1ycr Citations

Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.

Abstract

The MDM2 oncoprotein is a cellular inhibitor of the p53 tumor suppressor in that it can bind the transactivation domain of p53 and downregulate its ability to activate transcription. In certain cancers, MDM2 amplification is a common event and contributes to the inactivation of p53. The crystal structure of the 109-residue amino-terminal domain of MDM2 bound to a 15-residue transactivation domain peptide of p53 revealed that MDM2 has a deep hydrophobic cleft on which the p53 peptide binds as an amphipathic alpha helix. The interface relies on the steric complementarity between the MDM2 cleft and the hydrophobic face of the p53 alpha helix and, in particular, on a triad of p53 amino acids-Phe19, Trp23, and Leu26-which insert deep into the MDM2 cleft. These same p53 residues are also involved in transactivation, supporting the hypothesis that MDM2 inactivates p53 by concealing its transactivation domain. The structure also suggests that the amphipathic alpha helix may be a common structural motif in the binding of a diverse family of transactivation factors to the TATA-binding protein-associated factors.

Reviews - 1ycr mentioned but not cited (48)

  1. Classification of intrinsically disordered regions and proteins. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM. Chem Rev 114 6589-6631 (2014)
  2. Understanding protein non-folding. Uversky VN, Dunker AK. Biochim Biophys Acta 1804 1231-1264 (2010)
  3. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Arkin MR, Tang Y, Wells JA. Chem Biol 21 1102-1114 (2014)
  4. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Shangary S, Wang S. Annu Rev Pharmacol Toxicol 49 223-241 (2009)
  5. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Angew Chem Int Ed Engl 54 8896-8927 (2015)
  6. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. Zhao Y, Aguilar A, Bernard D, Wang S. J Med Chem 58 1038-1052 (2015)
  7. Targeting the MDM2-p53 interaction for cancer therapy. Shangary S, Wang S. Clin Cancer Res 14 5318-5324 (2008)
  8. The tumor suppressor p53: from structures to drug discovery. Joerger AC, Fersht AR. Cold Spring Harb Perspect Biol 2 a000919 (2010)
  9. Targeting protein-protein interactions as an anticancer strategy. Ivanov AA, Khuri FR, Fu H. Trends Pharmacol Sci 34 393-400 (2013)
  10. p53-based cancer therapy. Lane DP, Cheok CF, Lain S. Cold Spring Harb Perspect Biol 2 a001222 (2010)
  11. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Chem Rev 114 6844-6879 (2014)
  12. Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges. Wang S, Zhao Y, Aguilar A, Bernard D, Yang CY. Cold Spring Harb Perspect Med 7 a026245 (2017)
  13. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Uversky VN. Int J Mol Sci 17 E1874 (2016)
  14. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Uversky VN. Expert Rev Proteomics 7 543-564 (2010)
  15. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Comput Struct Biotechnol J 17 263-281 (2019)
  16. Targeting p53-MDM2-MDMX loop for cancer therapy. Zhang Q, Zeng SX, Lu H. Subcell Biochem 85 281-319 (2014)
  17. Structural insights into the transcription-independent apoptotic pathway of p53. Chi SW. BMB Rep 47 167-172 (2014)
  18. Motif mediated protein-protein interactions as drug targets. Corbi-Verge C, Kim PM. Cell Commun Signal 14 8 (2016)
  19. Targeting intrinsically disordered proteins involved in cancer. Santofimia-Castaño P, Rizzuti B, Xia Y, Abian O, Peng L, Velázquez-Campoy A, Neira JL, Iovanna J. Cell Mol Life Sci 77 1695-1707 (2020)
  20. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Fang Y, Liao G, Yu B. Acta Pharm Sin B 10 1253-1278 (2020)
  21. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. Estrada-Ortiz N, Neochoritis CG, Dömling A. ChemMedChem 11 757-772 (2016)
  22. Posttranslational modification of mammalian AP endonuclease (APE1). Busso CS, Lake MW, Izumi T. Cell Mol Life Sci 67 3609-3620 (2010)
  23. Targeting recognition surfaces on natural proteins with peptidic foldamers. Checco JW, Gellman SH. Curr Opin Struct Biol 39 96-105 (2016)
  24. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Shin WH, Christoffer CW, Kihara D. Methods 131 22-32 (2017)
  25. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Sawyer N, Watkins AM, Arora PS. Acc Chem Res 50 1313-1322 (2017)
  26. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Adv Appl Bioinform Chem 13 11-25 (2020)
  27. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. J Hematol Oncol 15 91 (2022)
  28. From laptop to benchtop to bedside: structure-based drug design on protein targets. Chen L, Morrow JK, Tran HT, Phatak SS, Du-Cuny L, Zhang S. Curr Pharm Des 18 1217-1239 (2012)
  29. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Yang J, Gao M, Xiong J, Su Z, Huang Y. Protein Sci 28 1952-1965 (2019)
  30. Structure-based inhibition of protein-protein interactions. Watkins AM, Arora PS. Eur J Med Chem 94 480-488 (2015)
  31. P53 mdm2 inhibitors. Khoury K, Dömling A. Curr Pharm Des 18 4668-4678 (2012)
  32. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Chem Sci 12 5977-5993 (2021)
  33. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein-protein interactions and cancer therapy. Gao M, Zhou J, Su Z, Huang Y. Protein Sci 26 2334-2341 (2017)
  34. Mini review: protein-protein interactions in transcription: a fertile ground for helix mimetics. Guarracino DA, Bullock BN, Arora PS. Biopolymers 95 1-7 (2011)
  35. Ligand discovery and virtual screening using the program LIDAEUS. Taylor P, Blackburn E, Sheng YG, Harding S, Hsin KY, Kan D, Shave S, Walkinshaw MD. Br J Pharmacol 153 Suppl 1 S55-67 (2008)
  36. Chemical Variations on the p53 Reactivation Theme. Ribeiro CJ, Rodrigues CM, Moreira R, Santos MM. Pharmaceuticals (Basel) 9 E25 (2016)
  37. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Perez JJ, Perez RA, Perez A. Front Mol Biosci 8 681617 (2021)
  38. Molecular dynamic simulation insights into the normal state and restoration of p53 function. Fu T, Min H, Xu Y, Chen J, Li G. Int J Mol Sci 13 9709-9740 (2012)
  39. Fuzzy protein theory for disordered proteins. Fuxreiter M. Biochem Soc Trans 48 2557-2564 (2020)
  40. Targeting oncogenic protein-protein interactions by diversity oriented synthesis and combinatorial chemistry approaches. Tzakos AG, Fokas D, Johannes C, Moussis V, Hatzimichael E, Briasoulis E. Molecules 16 4408-4427 (2011)
  41. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. McPherson KS, Korzhnev DM. RSC Chem Biol 2 1167-1195 (2021)
  42. Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder. Hong S, Choi S, Kim R, Koh J. Mol Cells 43 899-908 (2020)
  43. Helical sulfono-γ-AApeptides with predictable functions in protein recognition. Sang P, Shi Y, Wei L, Cai J. RSC Chem Biol 3 805-814 (2022)
  44. Databases for intrinsically disordered proteins. Piovesan D, Monzon AM, Quaglia F, Tosatto SCE. Acta Crystallogr D Struct Biol 78 144-151 (2022)
  45. Focusing on shared subpockets - new developments in fragment-based drug discovery. Abdelraheem EM, Camacho CJ, Dömling A. Expert Opin Drug Discov 10 1179-1187 (2015)
  46. Recent applications of covalent chemistries in protein-protein interaction inhibitors. Chan AM, Goodis CC, Pommier EG, Fletcher S. RSC Med Chem 13 921-928 (2022)
  47. Unnatural helical peptidic foldamers as protein segment mimics. Sang P, Cai J. Chem Soc Rev 52 4843-4877 (2023)
  48. Design of Protein Segments and Peptides for Binding to Protein Targets. Gupta S, Azadvari N, Hosseinzadeh P. Biodes Res 2022 9783197 (2022)

Articles - 1ycr mentioned but not cited (198)

  1. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Proc Natl Acad Sci U S A 96 13777-13782 (1999)
  2. The unfoldomics decade: an update on intrinsically disordered proteins. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN. BMC Genomics 9 Suppl 2 S1 (2008)
