesis: translational control, regulation, and pathways. Chen J, Choi J, O'Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. Q Rev Biophys 49 e11 (2016)
  115. The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Valas RE, Bourne PE. Biol Direct 6 16 (2011)
  116. Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. Liu X, Wang J, Chen M, Che R, Ding W, Yu F, Zhou Y, Cui W, Xiaoxu X, God'spower BO, Li Y. BMC Vet Res 15 224 (2019)
  117. Design, synthesis, and biological evaluation of BODIPY-erythromycin probes for bacterial ribosomes. Li J, Kim IH, Roche ED, Beeman D, Lynch AS, Ding CZ, Ma Z. Bioorg Med Chem Lett 16 794-797 (2006)
  118. Discovery and analysis of 4H-pyridopyrimidines, a class of selective bacterial protein synthesis inhibitors. Ribble W, Hill WE, Ochsner UA, Jarvis TC, Guiles JW, Janjic N, Bullard JM. Antimicrob Agents Chemother 54 4648-4657 (2010)
  119. Recognition elements in rRNA for the tylosin resistance methyltransferase RlmA(II). Lebars I, Husson C, Yoshizawa S, Douthwaite S, Fourmy D. J Mol Biol 372 525-534 (2007)
  120. Structural and functional insights into esterase-mediated macrolide resistance. Zieliński M, Park J, Sleno B, Berghuis AM. Nat Commun 12 1732 (2021)
  121. Validation of experimental charge densities: refinement of the macrolide antibiotic roxithromycin. Holstein JJ, Luger P, Kalinowski R, Mebs S, Paulman C, Dittrich B. Acta Crystallogr B 66 568-577 (2010)
  122. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A. Kaminishi T, Schedlbauer A, Fabbretti A, Brandi L, Ochoa-Lizarralde B, He CG, Milón P, Connell SR, Gualerzi CO, Fucini P. Nucleic Acids Res 43 10015-10025 (2015)
  123. Garbled messages and corrupted translations. Schneider-Poetsch T, Usui T, Kaida D, Yoshida M. Nat Chem Biol 6 189-198 (2010)
  124. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. Halling SM, Jensen AE. BMC Microbiol 6 84 (2006)
  125. Investigating the entire course of telithromycin binding to Escherichia coli ribosomes. Kostopoulou ON, Petropoulos AD, Dinos GP, Choli-Papadopoulou T, Kalpaxis DL. Nucleic Acids Res 40 5078-5087 (2012)
  126. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel. Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, Ingmer H, Lindahl L, Zengel JM, Yonath A. Structure 25 1233-1241.e3 (2017)
  127. Direct entry to erythronolides via a cyclic bis[allene]. Liu K, Kim H, Ghosh P, Akhmedov NG, Williams LJ. J Am Chem Soc 133 14968-14971 (2011)
  128. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. Tsai K, Stojković V, Noda-Garcia L, Young ID, Myasnikov AG, Kleinman J, Palla A, Floor SN, Frost A, Fraser JS, Tawfik DS, Fujimori DG. Elife 11 e70017 (2022)
  129. Insights into the improved macrolide inhibitory activity from the high-resolution cryo-EM structure of dirithromycin bound to the E. coli 70S ribosome. Pichkur EB, Paleskava A, Tereshchenkov AG, Kasatsky P, Komarova ES, Shiriaev DI, Bogdanov AA, Dontsova OA, Osterman IA, Sergiev PV, Polikanov YS, Myasnikov AG, Konevega AL. RNA 26 715-723 (2020)
  130. Selection for high-level telithromycin resistance in Staphylococcus aureus yields mutants resulting from an rplB-to-rplV gene conversion-like event. Gentry DR, Holmes DJ. Antimicrob Agents Chemother 52 1156-1158 (2008)
  131. Structural analysis of base substitutions in Thermus thermophilus 16S rRNA conferring streptomycin resistance. Demirci H, Murphy FV, Murphy EL, Connetti JL, Dahlberg AE, Jogl G, Gregory ST. Antimicrob Agents Chemother 58 4308-4317 (2014)
  132. Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine. Syroegin EA, Aleksandrova EV, Polikanov YS. Nucleic Acids Res 50 7669-7679 (2022)
  133. Synthesis and antibacterial activity of a series of novel 9-O-acetyl- 4'-substituted 16-membered macrolides derived from josamycin. Zhao Z, Jin L, Xu Y, Zhu D, Liu Y, Liu C, Lei P. Bioorg Med Chem Lett 24 480-484 (2014)
  134. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria. Svetlov MS, Cohen S, Alsuhebany N, Vázquez-Laslop N, Mankin AS. Proc Natl Acad Sci U S A 117 1971-1975 (2020)
  135. Desmethyl Macrolides: Synthesis and Evaluation of 4,8,10-Tridesmethyl Cethromycin. Wagh B, Paul T, Debrosse C, Klepacki D, Small MC, Mackerell AD, Andrade RB. ACS Med Chem Lett 4 1114-1118 (2013)
  136. Expression of Bacillus subtilis ABCF antibiotic resistance factor VmlR is regulated by RNA polymerase pausing, transcription attenuation, translation attenuation and (p)ppGpp. Takada H, Mandell ZF, Yakhnin H, Glazyrina A, Chiba S, Kurata T, Wu KJY, Tresco BIC, Myers AG, Aktinson GC, Babitzke P, Hauryliuk V. Nucleic Acids Res 50 6174-6189 (2022)
  137. Novel ureas and thioureas of 15-membered azalides with antibacterial activity against key respiratory pathogens. Bukvić Krajacić M, Novak P, Dumić M, Cindrić M, Paljetak HC, Kujundzić N. Eur J Med Chem 44 3459-3470 (2009)
  138. Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes. Xie Q, Wang Y, Lin J, Qin Y, Wang Y, Bu W. PLoS One 7 e29468 (2012)
  139. Synthesis of D-Desosamine and Analogs by Rapid Assembly of 3-Amino Sugars. Zhang Z, Fukuzaki T, Myers AG. Angew Chem Int Ed Engl 55 523-527 (2016)
  140. Emergence of a Streptococcus pneumoniae isolate resistant to streptogramins by mutation in ribosomal protein L22 during pristinamycin therapy of pneumococcal pneumonia. Cattoir V, Merabet L, Legrand P, Soussy CJ, Leclercq R. J Antimicrob Chemother 59 1010-1012 (2007)
  141. Novel antibacterial azetidine lincosamides. O'Dowd H, Lewis JG, Trias J, Asano R, Blais J, Lopez SL, Park CK, Wu C, Wang W, Gordeev MF. Bioorg Med Chem Lett 18 2645-2648 (2008)
  142. Phylogenetic sequence variations in bacterial rRNA affect species-specific susceptibility to drugs targeting protein synthesis. Akshay S, Bertea M, Hobbie SN, Oettinghaus B, Shcherbakov D, Böttger EC, Akbergenov R. Antimicrob Agents Chemother 55 4096-4102 (2011)
  143. Structure of Dirithromycin Bound to the Bacterial Ribosome Suggests New Ways for Rational Improvement of Macrolides. Khabibullina NF, Tereshchenkov AG, Komarova ES, Syroegin EA, Shiriaev DI, Paleskava A, Kartsev VG, Bogdanov AA, Konevega AL, Dontsova OA, Sergiev PV, Osterman IA, Polikanov YS. Antimicrob Agents Chemother 63 e02266-18 (2019)
  144. Synthesis and structure-activity relationships of novel lincomycin derivatives. Part 1. Newly generated antibacterial activities against Gram-positive bacteria with erm gene by C-7 modification. Wakiyama Y, Kumura K, Umemura E, Ueda K, Masaki S, Kumura M, Fushimi H, Ajito K. J Antibiot (Tokyo) 69 368-380 (2016)