  3. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Pazgier M, Liu M, Liu M, Zou G, Yuan W, Li C, Li C, Li J, Monbo J, Zella D, Tarasov SG, Lu W. Proc Natl Acad Sci U S A 106 4665-4670 (2009)
  4. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions. Rodrigues CHM, Myung Y, Pires DEV, Ascher DB. Nucleic Acids Res 47 W338-W344 (2019)
  5. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Patgiri A, Jochim AL, Arora PS. Acc Chem Res 41 1289-1300 (2008)
  6. Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK. BMC Genomics 10 Suppl 1 S7 (2009)
  7. Human cancer protein-protein interaction network: a structural perspective. Kar G, Gursoy A, Keskin O. PLoS Comput Biol 5 e1000601 (2009)
  8. Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. Jochim AL, Arora PS. ACS Chem Biol 5 919-923 (2010)
  9. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. Li C, Pazgier M, Li C, Yuan W, Liu M, Liu M, Wei G, Lu WY, Lu W. J Mol Biol 398 200-213 (2010)
  10. Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Bakan A, Nevins N, Lakdawala AS, Bahar I. J Chem Theory Comput 8 2435-2447 (2012)
  11. Binding induced folding in p53-MDM2 complex. Chen HF, Luo R. J Am Chem Soc 129 2930-2937 (2007)
  12. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model. Debiec KT, Cerutti DS, Baker LR, Gronenborn AM, Case DA, Chong LT. J Chem Theory Comput 12 3926-3947 (2016)
  13. The IDP-Specific Force Field ff14IDPSFF Improves the Conformer Sampling of Intrinsically Disordered Proteins. Song D, Luo R, Chen HF. J Chem Inf Model 57 1166-1178 (2017)
  14. Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists. Koes D, Khoury K, Huang Y, Wang W, Bista M, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ. PLoS One 7 e32839 (2012)
  15. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. Bourgeas R, Basse MJ, Morelli X, Roche P. PLoS One 5 e9598 (2010)
  16. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D. J Chem Inf Model 52 2236-2244 (2012)
  17. ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery. Meireles LM, Dömling AS, Camacho CJ. Nucleic Acids Res 38 W407-11 (2010)
  18. Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Tuncbag N, Kar G, Gursoy A, Keskin O, Nussinov R. Mol Biosyst 5 1770-1778 (2009)
  19. Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. Lao BB, Drew K, Guarracino DA, Brewer TF, Heindel DW, Bonneau R, Arora PS. J Am Chem Soc 136 7877-7888 (2014)
  20. The pyrido[b]indole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Wang W, Qin JJ, Voruganti S, Srivenugopal KS, Nag S, Patil S, Sharma H, Wang MH, Wang H, Buolamwini JK, Zhang R. Nat Commun 5 5086 (2014)
  21. Robust generation of lead compounds for protein-protein interactions by computational and MCR chemistry: p53/Hdm2 antagonists. Czarna A, Beck B, Srivastava S, Popowicz GM, Wolf S, Huang Y, Bista M, Bista M, Holak TA, Dömling A. Angew Chem Int Ed Engl 49 5352-5356 (2010)
  22. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A. PLoS Comput Biol 5 e1000267 (2009)
  23. High specificity in protein recognition by hydrogen-bond-surrogate α-helices: selective inhibition of the p53/MDM2 complex. Henchey LK, Porter JR, Ghosh I, Arora PS. Chembiochem 11 2104-2107 (2010)
  24. Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein-protein interaction. Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ. Chem Commun (Camb) 5091-5093 (2009)
  25. Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Koes DR, Camacho CJ. Bioinformatics 28 784-791 (2012)
  26. Limitations of peptide retro-inverso isomerization in molecular mimicry. Li C, Pazgier M, Li J, Li C, Liu M, Liu M, Zou G, Li Z, Chen J, Tarasov SG, Lu WY, Lu W. J Biol Chem 285 19572-19581 (2010)
  27. Turning a scorpion toxin into an antitumor miniprotein. Li C, Liu M, Monbo J, Zou G, Li C, Yuan W, Zella D, Lu WY, Lu W. J Am Chem Soc 130 13546-13548 (2008)
  28. Utilization of protein intrinsic disorder knowledge in structural proteomics. Oldfield CJ, Xue B, Van YY, Ulrich EL, Markley JL, Dunker AK, Uversky VN. Biochim Biophys Acta 1834 487-498 (2013)
  29. SAAMBE-3D: Predicting Effect of Mutations on Protein-Protein Interactions. Pahari S, Li G, Murthy AK, Liang S, Fragoza R, Yu H, Alexov E. Int J Mol Sci 21 E2563 (2020)
  30. Plucking the high hanging fruit: a systematic approach for targeting protein-protein interactions. Raj M, Bullock BN, Arora PS. Bioorg Med Chem 21 4051-4057 (2013)
  31. Apoptosis therapy in cancer: the first single-molecule co-activating p53 and the translocator protein in glioblastoma. Daniele S, Taliani S, Da Pozzo E, Giacomelli C, Costa B, Trincavelli ML, Rossi L, La Pietra V, Barresi E, Carotenuto A, Limatola A, Lamberti A, Marinelli L, Novellino E, Da Settimo F, Martini C. Sci Rep 4 4749 (2014)
  32. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces. Rooklin D, Wang C, Katigbak J, Arora PS, Zhang Y. J Chem Inf Model 55 1585-1599 (2015)
  33. Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models. Zhou G, Pantelopulos GA, Mukherjee S, Voelz VA. Biophys J 113 785-793 (2017)
  34. Protein pockets: inventory, shape, and comparison. Coleman RG, Sharp KA. J Chem Inf Model 50 589-603 (2010)
  35. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design. Drew K, Renfrew PD, Craven TW, Butterfoss GL, Chou FC, Lyskov S, Bullock BN, Watkins A, Labonte JW, Pacella M, Kilambi KP, Leaver-Fay A, Kuhlman B, Gray JJ, Bradley P, Kirshenbaum K, Arora PS, Das R, Bonneau R. PLoS One 8 e67051 (2013)
  36. Exhaustive fluorine scanning toward potent p53-Mdm2 antagonists. Huang Y, Wolf S, Koes D, Popowicz GM, Camacho CJ, Holak TA, Dömling A. ChemMedChem 7 49-52 (2012)
  37. Modeling disordered protein interactions from biophysical principles. Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D. PLoS Comput Biol 13 e1005485 (2017)
  38. Transient protein states in designing inhibitors of the MDM2-p53 interaction. Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, Wrona E, Arciniega M, Popowicz GM, Holak TA, Dömling A. Structure 21 2143-2151 (2013)
  39. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. Ha JH, Shin JS, Yoon MK, Lee MS, He F, Bae KH, Yoon HS, Lee CK, Park SG, Muto Y, Chi SW. J Biol Chem 288 7387-7398 (2013)
  40. Modulating protein-protein interactions with small molecules: the importance of binding hotspots. Thangudu RR, Bryant SH, Panchenko AR, Madej T. J Mol Biol 415 443-453 (2012)
  41. Swimming into peptidomimetic chemical space using pepMMsMIMIC. Floris M, Masciocchi J, Fanton M, Moro S. Nucleic Acids Res 39 W261-9 (2011)
  42. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Basse MJ, Betzi S, Morelli X, Roche P. Database (Oxford) 2016 baw007 (2016)
  43. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4. Marcar L, Ihrig B, Hourihan J, Bray SE, Quinlan PR, Jordan LB, Thompson AM, Hupp TR, Meek DW. PLoS One 10 e0127713 (2015)
  44. Sequence-based prediction of protein binding mode landscapes. Horvath A, Miskei M, Ambrus V, Vendruscolo M, Fuxreiter M. PLoS Comput Biol 16 e1007864 (2020)
  45. Regulation of the E3 ubiquitin ligase activity of MDM2 by an N-terminal pseudo-substrate motif. Worrall EG, Wawrzynow B, Worrall L, Walkinshaw M, Ball KL, Hupp TR. J Chem Biol 2 113-129 (2009)
  46. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study. ElSawy KM, Verma CS, Joseph TL, Lane DP, Twarock R, Caves LS. Cell Cycle 12 394-404 (2013)
  47. The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. Thoden JB, Ryan LA, Reece RJ, Holden HM. J Biol Chem 283 30266-30272 (2008)
  48. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations. Geng C, Vangone A, Folkers GE, Xue LC, Bonvin AMJJ. Proteins 87 110-119 (2019)