  145. Synthesis and structure-activity relationships of novel lincomycin derivatives. Part 2. Synthesis of 7(S)-7-deoxy-7-(4-morpholinocarbonylphenylthio)lincomycin and its 3-dimensional analysis with rRNA. Wakiyama Y, Kumura K, Umemura E, Masaki S, Ueda K, Watanabe T, Yamamoto M, Hirai Y, Ajito K. J Antibiot (Tokyo) 69 428-439 (2016)
  146. Designer drugs for discerning bugs. Douthwaite S. Proc Natl Acad Sci U S A 107 17065-17066 (2010)
  147. Synthesis and biological investigation of new 4''-malonyl tethered derivatives of erythromycin and clarithromycin. Sherman D, Xiong L, Mankin AS, Melman A. Bioorg Med Chem Lett 16 1506-1509 (2006)
  148. Synthetic oxepanoprolinamide iboxamycin is active against Listeria monocytogenes despite the intrinsic resistance mediated by VgaL/Lmo0919 ABCF ATPase. Brodiazhenko T, Turnbull KJ, Wu KJY, Takada H, Tresco BIC, Tenson T, Myers AG, Hauryliuk V. JAC Antimicrob Resist 4 dlac061 (2022)
  149. The marine polyketide myriaporone 3/4 stalls translation by targeting the elongation phase. Muthukumar Y, Roy M, Raja A, Taylor RE, Sasse F. Chembiochem 14 260-264 (2013)
  150. Use of RNA in drug design. Lagoja IM, Herdewijn P. Expert Opin Drug Discov 2 889-903 (2007)
  151. Characterization of Two Macrolide Resistance-Related Genes in Multidrug-Resistant Pseudomonas aeruginosa Isolates. Chen Q, Lu W, Zhou D, Zheng G, Liu H, Qian C, Zhou W, Lu J, Ni L, Bao Q, Li A, Xu T, Xu H. Pol J Microbiol 69 349-356 (2020)
  152. Quantum mechanical studies of lincosamides. Kulczycka-Mierzejewska K, Trylska J, Sadlej J. J Mol Model 18 2727-2740 (2012)
  153. Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes. Koller TO, Turnbull KJ, Vaitkevicius K, Crowe-McAuliffe C, Roghanian M, Bulvas O, Nakamoto JA, Kurata T, Julius C, Atkinson GC, Johansson J, Hauryliuk V, Wilson DN. Nucleic Acids Res 50 11285-11300 (2022)
  154. Lecture Structural insights into the functions of the large ribosomal subunit, a major antibiotic target. Steitz TA. Keio J Med 57 1-14 (2008)
  155. Comment Treating acute asthma with antibiotics--not quite yet. Little FF. N Engl J Med 354 1632-1634 (2006)
  156. 16-membered ring macrolides and erythromycin induce ermB expression by different mechanisms. He W, Jiang K, Qiu H, Liao L, Wang S. BMC Microbiol 22 152 (2022)
  157. Dual effect of chloramphenicol peptides on ribosome inhibition. Bougas A, Bougas A, Vlachogiannis IA, Gatos D, Arenz S, Dinos GP. Amino Acids 49 995-1004 (2017)
  158. Genome-encoded ABCF factors implicated in intrinsic antibiotic resistance in Gram-positive bacteria: VmlR2, Ard1 and CplR. Obana N, Takada H, Crowe-McAuliffe C, Iwamoto M, Egorov AA, Wu KJY, Chiba S, Murina V, Paternoga H, Tresco BIC, Nomura N, Myers AG, Atkinson GC, Wilson DN, Hauryliuk V. Nucleic Acids Res 51 4536-4554 (2023)
  159. Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I. Douthwaite S, Jakobsen L, Yoshizawa S, Fourmy D. J Mol Biol 378 969-975 (2008)
  160. Macrolides: the plug is out. Gamerdinger M, Deuerling E. Cell 151 469-471 (2012)