  49. Letter Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design. Tan YS, Reeks J, Brown CJ, Thean D, Ferrer Gago FJ, Yuen TY, Goh ET, Lee XE, Jennings CE, Joseph TL, Lakshminarayanan R, Lane DP, Noble ME, Verma CS. J Phys Chem Lett 7 3452-3457 (2016)
  50. Binding-site assessment by virtual fragment screening. Huang N, Jacobson MP. PLoS One 5 e10109 (2010)
  51. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S. Sci Rep 6 37532 (2016)
  52. Molecular basis of Bcl-X(L)-p53 interaction: insights from molecular dynamics simulations. Bharatham N, Chi SW, Yoon HS. PLoS One 6 e26014 (2011)
  53. Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target Affinity by Altering the Lifetime of the Bound Complex. Crabtree MD, Borcherds W, Poosapati A, Shammas SL, Daughdrill GW, Clarke J. Biochemistry 56 2379-2384 (2017)
  54. Functional diversity and structural disorder in the human ubiquitination pathway. Bhowmick P, Pancsa R, Guharoy M, Tompa P. PLoS One 8 e65443 (2013)
  55. In vitro selection of mutant HDM2 resistant to Nutlin inhibition. Wei SJ, Joseph T, Sim AY, Yurlova L, Zolghadr K, Lane D, Verma C, Ghadessy F. PLoS One 8 e62564 (2013)
  56. The p53-MDM2/MDMX axis - A chemotype perspective. Khoury K, Popowicz GM, Holak TA, Dömling A. Medchemcomm 2 246-260 (2011)
  57. α-Helix-Mimicking Sulfono-γ-AApeptide Inhibitors for p53-MDM2/MDMX Protein-Protein Interactions. Sang P, Shi Y, Lu J, Chen L, Yang L, Borcherds W, Abdulkadir S, Li Q, Daughdrill G, Chen J, Cai J. J Med Chem 63 975-986 (2020)
  58. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53. Wong JH, Alfatah M, Sin MF, Sim HM, Verma CS, Lane DP, Arumugam P. BMC Biol 15 108 (2017)
  59. Discovery of highly potent p53-MDM2 antagonists and structural basis for anti-acute myeloid leukemia activities. Huang Y, Wolf S, Beck B, Köhler LM, Khoury K, Popowicz GM, Goda SK, Subklewe M, Twarda A, Holak TA, Dömling A. ACS Chem Biol 9 802-811 (2014)
  60. HADDOCK(2P2I): a biophysical model for predicting the binding affinity of protein-protein interaction inhibitors. Kastritis PL, Rodrigues JP, Bonvin AM. J Chem Inf Model 54 826-836 (2014)
  61. An α-Helix-Mimicking 12,13-Helix: Designed α/β/γ-Foldamers as Selective Inhibitors of Protein-Protein Interactions. Grison CM, Miles JA, Robin S, Wilson AJ, Aitken DJ. Angew Chem Int Ed Engl 55 11096-11100 (2016)
  62. Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces. Bohnuud T, Kozakov D, Vajda S. PLoS Comput Biol 10 e1003872 (2014)
  63. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. Guo Z, Li B, Cheng LT, Zhou S, McCammon JA, Che J. J Chem Theory Comput 11 753-765 (2015)
  64. Modulation of p53 binding to MDM2: computational studies reveal important roles of Tyr100. Dastidar SG, Lane DP, Verma CS. BMC Bioinformatics 10 Suppl 15 S6 (2009)
  65. Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network. Kahraman A, Karakulak T, Szklarczyk D, von Mering C. Sci Rep 10 14453 (2020)
  66. Stereocontrolled protein surface recognition using chiral oligoamide proteomimetic foldamers. Azzarito V, Miles JA, Fisher J, Edwards TA, Warriner SL, Wilson AJ. Chem Sci 6 2434-2443 (2015)
  67. AnchorQuery: Rapid online virtual screening for small-molecule protein-protein interaction inhibitors. Koes DR, Dömling A, Camacho CJ. Protein Sci 27 229-232 (2018)
  68. Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. Lee HS, Jo S, Lim HS, Im W. J Chem Inf Model 52 1821-1832 (2012)
  69. Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows. Goncearenco A, Li M, Simonetti FL, Shoemaker BA, Panchenko AR. Methods Mol Biol 1647 221-236 (2017)
  70. Investigating the Neuroprotective Effects of Turmeric Extract: Structural Interactions of β-Amyloid Peptide with Single Curcuminoids. Randino R, Grimaldi M, Persico M, De Santis A, Cini E, Cabri W, Riva A, D'Errico G, Fattorusso C, D'Ursi AM, Rodriquez M. Sci Rep 6 38846 (2016)
  71. Ligand binding mode prediction by docking: mdm2/mdmx inhibitors as a case study. Bharatham N, Bharatham K, Shelat AA, Bashford D. J Chem Inf Model 54 648-659 (2014)
  72. Orthogonal functionalisation of α-helix mimetics. Barnard A, Long K, Yeo DJ, Miles JA, Azzarito V, Burslem GM, Prabhakaran P, A Edwards T, Wilson AJ. Org Biomol Chem 12 6794-6799 (2014)
  73. Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2. Chee SM, Wongsantichon J, Soo Tng Q, Robinson R, Joseph TL, Verma C, Lane DP, Brown CJ, Ghadessy FJ. PLoS One 9 e104914 (2014)
  74. A computational analysis of the binding model of MDM2 with inhibitors. Hu G, Wang D, Liu X, Zhang Q. J Comput Aided Mol Des 24 687-697 (2010)
  75. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Merritt HI, Sawyer N, Arora PS. Pept Sci (Hoboken) 112 e24145 (2020)
  76. Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation. Guo Z, Li B, Dzubiella J, Cheng LT, McCammon JA, Che J. J Chem Theory Comput 9 1778-1787 (2013)
  77. Hydrogen Bond Dynamic Propensity Studies for Protein Binding and Drug Design. Menéndez CA, Accordino SR, Gerbino DC, Appignanesi GA. PLoS One 11 e0165767 (2016)
  78. Mutation effect estimation on protein-protein interactions using deep contextualized representation learning. Zhou G, Chen M, Ju CJT, Wang Z, Jiang JY, Wang W. NAR Genom Bioinform 2 lqaa015 (2020)
  79. Rapid and efficient hydrophilicity tuning of p53/mdm2 antagonists. Srivastava S, Beck B, Wang W, Czarna A, Holak TA, Dömling A. J Comb Chem 11 631-639 (2009)
  80. Sulfono-γ-AApeptides as Helical Mimetics: Crystal Structures and Applications. Sang P, Shi Y, Huang B, Xue S, Odom T, Cai J. Acc Chem Res 53 2425-2442 (2020)
  81. Heterogeneous Hydration of p53/MDM2 Complex. Guo Z, Li B, Dzubiella J, Cheng LT, McCammon JA, Che J. J Chem Theory Comput 10 1302-1313 (2014)
  82. Inhibition of nutlin-resistant HDM2 mutants by stapled peptides. Wei SJ, Joseph T, Chee S, Li L, Yurlova L, Zolghadr K, Brown C, Lane D, Verma C, Ghadessy F. PLoS One 8 e81068 (2013)
  83. Methods for Discovering and Targeting Druggable Protein-Protein Interfaces and Their Application to Repurposing. Ozdemir ES, Halakou F, Nussinov R, Gursoy A, Keskin O. Methods Mol Biol 1903 1-21 (2019)
  84. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, Ivarsson Y. Mol Syst Biol 18 e10584 (2022)
  85. Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Shin JS, Ha JH, Lee DH, Ryu KS, Bae KH, Park BC, Park SG, Yi GS, Chi SW. Cell Cycle 14 533-543 (2015)
  86. Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility. Loving KA, Lin A, Cheng AC. PLoS Comput Biol 10 e1003741 (2014)
  87. A Minimal, Adaptive Binning Scheme for Weighted Ensemble Simulations. Torrillo PA, Bogetti AT, Chong LT. J Phys Chem A 125 1642-1649 (2021)
  88. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms. Brown CJ, Dastidar SG, Quah ST, Lim A, Chia B, Verma CS. PLoS One 6 e24122 (2011)
  89. Kinetic and thermodynamic effects of phosphorylation on p53 binding to MDM2. Yadahalli S, Neira JL, Johnson CM, Tan YS, Rowling PJE, Chattopadhyay A, Verma CS, Itzhaki LS. Sci Rep 9 693 (2019)
  90. Anchoring intrinsically disordered proteins to multiple targets: lessons from N-terminus of the p53 protein. Huang Y, Liu Z. Int J Mol Sci 12 1410-1430 (2011)
  91. Competitive binding between dynamic p53 transactivation subdomains to human MDM2 protein: implications for regulating the p53·MDM2/MDMX interaction. Shan B, Li DW, Brüschweiler-Li L, Brüschweiler R. J Biol Chem 287 30376-30384 (2012)
  92. N-acylpolyamine inhibitors of HDM2 and HDMX binding to p53. Hayashi R, Wang D, Hara T, Iera JA, Durell SR, Appella DH. Bioorg Med Chem 17 7884-7893 (2009)
  93. Rational Design and Synthesis of Right-Handed d-Sulfono-γ-AApeptide Helical Foldamers as Potent Inhibitors of Protein-Protein Interactions. Sang P, Shi Y, Higbee P, Wang M, Abdulkadir S, Lu J, Daughdrill G, Chen J, Cai J. J Org Chem 85 10552-10560 (2020)
  94. Targeting MDM2 by the small molecule RITA: towards the development of new multi-target drugs against cancer. Espinoza-Fonseca LM. Theor Biol Med Model 2 38 (2005)
  95. Targeting transcription is no longer a quixotic quest. Mapp AK, Pricer R, Sturlis S. Nat Chem Biol 11 891-894 (2015)
  96. Two-Step Synthesis of Complex Artificial Macrocyclic Compounds. Madhavachary R, Abdelraheem EMM, Rossetti A, Twarda-Clapa A, Musielak B, Kurpiewska K, Kalinowska-Tłuścik J, Holak TA, Dömling A. Angew Chem Int Ed Engl 56 10725-10729 (2017)
  97. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2. Bueren-Calabuig JA, Michel J. PLoS Comput Biol 11 e1004282 (2015)
  98. Impact of the K24N mutation on the transactivation domain of p53 and its binding to murine double-minute clone 2. Zhan YA, Wu H, Powell AT, Daughdrill GW, Ytreberg FM. Proteins 81 1738-1747 (2013)
  99. Peptide, Peptidomimetic, and Small-molecule Antagonists of the p53-HDM2 Protein-Protein Interaction. Fischer PM. Int J Pept Res Ther 12 3-19 (2006)
  100. Rational Design of Right-Handed Heterogeneous Peptidomimetics as Inhibitors of Protein-Protein Interactions. Shi Y, Sang P, Lu J, Higbee P, Chen L, Yang L, Odom T, Daughdrill G, Chen J, Cai J. J Med Chem 63 13187-13196 (2020)
  101. Soft-shell clam (Mya arenaria) p53: a structural and functional comparison to human p53. Holbrook LA, Butler RA, Cashon RE, Van Beneden RJ. Gene 433 81-87 (2009)
  102. Tumor-Suppressor p53TAD1-60 Forms a Fuzzy Complex with Metastasis-Associated S100A4: Structural Insights and Dynamics by an NMR/MD Approach. Dudás EF, Pálfy G, Menyhárd DK, Sebák F, Ecsédi P, Nyitray L, Bodor A. Chembiochem 21 3087-3095 (2020)
  103. Evolution of the p53-MDM2 pathway. Åberg E, Saccoccia F, Grabherr M, Ore WYJ, Jemth P, Hultqvist G. BMC Evol Biol 17 177 (2017)
  104. Flexibility vs Preorganization: Direct Comparison of Binding Kinetics for a Disordered Peptide and Its Exact Preorganized Analogues. Saglam AS, Wang DW, Zwier MC, Chong LT. J Phys Chem B 121 10046-10054 (2017)
  105. SAAMBE-SEQ: a sequence-based method for predicting mutation effect on protein-protein binding affinity. Li G, Pahari S, Murthy AK, Liang S, Fragoza R, Yu H, Alexov E. Bioinformatics 37 992-999 (2021)
  106. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides. Wei SJ, Chee S, Yurlova L, Lane D, Verma C, Brown C, Ghadessy F. Oncotarget 7 32232-32246 (2016)
  107. Competition NMR for Detection of Hit/Lead Inhibitors of Protein-Protein Interactions. Musielak B, Janczyk W, Rodriguez I, Plewka J, Sala D, Magiera-Mularz K, Holak T. Molecules 25 E3017 (2020)
  108. On the intrinsic disorder status of the major players in programmed cell death pathways. Uversky AV, Xue B, Peng Z, Kurgan L, Uversky VN. F1000Res 2 190 (2013)
  109. Scaffold hopping via ANCHOR.QUERY: β-lactams as potent p53-MDM2 antagonists. Shaabani S, Neochoritis CG, Twarda-Clapa A, Musielak B, Holak TA, Dömling A. Medchemcomm 8 1046-1052 (2017)
  110. Structural and molecular basis of interaction of HCV non-structural protein 5A with human casein kinase 1α and PKR. Sudha G, Yamunadevi S, Tyagi N, Das S, Srinivasan N. BMC Struct Biol 12 28 (2012)
  111. Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. Lemos A, Gomes AS, Loureiro JB, Brandão P, Palmeira A, Pinto MMM, Saraiva L, Sousa ME. Molecules 24 E1975 (2019)
  112. Editorial The Role of p53 Family in Cancer. Zawacka-Pankau JE. Cancers (Basel) 14 823 (2022)
  113. What can we learn from the evolution of protein-ligand interactions to aid the design of new therapeutics? Higueruelo AP, Schreyer A, Bickerton GR, Blundell TL, Pitt WR. PLoS One 7 e51742 (2012)
  114. 2,30-Bis(10H-indole) heterocycles: New p53/MDM2/MDMX antagonists. Neochoritis CG, Wang K, Estrada-Ortiz N, Herdtweck E, Kubica K, Twarda A, Zak KM, Holak TA, Dömling A. Bioorg Med Chem Lett 25 5661-5666 (2015)
  115. Artificial Macrocycles. Abdelraheem EMM, Shaabani S, Dömling A. Synlett 29 1136-1151 (2018)
  116. Fragment-based library generation for the discovery of a peptidomimetic p53-Mdm4 inhibitor. Boltjes A, Huang Y, van de Velde R, Rijkee L, Wolf S, Gaugler J, Lesniak K, Guzik K, Holak TA, Dömling A. ACS Comb Sci 16 393-396 (2014)
  117. On the origin of the stereoselective affinity of Nutlin-3 geometrical isomers for the MDM2 protein. ElSawy KM, Verma CS, Lane DP, Caves LS. Cell Cycle 12 3727-3735 (2013)
  118. Binding Ensembles of p53-MDM2 Peptide Inhibitors by Combining Bayesian Inference and Atomistic Simulations. Lang L, Perez A. Molecules 26 E198 (2021)
  119. Binding of Translationally Controlled Tumour Protein to the N-terminal domain of HDM2 is inhibited by nutlin-3. Funston G, Goh W, Wei SJ, Tng QS, Brown C, Jiah Tong L, Verma C, Lane D, Ghadessy F. PLoS One 7 e42642 (2012)
  120. COEUS: "semantic web in a box" for biomedical applications. Lopes P, Oliveira JL. J Biomed Semantics 3 11 (2012)
  121. Characterization of partially ordered states in the intrinsically disordered N-terminal domain of p53 using millisecond molecular dynamics simulations. Herrera-Nieto P, Pérez A, De Fabritiis G. Sci Rep 10 12402 (2020)
  122. Characterizing the conformational landscape of MDM2-binding p53 peptides using Molecular Dynamics simulations. Yadahalli S, Li J, Lane DP, Gosavi S, Verma CS. Sci Rep 7 15600 (2017)
  123. Dual targeting of MDM2 with a novel small-molecule inhibitor overcomes TRAIL resistance in cancer. Singh AK, Chauhan SS, Singh SK, Verma VV, Singh A, Arya RK, Maheshwari S, Akhtar MS, Sarkar J, Rangnekar VM, Chauhan PMS, Datta D. Carcinogenesis 37 1027-1040 (2016)
  124. Modeling of arylamide helix mimetics in the p53 peptide binding site of hDM2 suggests parallel and anti-parallel conformations are both stable. Fuller JC, Jackson RM, Edwards TA, Wilson AJ, Shirts MR. PLoS One 7 e43253 (2012)
  125. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics. Verkhivker GM. PLoS One 7 e40897 (2012)
  126. Structural basis for inhibition of the MDM2:p53 interaction by an optimized MDM2-binding peptide selected with mRNA display. Nagata T, Shirakawa K, Kobayashi N, Shiheido H, Tabata N, Sakuma-Yonemura Y, Horisawa K, Katahira M, Doi N, Yanagawa H. PLoS One 9 e109163 (2014)
  127. Structure of the yeast Swi/Snf complex in a nucleosome free state. Wang C, Guo Z, Zhan X, Zhan X, Yang F, Wu M, Zhang X. Nat Commun 11 3398 (2020)
  128. The cis conformation of proline leads to weaker binding of a p53 peptide to MDM2 compared to trans. Zhan YA, Ytreberg FM. Arch Biochem Biophys 575 22-29 (2015)
  129. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins. Borcherds WM, Daughdrill GW. Methods Enzymol 611 101-136 (2018)
  130. Crystal Structure of the C-terminal Domain of Human eIF2D and Its Implications on Eukaryotic Translation Initiation. Vaidya AT, Lomakin IB, Joseph NN, Dmitriev SE, Steitz TA. J Mol Biol 429 2765-2771 (2017)
  131. Insight Into the Binding Mechanism of p53/pDIQ-MDMX/MDM2 With the Interaction Entropy Method. Li M, Cong Y, Li Y, Zhong S, Wang R, Li H, Duan L. Front Chem 7 33 (2019)
  132. Lignan enriched fraction (LRF) of Phyllanthus amarus promotes apoptotic cell death in human cervical cancer cells in vitro. Paul S, Patra D, Kundu R. Sci Rep 9 14950 (2019)
  133. Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids. Chee SMQ, Wongsantichon J, Siau J, Thean D, Ferrer F, Robinson RC, Lane DP, Brown CJ, Ghadessy FJ. PLoS One 12 e0189379 (2017)
  134. Synthesis, Biological Evaluation and Modeling Studies of New Pyrido[3,4-b]indole Derivatives as Broad-Spectrum Potent Anticancer Agents. Patil SA, Addo JK, Deokar H, Sun S, Wang J, Li W, Suttle DP, Wang W, Zhang R, Buolamwini JK. Drug Des 6 143 (2017)
  135. Benzimidazole-2-one: a novel anchoring principle for antagonizing p53-Mdm2. Wang W, Cao H, Wolf S, Camacho-Horvitz MS, Holak TA, Dömling A. Bioorg Med Chem 21 3982-3995 (2013)
  136. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding. Isvoran A, Craciun D, Martiny V, Sperandio O, Miteva MA. BMC Pharmacol Toxicol 14 31 (2013)