  161. Synthesis and antibacterial activity of 9-oxime ether non-ketolides, and novel binding mode of alkylides with bacterial rRNA. Liang JH, Lv W, Li XL, An K, Cushman M, Wang H, Xu YC. Bioorg Med Chem Lett 23 1387-1393 (2013)
  162. Synthesis and structure-activity relationships of novel lincomycin derivatives part 3: discovery of the 4-(pyrimidin-5-yl)phenyl group in synthesis of 7(S)-thiolincomycin analogs. Wakiyama Y, Kumura K, Umemura E, Masaki S, Ueda K, Sato Y, Watanabe T, Hirai Y, Ajito K. J Antibiot (Tokyo) 70 52-64 (2017)
  163. A Survey of Spontaneous Antibiotic-Resistant Mutants of the Halophilic, Thermophilic Bacterium Rhodothermus marinus. Silvia S, Donahue SA, Killeavy EE, Jogl G, Gregory ST. Antibiotics (Basel) 10 1384 (2021)
  164. Editorial Back to the future: the ribosome as an antibiotic target. Franceschi F. Future Microbiol 2 571-574 (2007)
  165. Dissecting the ribosomal inhibition mechanism of a new ketolide carrying an alkyl-aryl group at C-13 of its lactone ring. Krokidis MG, Kostopoulou ON, Kalpaxis DL, Dinos GP. Int J Antimicrob Agents 35 235-239 (2010)
  166. Insights into resistance against lincosamide antibiotics. Sundlov JA, Gulick AM. Structure 17 1549-1550 (2009)
  167. Investigations on the mode of action of gephyronic acid, an inhibitor of eukaryotic protein translation from myxobacteria. Muthukumar Y, Münkemer J, Mathieu D, Richter C, Schwalbe H, Steinmetz H, Kessler W, Reichelt J, Beutling U, Frank R, Büssow K, van den Heuvel J, Brönstrup M, Taylor RE, Laschat S, Sasse F. PLoS One 13 e0201605 (2018)
  168. Synthesis and activity of new macrolones: conjugates between 6(7)-(2'-aminoethyl)-amino-1-cyclopropyl-3-carboxylic acid (2'-hydroxyethyl) amides and 4″-propenoyl-azithromycin. Kapić S, Fajdetić A, Koštrun S, Cikoš A, Paljetak HČ, Antolović R, Holmes DJ, Alihodžić S. Bioorg Med Chem 19 7270-7280 (2011)
  169. Transient erythromycin resistance phenotype associated with peptidyl-tRNA drop-off on early UGG and GGG codons. Macvanin M, Gonzalez de Valdivia EI, Ardell DH, Isaksson LA. J Bacteriol 189 8993-9000 (2007)
  170. A method for selecting cis-acting regulatory sequences that respond to small molecule effectors. Allas U, Tenson T. BMC Mol Biol 11 56 (2010)
  171. Clindamycin hydrochloride monohydrate and its ethanol solvate. Ravikumar K, Sridhar B. Acta Crystallogr C 66 o97-100 (2010)
  172. Interactions of Aminopropyl-Azithromycin Derivatives, Precursors in the Synthesis of Bioactive Macrozones, with E. coli Ribosome: NMR and Docking Studies. Mikulandra I, Jednačak T, Bertoša B, Parlov Vuković J, Kušec I, Novak P. Materials (Basel) 14 5561 (2021)
  173. Molecular dynamics simulations suggest why the A2058G mutation in 23S RNA results in bacterial resistance against clindamycin. Kulczycka-Mierzejewska K, Sadlej J, Trylska J. J Mol Model 24 191 (2018)
  174. Uneven host cell growth causes lysogenic virus induction in the Baltic Sea. Köstner N, Jürgens K, Labrenz M, Herndl GJ, Winter C. PLoS One 14 e0220716 (2019)
  175. Biotransformation-coupled mutasynthesis for the generation of novel pristinamycin derivatives by engineering the phenylglycine residue. Hennrich O, Weinmann L, Kulik A, Harms K, Klahn P, Youn JW, Surup F, Mast Y. RSC Chem Biol 4 1050-1063 (2023)