  137. Research Support, Non-U.S. Gov't Considerations of Protein Subpockets in Fragment-Based Drug Design. Bartolowits M, Davisson VJ. Chem Biol Drug Des 87 5-20 (2016)
  138. Design of indole- and MCR-based macrocycles as p53-MDM2 antagonists. Neochoritis CG, Kazemi Miraki M, Abdelraheem EMM, Surmiak E, Zarganes-Tzitzikas T, Łabuzek B, Holak TA, Dömling A. Beilstein J Org Chem 15 513-520 (2019)
  139. Docking-based identification of small-molecule binding sites at protein-protein interfaces. Rosell M, Fernández-Recio J. Comput Struct Biotechnol J 18 3750-3761 (2020)
  140. Effect of sequence and stereochemistry reversal on p53 peptide mimicry. Atzori A, Baker AE, Chiu M, Bryce RA, Bonnet P. PLoS One 8 e68723 (2013)
  141. Functional profiling of p53-binding sites in Hdm2 and Hdmx using a genetic selection system. Datta S, Bucks ME, Koley D, Lim PX, Savinov SN. Bioorg Med Chem 18 6099-6108 (2010)
  142. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2. Ge Y, Zhang S, Erdelyi M, Voelz VA. J Chem Inf Model 61 2353-2367 (2021)
  143. Synthesis, Biological and In Silico Evaluation of Pure Nucleobase-Containing Spiro (Indane-Isoxazolidine) Derivatives as Potential Inhibitors of MDM2-p53 Interaction. Maiuolo L, Algieri V, Russo B, Tallarida MA, Nardi M, Di Gioia ML, Merchant Z, Merino P, Delso I, De Nino A. Molecules 24 E2909 (2019)
  144. The Dual Interactions of p53 with MDM2 and p300: Implications for the Design of MDM2 Inhibitors. Kannan S, Partridge AW, Lane DP, Verma CS. Int J Mol Sci 20 E5996 (2019)
  145. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. Ashford P, Moss DS, Alex A, Yeap SK, Povia A, Nobeli I, Williams MA. BMC Bioinformatics 13 39 (2012)
  146. A fluorinated indole-based MDM2 antagonist selectively inhibits the growth of p53wt osteosarcoma cells. Skalniak L, Twarda-Clapa A, Neochoritis CG, Surmiak E, Machula M, Wisniewska A, Labuzek B, Ali AM, Krzanik S, Dubin G, Groves M, Dömling A, Holak TA. FEBS J 286 1360-1374 (2019)
  147. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2. ElSawy KM, Sim A, Lane DP, Verma CS, Caves LS. Cell Cycle 14 179-188 (2015)
  148. Characterization and Molecular Mechanism of Peptide-Conjugated Gold Nanoparticle Inhibiting p53-HDM2 Interaction in Retinoblastoma. Kalmodia S, Parameswaran S, Ganapathy K, Yang W, Barrow CJ, Kanwar JR, Roy K, Vasudevan M, Kulkarni K, Elchuri SV, Krishnakumar S. Mol Ther Nucleic Acids 9 349-364 (2017)
  149. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction. Thayer KM, Beyer GA. PLoS One 11 e0147806 (2016)
  150. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking. Mukherjee S, Pantelopulos GA, Voelz VA. Sci Rep 6 31631 (2016)
  151. The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer. Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. Mol Biol Evol 39 msac149 (2022)
  152. Using chemical shifts to generate structural ensembles for intrinsically disordered proteins with converged distributions of secondary structure. Ytreberg FM, Borcherds W, Wu H, Daughdrill GW. Intrinsically Disord Proteins 3 e984565 (2015)
  153. Activity-Directed Synthesis of Inhibitors of the p53/hDM2 Protein-Protein Interaction. Green AI, Hobor F, Tinworth CP, Warriner S, Wilson AJ, Nelson A. Chemistry 26 10682-10689 (2020)
  154. Antioxidant Effects, Antiproliferative Effects, and Molecular Docking of Clinacanthus nutans Leaf Extracts. Ismail NZ, Md Toha Z, Muhamad M, Nik Mohamed Kamal NNS, Mohamad Zain NN, Arsad H. Molecules 25 E2067 (2020)
  155. Automated clustering of probe molecules from solvent mapping of protein surfaces: new algorithms applied to hot-spot mapping and structure-based drug design. Lerner MG, Meagher KL, Carlson HA. J Comput Aided Mol Des 22 727-736 (2008)
  156. Identification of Secondary Binding Sites on Protein Surfaces for Rational Elaboration of Synthetic Protein Mimics. Torner JM, Yang Y, Rooklin D, Zhang Y, Arora PS. ACS Chem Biol 16 1179-1183 (2021)
  157. Leveraging the multivalent p53 peptide-MdmX interaction to guide the improvement of small molecule inhibitors. Cheng X, Chen R, Zhou T, Zhang B, Li Z, Gao M, Huang Y, Liu H, Su Z. Nat Commun 13 1087 (2022)
  158. PNC-27, a Chimeric p53-Penetratin Peptide Binds to HDM-2 in a p53 Peptide-like Structure, Induces Selective Membrane-Pore Formation and Leads to Cancer Cell Lysis. Sarafraz-Yazdi E, Mumin S, Cheung D, Fridman D, Lin B, Wong L, Rosal R, Rudolph R, Frenkel M, Thadi A, Morano WF, Bowne WB, Pincus MR, Michl J. Biomedicines 10 945 (2022)
  159. PPIMpred: a web server for high-throughput screening of small molecules targeting protein-protein interaction. Jana T, Ghosh A, Das Mandal S, Banerjee R, Saha S. R Soc Open Sci 4 160501 (2017)
  160. Protein interactions: anything new? Barrera-Vilarmau S, Teixeira JMC, Fuxreiter M. Essays Biochem 66 821-830 (2022)
  161. Rationally Designed Polypharmacology: α-Helix Mimetics as Dual Inhibitors of the Oncoproteins Mcl-1 and HDM2. Conlon IL, Drennen B, Lanning ME, Hughes S, Rothhaas R, Wilder PT, MacKerell AD, Fletcher S. ChemMedChem 15 1691-1698 (2020)
  162. Solubility-Aware Protein Binding Peptide Design Using AlphaFold. Kosugi T, Ohue M. Biomedicines 10 1626 (2022)
  163. Synthesis and Biological Evaluation of S-, O- and Se-Containing Dispirooxindoles. Kukushkin M, Novotortsev V, Filatov V, Ivanenkov Y, Skvortsov D, Veselov M, Shafikov R, Moiseeva A, Zyk N, Majouga A, Beloglazkina E. Molecules 26 7645 (2021)
  164. Synthesis of spiro[isoindole-1,5'-isoxazolidin]-3(2H)-ones as potential inhibitors of the MDM2-p53 interaction. Giofrè SV, Cirmi S, Mancuso R, Nicolò F, Lanza G, Legnani L, Campisi A, Chiacchio MA, Navarra M, Gabriele B, Romeo R. Beilstein J Org Chem 12 2793-2807 (2016)
  165. Computational Investigation on the p53-MDM2 Interaction Using the Potential of Mean Force Study. Das P, Mattaparthi VSK. ACS Omega 5 8449-8462 (2020)
  166. Functional mapping of the 14-3-3 hub protein as a guide to design 14-3-3 molecular glues. Somsen BA, Craenmehr FWB, Liu WW, Koops AA, Pennings MAM, Visser EJ, Ottmann C, Cossar PJ, Brunsveld L. Chem Sci 13 13122-13131 (2022)
  167. Heterogeneous Solvation in Distinctive Protein-Protein Interfaces Revealed by Molecular Dynamics Simulations. Ricci CG, McCammon JA. J Phys Chem B 122 11695-11701 (2018)
  168. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Attri P, Kurita H, Koga K, Shiratani M. Int J Mol Sci 22 9585 (2021)
  169. One-pot synthesis of 2-amino-indole-3-carboxamide and analogous. Wang K, Herdtweck E, Dömling A. ACS Comb Sci 13 140-146 (2011)
  170. S100A1 blocks the interaction between p53 and mdm2 and decreases cell proliferation activity. Dowarha D, Chou RH, Yu C. PLoS One 15 e0234152 (2020)
  171. Synthesis and Biological Evaluation of Novel Dispiro-Indolinones with Anticancer Activity. Ivanenkov YA, Kukushkin ME, Beloglazkina AA, Shafikov RR, Barashkin AA, Ayginin AA, Serebryakova MS, Majouga AG, Skvortsov DA, Tafeenko VA, Beloglazkina EK. Molecules 28 1325 (2023)
  172. A multicomponent tetrazolo indole synthesis. Lei X, Lampiri P, Patil P, Angeli G, Neochoritis CG, Dömling A. Chem Commun (Camb) 57 6652-6655 (2021)
  173. Activation of p53: How phosphorylated Ser15 triggers sequential phosphorylation of p53 at Thr18 by CK1δ. Nicolaou ST, Kannan S, Warwicker J, Verma CS. Proteins 90 2009-2022 (2022)
  174. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions. Sana B, Chee SMQ, Wongsantichon J, Raghavan S, Robinson RC, Ghadessy FJ. J Biol Chem 294 7002-7012 (2019)
  175. Evolution of affinity between p53 transactivation domain and MDM2 across the animal kingdom demonstrates high plasticity of motif-mediated interactions. Mihalič F, Åberg E, Farkhondehkish P, Theys N, Andersson E, Jemth P. Protein Sci 32 e4684 (2023)