  176. Changes in the level of poly(Phe) synthesis in Escherichia coli ribosomes containing mutants of L4 ribosomal protein from Thermus thermophilus can be explained by structural changes in the peptidyltransferase center: a molecular dynamics simulation analysis. Papadopoulos G, Grudinin S, Kalpaxis DL, Choli-Papadopoulou T. Eur Biophys J 35 675-683 (2006)
  177. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics. Kulczycka-Mierzejewska K, Trylska J, Sadlej J. J Mol Model 22 20 (2016)
  178. Design, Synthesis and Biological Evaluation of Conjugates of 3-O-Descladinose-azithromycin and Nucleobases against rRNA A2058G- or A2059G-Mutated Strains. Lian X, Liu W, Fan B, Yu M, Liang J. Molecules 28 1327 (2023)
  179. Halogenated Rocaglate Derivatives: Pan-antiviral Agents against Hepatitis E Virus and Emerging Viruses. Victoria C, Schulz G, Klöhn M, Weber S, Holicki CM, Brüggemann Y, Becker M, Gerold G, Eiden M, Groschup MH, Steinmann E, Kirschning A. J Med Chem 67 289-321 (2024)
  180. Identification and characterization of RNA pentaloop sequence families. Saon M, Kirkpatrick CC, Znosko BM. NAR Genom Bioinform 5 lqac102 (2023)
  181. New Resistance Mutations Linked to Decreased Susceptibility to Solithromycin in Streptococcus pneumoniae Revealed by Chemogenomic Screens. Gingras H, Peillard-Fiorente F, Godin C, Patron K, Leprohon P, Ouellette M. Antimicrob Agents Chemother 67 e0039523 (2023)
  182. Proteostasis modulators with discriminating taste. Paavilainen VO, Taunton J. Chem Biol 20 144-145 (2013)
  183. Quantum chemical investigation of predominant conformation of the antibiotic azithromycin in water and DMSO solutions: thermodynamic and NMR analysis. Hernandes IS, Da Silva HC, Dos Santos HF, Ávila EP, De Almeida MV, De Almeida WB. R Soc Open Sci 10 230409 (2023)
  184. Refinement of a low-resolution crystal structure to better understand erythromycin interactions on large ribosomal subunit. Wahab HA, Yam WK, Samian MR, Najimudin N. J Biomol Struct Dyn 26 131-146 (2008)
  185. Sequence-assignment validation in protein crystal structure models with checkMySequence. Chojnowski G. Acta Crystallogr D Struct Biol 79 559-568 (2023)
  186. Structural conservation of antibiotic interaction with ribosomes. Paternoga H, Crowe-McAuliffe C, Bock LV, Koller TO, Morici M, Beckert B, Myasnikov AG, Grubmüller H, Nováček J, Wilson DN. Nat Struct Mol Biol 30 1380-1392 (2023)
  187. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Chen CW, Leimer N, Syroegin EA, Dunand C, Bulman ZP, Lewis K, Polikanov YS, Svetlov MS. Nat Commun 14 4196 (2023)
  188. Synthesis and antibacterial activities of some novel 17, 18-unsaturated carbonyl compounds derivated from josamycin. Zhao ZH, Jin LL, Xu YP, Liu C, Wang AP, Lei PS. J Asian Nat Prod Res 19 358-387 (2017)
  189. Unprecedented Epimerization of an Azithromycin Analogue: Synthesis, Structure and Biological Activity of 2'-Dehydroxy-5″-Epi-Azithromycin. Kragol G, Steadman VA, Marušić Ištuk Z, Čikoš A, Bosnar M, Jelić D, Ergović G, Trzun M, Bošnjak B, Bokulić A, Padovan J, Glojnarić I, Eraković Haber V. Molecules 27 1034 (2022)