  176. Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination. van der Vlag R, Yagiz Unver M, Felicetti T, Twarda-Clapa A, Kassim F, Ermis C, Neochoritis CG, Musielak B, Labuzek B, Dömling A, Holak TA, Hirsch AKH. ChemMedChem 15 370-375 (2020)
  177. Probing Protein Surfaces: QSAR Analysis with Helix Mimetics. Azzarito V, Rowell P, Barnard A, Edwards TA, Macdonald A, Warriner SL, Wilson AJ. Chembiochem 17 768-773 (2016)
  178. Query-guided protein-protein interaction inhibitor discovery. Celis S, Hobor F, James T, Bartlett GJ, Ibarra AA, Shoemark DK, Hegedüs Z, Hetherington K, Woolfson DN, Sessions RB, Edwards TA, Andrews DM, Nelson A, Wilson AJ. Chem Sci 12 4753-4762 (2021)
  179. An Intriguing Correlation Based on the Superimposition of Residue Pairs with Inhibitors that Target Protein-Protein Interfaces. Nakadai M, Tomida S, Sekimizu K. Sci Rep 6 18543 (2016)
  180. Rigorous Computational and Experimental Investigations on MDM2/MDMX-Targeted Linear and Macrocyclic Peptides. Diller DJ, Swanson J, Bayden AS, Brown CJ, Thean D, Lane DP, Partridge AW, Sawyer TK, Audie J. Molecules 24 E4586 (2019)
  181. Soluble peptidoglycan fragments produced by Limosilactobacillus fermentum with antiproliferative activity are suitable for potential therapeutic development: A preliminary report. Fuochi V, Spampinato M, Distefano A, Palmigiano A, Garozzo D, Zagni C, Rescifina A, Li Volti G, Furneri PM. Front Mol Biosci 10 1082526 (2023)
  182. The SWIB/MDM2 motif of UBE4B activates the p53 pathway. Wu HH, Leng S, Abuetabh Y, Sergi C, Eisenstat DD, Leng R. Mol Ther Nucleic Acids 31 466-481 (2023)
  183. 5-Methoxyisatin N(4)-Pyrrolidinyl Thiosemicarbazone (MeOIstPyrd) Restores Mutant p53 and Inhibits the Growth of Skin Cancer Cells, In Vitro. Shahi N, Yadav PN, Chaudhary U, Saad M, Mahiya K, Khan A, Shafi S, Pokharel YR. ACS Omega 8 31998-32016 (2023)
  184. AAp-MSMD: Amino Acid Preference Mapping on Protein-Protein Interaction Surfaces Using Mixed-Solvent Molecular Dynamics. Kudo G, Yanagisawa K, Yoshino R, Hirokawa T. J Chem Inf Model 63 7768-7777 (2023)
  185. Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2. Alali H, Bloch I, Rapaport I, Rodrigues L, Sher I, Ansbacher T, Gal M. Pharmaceuticals (Basel) 15 752 (2022)
  186. Computational Study of Driving Forces in ATSP, PDIQ, and P53 Peptide Binding: C═O···C═O Tetrel Bonding Interactions at Work. Lang L, Frontera A, Perez A, Bauzá A. J Chem Inf Model 63 3018-3029 (2023)
  187. Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding. Zhang Z, Ricci CG, Fan C, Cheng LT, Li B, McCammon JA. J Chem Theory Comput 17 2465-2478 (2021)
  188. Design of Cyclic Peptides Targeting Protein-Protein Interactions Using AlphaFold. Kosugi T, Ohue M. Int J Mol Sci 24 13257 (2023)
  189. Effect of linker on the binding free energy of stapled p53/HDM2 complex. Im H, Ham S. PLoS One 15 e0232613 (2020)
  190. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. Corrigan AN, Lemkul JA. J Phys Chem B 126 4814-4827 (2022)
  191. Engagement of intrinsic disordered proteins in protein-protein interaction. Roterman I, Stapor K, Konieczny L. Front Mol Biosci 10 1230922 (2023)
  192. Functional display of bioactive peptides on the vGFP scaffold. Chee SMQ, Wongsantichon J, Yi LS, Sana B, Frosi Y, Robinson RC, Ghadessy FJ. Sci Rep 11 10127 (2021)
  193. Identification of a Structural Determinant for Selective Targeting of HDMX. Ben-Nun Y, Seo HS, Harvey EP, Hauseman ZJ, Wales TE, Newman CE, Cathcart AM, Engen JR, Dhe-Paganon S, Walensky LD. Structure 28 847-857.e5 (2020)
  194. PROT-ON: A structure-based detection of designer PROTein interface MutatiONs. Koşaca M, Yılmazbilek İ, Karaca E. Front Mol Biosci 10 1063971 (2023)
  195. Phytochemical profile, antioxidant, cytotoxic and anti-inflammatory activities of stem bark extract and fractions of Ailanthus excelsa Roxb.: In vitro, in vivo and in silico approaches. Sapkal PR, Tatiya AU, Firke SD, Redasani VK, Gurav SS, Ayyanar M, Jamkhande PG, Surana SJ, Mutha RE, Kalaskar MG. Heliyon 9 e15952 (2023)
  196. Rational design of a sensitivity-enhanced tracer for discovering efficient APC-Asef inhibitors. Zhong J, Guo Y, Lu S, Song K, Wang Y, Feng L, Zheng Z, Zhang Q, Wei J, Sang P, Shi Y, Cai J, Chen G, Liu CY, Yang X, Zhang J. Nat Commun 13 4961 (2022)
  197. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction. Li DW, Meng D, Brüschweiler R. J Magn Reson 254 93-97 (2015)
  198. S100P Interacts with p53 while Pentamidine Inhibits This Interaction. Katte RH, Dowarha D, Chou RH, Yu C. Biomolecules 11 634 (2021)


Reviews citing this publication (291)

  1. p53, the cellular gatekeeper for growth and division. Levine AJ. Cell 88 323-331 (1997)
  2. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Wright PE, Dyson HJ. J Mol Biol 293 321-331 (1999)
  3. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Wells JA, McClendon CL. Nature 450 1001-1009 (2007)
  4. Coupling of folding and binding for unstructured proteins. Dyson HJ, Wright PE. Curr Opin Struct Biol 12 54-60 (2002)
  5. Ubiquitin: structures, functions, mechanisms. Pickart CM, Eddins MJ. Biochim Biophys Acta 1695 55-72 (2004)
  6. Mutant p53: one name, many proteins. Freed-Pastor WA, Prives C. Genes Dev 26 1268-1286 (2012)
  7. Flexible nets. The roles of intrinsic disorder in protein interaction networks. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. FEBS J 272 5129-5148 (2005)
  8. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Uversky VN, Oldfield CJ, Dunker AK. Annu Rev Biophys 37 215-246 (2008)
  9. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Wade M, Li YC, Wahl GM. Nat Rev Cancer 13 83-96 (2013)
  10. Targeting apoptosis in cancer therapy. Carneiro BA, El-Deiry WS. Nat Rev Clin Oncol 17 395-417 (2020)
  11. Promoting apoptosis as a strategy for cancer drug discovery. Fesik SW. Nat Rev Cancer 5 876-885 (2005)
  12. Regulation of p53 in response to DNA damage. Lakin ND, Jackson SP. Oncogene 18 7644-7655 (1999)
  13. The MDM2 gene amplification database. Momand J, Jung D, Wilczynski S, Niland J. Nucleic Acids Res 26 3453-3459 (1998)
  14. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. Uversky VN, Oldfield CJ, Dunker AK. J Mol Recognit 18 343-384 (2005)
  15. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Galliford CV, Scheidt KA. Angew Chem Int Ed Engl 46 8748-8758 (2007)
  16. Drugging the p53 pathway: understanding the route to clinical efficacy. Khoo KH, Verma CS, Lane DP. Nat Rev Drug Discov 13 217-236 (2014)
  17. Chemistry and biology of multicomponent reactions. Dömling A, Wang W, Wang K. Chem Rev 112 3083-3135 (2012)
  18. The genetics of the p53 pathway, apoptosis and cancer therapy. Vazquez A, Bond EE, Levine AJ, Bond GL. Nat Rev Drug Discov 7 979-987 (2008)
  19. Structural biology of the tumor suppressor p53. Joerger AC, Fersht AR. Annu Rev Biochem 77 557-582 (2008)
  20. Winged helix proteins. Gajiwala KS, Burley SK. Curr Opin Struct Biol 10 110-116 (2000)
  21. Drug discovery in the ubiquitin-proteasome system. Nalepa G, Rolfe M, Harper JW. Nat Rev Drug Discov 5 596-613 (2006)
  22. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Chène P. Nat Rev Cancer 3 102-109 (2003)
  23. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Azzarito V, Long K, Murphy NS, Wilson AJ. Nat Chem 5 161-173 (2013)
  24. Molecular biology of HMGA proteins: hubs of nuclear function. Reeves R. Gene 277 63-81 (2001)
  25. MDM2--master regulator of the p53 tumor suppressor protein. Momand J, Wu HH, Dasgupta G. Gene 242 15-29 (2000)
  26. Rescuing the function of mutant p53. Bullock AN, Fersht AR. Nat Rev Cancer 1 68-76 (2001)
  27. MDM2 inhibitors for cancer therapy. Vassilev LT. Trends Mol Med 13 23-31 (2007)
  28. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Joerger AC, Fersht AR. Annu Rev Biochem 85 375-404 (2016)
  29. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Joerger AC, Fersht AR. Oncogene 26 2226-2242 (2007)
  30. A decade and a half of protein intrinsic disorder: biology still waits for physics. Uversky VN. Protein Sci 22 693-724 (2013)
  31. The role of p53 in cancer drug resistance and targeted chemotherapy. Hientz K, Mohr A, Bhakta-Guha D, Efferth T. Oncotarget 8 8921-8946 (2017)
  32. Regulation of p53 stability. Ashcroft M, Vousden KH. Oncogene 18 7637-7643 (1999)
  33. Drugging the undruggables: exploring the ubiquitin system for drug development. Huang X, Dixit VM. Cell Res 26 484-498 (2016)
  34. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Kohn KW. Mol Biol Cell 10 2703-2734 (1999)
  35. Mechanisms of transcriptional regulation by p53. Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Cell Death Differ 25 133-143 (2018)
  36. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Sabapathy K, Lane DP. Nat Rev Clin Oncol 15 13-30 (2018)
  37. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Wahl GM, Carr AM. Nat Cell Biol 3 E277-86 (2001)
  38. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Hahn S, Young ET. Genetics 189 705-736 (2011)
  39. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Leroy B, Anderson M, Soussi T. Hum Mutat 35 672-688 (2014)
  40. Activation of the p53 tumor suppressor protein. Vousden KH. Biochim Biophys Acta 1602 47-59 (2002)
  41. Two colons-two cancers: paradigm shift and clinical implications. Gervaz P, Bucher P, Morel P. J Surg Oncol 88 261-266 (2004)
  42. Intrinsic disorder in scaffold proteins: getting more from less. Cortese MS, Uversky VN, Dunker AK. Prog Biophys Mol Biol 98 85-106 (2008)
  43. The origins and evolution of the p53 family of genes. Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ. Cold Spring Harb Perspect Biol 2 a001198 (2010)
  44. p63 and p73 in human cancer: defining the network. Deyoung MP, Ellisen LW. Oncogene 26 5169-5183 (2007)
  45. p53 Family and Cellular Stress Responses in Cancer. Pflaum J, Schlosser S, Müller M. Front Oncol 4 285 (2014)
  46. Aggresome formation and neurodegenerative diseases: therapeutic implications. Olzmann JA, Li L, Chin LS. Curr Med Chem 15 47-60 (2008)
  47. The Roles of MDM2 and MDMX in Cancer. Karni-Schmidt O, Lokshin M, Prives C. Annu Rev Pathol 11 617-644 (2016)
  48. Oncogenic protein interfaces: small molecules, big challenges. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Nat Rev Cancer 14 248-262 (2014)
  49. Spirooxindoles: Promising scaffolds for anticancer agents. Yu B, Yu DQ, Liu HM. Eur J Med Chem 97 673-698 (2015)
  50. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Cadwell C, Zambetti GP. Gene 277 15-30 (2001)
  51. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. J Hematol Oncol 10 133 (2017)
  52. E3 ubiquitin ligases as cancer targets and biomarkers. Sun Y. Neoplasia 8 645-654 (2006)
  53. Regulating tumor suppressor genes: post-translational modifications. Chen L, Liu S, Tao Y. Signal Transduct Target Ther 5 90 (2020)
  54. Role of T antigen interactions with p53 in tumorigenesis. Pipas JM, Levine AJ. Semin Cancer Biol 11 23-30 (2001)
  55. Systemic treatment of soft-tissue sarcoma-gold standard and novel therapies. Linch M, Miah AB, Thway K, Judson IR, Benson C. Nat Rev Clin Oncol 11 187-202 (2014)
  56. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Smith MC, Gestwicki JE. Expert Rev Mol Med 14 e16 (2012)
  57. Synthetic non-peptide mimetics of alpha-helices. Davis JM, Tsou LK, Hamilton AD. Chem Soc Rev 36 326-334 (2007)
  58. Inhibition of protein-protein interactions using designed molecules. Wilson AJ. Chem Soc Rev 38 3289-3300 (2009)
  59. MDM2 inhibition: an important step forward in cancer therapy. Konopleva M, Martinelli G, Daver N, Papayannidis C, Wei A, Higgins B, Ott M, Mascarenhas J, Andreeff M. Leukemia 34 2858-2874 (2020)
  60. Targeting the ubiquitin-proteasome system for cancer therapy. Shen M, Schmitt S, Buac D, Dou QP. Expert Opin Ther Targets 17 1091-1108 (2013)
  61. The rules of disorder or why disorder rules. Gsponer J, Babu MM. Prog Biophys Mol Biol 99 94-103 (2009)
  62. The ubiquitin system, disease, and drug discovery. Petroski MD. BMC Biochem 9 Suppl 1 S7 (2008)
  63. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Wade M, Wahl GM. Mol Cancer Res 7 1-11 (2009)
  64. Peptides mediating interaction networks: new leads at last. Neduva V, Russell RB, Russell RB. Curr Opin Biotechnol 17 465-471 (2006)
  65. Universal screening methods and applications of ThermoFluor. Cummings MD, Farnum MA, Nelen MI. J Biomol Screen 11 854-863 (2006)
  66. Targeting the p53-MDM2 interaction to treat cancer. Klein C, Vassilev LT. Br J Cancer 91 1415-1419 (2004)
  67. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Jimenez GS, Khan SH, Stommel JM, Wahl GM. Oncogene 18 7656-7665 (1999)
  68. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. Fernàndez V, Hartmann E, Ott G, Campo E, Rosenwald A. J Clin Oncol 23 6364-6369 (2005)
  69. TGF-β Family Signaling in Mesenchymal Differentiation. Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. Cold Spring Harb Perspect Biol 10 a022202 (2018)
  70. Chemical approaches to the discovery and development of cancer therapies. Neidle S, Thurston DE. Nat Rev Cancer 5 285-296 (2005)
  71. Thigmomorphogenesis: a complex plant response to mechano-stimulation. Chehab EW, Eich E, Braam J. J Exp Bot 60 43-56 (2009)
  72. Targeting protein-protein interactions: lessons from p53/MDM2. Murray JK, Gellman SH. Biopolymers 88 657-686 (2007)
  73. Functional advantages of dynamic protein disorder. Berlow RB, Dyson HJ, Wright PE. FEBS Lett 589 2433-2440 (2015)
  74. Natively disordered proteins: functions and predictions. Romero P, Obradovic Z, Dunker AK. Appl Bioinformatics 3 105-113 (2004)
  75. Protein-protein interactions and cancer: small molecules going in for the kill. Arkin M. Curr Opin Chem Biol 9 317-324 (2005)
  76. Mdm2: the ups and downs. Juven-Gershon T, Oren M. Mol Med 5 71-83 (1999)
  77. Protein-protein interactions as targets for small molecule drug discovery. Fry DC. Biopolymers 84 535-552 (2006)
  78. Targeting apoptosis pathways for new cancer therapeutics. Bai L, Wang S. Annu Rev Med 65 139-155 (2014)
  79. Strategies for therapeutic targeting of the p53 pathway in cancer. Wiman KG. Cell Death Differ 13 921-926 (2006)
  80. Genotoxic and non-genotoxic pathways of p53 induction. Pluquet O, Hainaut P. Cancer Lett 174 1-15 (2001)
  81. Therapeutic targeting of tumor suppressor genes. Morris LG, Chan TA. Cancer 121 1357-1368 (2015)
  82. Hub promiscuity in protein-protein interaction networks. Patil A, Kinoshita K, Nakamura H. Int J Mol Sci 11 1930-1943 (2010)
  83. Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. Titapiwatanakun B, Murphy AS. J Exp Bot 60 1093-1107 (2009)
  84. Targeting protein-protein interactions by rational design: mimicry of protein surfaces. Fletcher S, Hamilton AD. J R Soc Interface 3 215-233 (2006)
  85. Small molecular weight protein-protein interaction antagonists: an insurmountable challenge? Dömling A. Curr Opin Chem Biol 12 281-291 (2008)
  86. Targeting MDM2-p53 interaction for cancer therapy: are we there yet? Nag S, Zhang X, Srivenugopal KS, Wang MH, Wang W, Zhang R. Curr Med Chem 21 553-574 (2014)
  87. Therapeutic strategies within the ubiquitin proteasome system. Eldridge AG, O'Brien T. Cell Death Differ 17 4-13 (2010)
  88. MDM2--arbiter of p53's destruction. Lane DP, Hall PA. Trends Biochem Sci 22 372-374 (1997)
  89. Targeting protein-protein interactions for cancer therapy. Fry DC, Vassilev LT. J Mol Med (Berl) 83 955-963 (2005)
  90. Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. El-Deiry WS. Cell Death Differ 8 1066-1075 (2001)
  91. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR. J Hematol Oncol 4 16 (2011)
  92. Mdm2 and MdmX partner to regulate p53. Wang X, Jiang X. FEBS Lett 586 1390-1396 (2012)
  93. Modulation of Protein-Protein Interactions for the Development of Novel Therapeutics. Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K. Mol Ther 24 707-718 (2016)
  94. Systematic Targeting of Protein-Protein Interactions. Modell AE, Blosser SL, Arora PS. Trends Pharmacol Sci 37 702-713 (2016)
  95. Mechanisms of p53 degradation. Chao CC. Clin Chim Acta 438 139-147 (2015)
  96. Strategies for manipulating the p53 pathway in the treatment of human cancer. Hupp TR, Lane DP, Ball KL. Biochem J 352 Pt 1 1-17 (2000)
  97. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy. Ke B, Tian M, Li J, Liu B, He G. Med Res Rev 36 983-1035 (2016)
  98. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Sheng C, Dong G, Miao Z, Zhang W, Wang W. Chem Soc Rev 44 8238-8259 (2015)
  99. The design, structures and therapeutic potential of protein epitope mimetics. Robinson JA, Demarco S, Gombert F, Moehle K, Obrecht D. Drug Discov Today 13 944-951 (2008)
  100. Stabilization of protein-protein interactions in drug discovery. Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Expert Opin Drug Discov 12 925-940 (2017)
  101. The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY. Int J Clin Exp Pathol 5 726-738 (2012)
  102. p53 and metabolism: from mechanism to therapeutics. Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, Tamura RE. Oncotarget 9 23780-23823 (2018)
  103. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Miller M. Curr Protein Pept Sci 10 244-269 (2009)
  104. Protein-protein interfaces: mimics and inhibitors. Cochran AG. Curr Opin Chem Biol 5 654-659 (2001)
  105. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment. Mollica L, Bessa LM, Hanoulle X, Jensen MR, Blackledge M, Schneider R. Front Mol Biosci 3 52 (2016)
  106. Disordered proteinaceous machines. Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek A, Lim RY, Xue B, Kurgan L, Uversky VN. Chem Rev 114 6806-6843 (2014)
  107. Macrocycles as protein-protein interaction inhibitors. Dougherty PG, Qian Z, Pei D. Biochem J 474 1109-1125 (2017)
  108. The multifaceted roles of intrinsic disorder in protein complexes. Uversky VN. FEBS Lett 589 2498-2506 (2015)
  109. The Transactivation Domains of the p53 Protein. Raj N, Attardi LD. Cold Spring Harb Perspect Med 7 a026047 (2017)
  110. p53 N-terminal phosphorylation: a defining layer of complex regulation. Jenkins LM, Durell SR, Mazur SJ, Appella E. Carcinogenesis 33 1441-1449 (2012)
  111. The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious. Popowicz GM, Dömling A, Holak TA. Angew Chem Int Ed Engl 50 2680-2688 (2011)
  112. Drugs targeting protein-protein interactions. Chène P. ChemMedChem 1 400-411 (2006)
  113. Reconciling binding mechanisms of intrinsically disordered proteins. Espinoza-Fonseca LM. Biochem Biophys Res Commun 382 479-482 (2009)
  114. Zinc metalloproteins as medicinal targets. Anzellotti AI, Farrell NP. Chem Soc Rev 37 1629-1651 (2008)
  115. Degrons in cancer. Mészáros B, Kumar M, Gibson TJ, Uyar B, Dosztányi Z. Sci Signal 10 eaak9982 (2017)
  116. Intrinsically disordered proteins and novel strategies for drug discovery. Uversky VN. Expert Opin Drug Discov 7 475-488 (2012)
  117. How to design a drug for the disordered proteins? Chen CY, Chen CY, Tou WI. Drug Discov Today 18 910-915 (2013)
  118. Translational approaches targeting the p53 pathway for anti-cancer therapy. Essmann F, Schulze-Osthoff K. Br J Pharmacol 165 328-344 (2012)
  119. What have animal models taught us about the p53 pathway? Lozano G, Zambetti GP. J Pathol 205 206-220 (2005)
  120. Protein-protein interactions as targets for small-molecule therapeutics in cancer. White AW, Westwell AD, Brahemi G. Expert Rev Mol Med 10 e8 (2008)
  121. Regulation of cellular senescence via the FOXO4-p53 axis. Bourgeois B, Madl T. FEBS Lett 592 2083-2097 (2018)
  122. Intrinsically disordered proteins: from sequence and conformational properties toward drug discovery. Rezaei-Ghaleh N, Blackledge M, Zweckstetter M. Chembiochem 13 930-950 (2012)
  123. Crippling p53 activities via knock-in mutations in mouse models. Iwakuma T, Lozano G. Oncogene 26 2177-2184 (2007)
  124. Ubiquitin and ubiquitin-like modifications of the p53 family. Watson IR, Irwin MS. Neoplasia 8 655-666 (2006)
  125. Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Dickens MP, Fitzgerald R, Fischer PM. Semin Cancer Biol 20 10-18 (2010)
  126. Development of inhibitors in the ubiquitination cascade. Zhang W, Sidhu SS. FEBS Lett 588 356-367 (2014)
  127. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Cancers (Basel) 10 E213 (2018)
  128. Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Lucas X, Ciulli A. Curr Opin Struct Biol 44 101-110 (2017)
  129. Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Patel S, Player MR. Expert Opin Investig Drugs 17 1865-1882 (2008)
  130. Small molecule compounds targeting the p53 pathway: are we finally making progress? Yu X, Narayanan S, Vazquez A, Carpizo DR. Apoptosis 19 1055-1068 (2014)
  131. Small-molecule inhibitors of the p53 suppressor HDM2: have protein-protein interactions come of age as drug targets? Fischer PM, Lane DP. Trends Pharmacol Sci 25 343-346 (2004)
  132. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: mechanisms and clinical implications. Tabakin-Fix Y, Azran I, Schavinky-Khrapunsky Y, Levy O, Aboud M. Carcinogenesis 27 673-681 (2006)
  133. Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Menon V, Povirk L. Subcell Biochem 85 321-336 (2014)
  134. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Costa DC, de Oliveira GA, Cino EA, Soares IN, Rangel LP, Silva JL. Cold Spring Harb Perspect Biol 8 a023614 (2016)
  135. Diversity and evolution of chromatin proteins encoded by DNA viruses. de Souza RF, Iyer LM, Aravind L. Biochim Biophys Acta 1799 302-318 (2010)
  136. p53--a natural cancer killer: structural insights and therapeutic concepts. Römer L, Klein C, Dehner A, Kessler H, Buchner J. Angew Chem Int Ed Engl 45 6440-6460 (2006)
  137. Convergent evolution with combinatorial peptides. Kay BK, Kasanov J, Knight S, Kurakin A. FEBS Lett 480 55-62 (2000)
  138. The expanding view of protein-protein interactions: complexes involving intrinsically disordered proteins. Mészáros B, Simon I, Dosztányi Z. Phys Biol 8 035003 (2011)
  139. X-ray crystallographic and functional studies of thyroid hormone receptor. Ribeiro RC, Apriletti JW, Wagner RL, Feng W, Kushner PJ, Nilsson S, Scanlan TS, West BL, Fletterick RJ, Baxter JD. J Steroid Biochem Mol Biol 65 133-141 (1998)
  140. FLIP as an anti-cancer therapeutic target. Yang JK. Yonsei Med J 49 19-27 (2008)
  141. Recent Progress in Solid-State Nanopores. Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Adv Mater 30 e1704680 (2018)
  142. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol 27 315-328 (2009)
  143. Alterations of p63 and p73 in human cancers. Inoue K, Fry EA. Subcell Biochem 85 17-40 (2014)
  144. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways. Kelleher FC, O'Sullivan H. Oncotarget 7 42792-42804 (2016)
  145. Small molecule agents targeting the p53-MDM2 pathway for cancer therapy. Wang W, Hu Y. Med Res Rev 32 1159-1196 (2012)
  146. Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly. Gianni S, Freiberger MI, Jemth P, Ferreiro DU, Wolynes PG, Fuxreiter M. Acc Chem Res 54 1251-1259 (2021)
  147. Natural product MDM2 inhibitors: anticancer activity and mechanisms of action. Qin JJ, Nag S, Voruganti S, Wang W, Zhang R. Curr Med Chem 19 5705-5725 (2012)
  148. Small molecule modulators of transcription. Arndt HD. Angew Chem Int Ed Engl 45 4552-4560 (2006)
  149. Structural biology of the p53 tumour suppressor. Okorokov AL, Orlova EV. Curr Opin Struct Biol 19 197-202 (2009)
  150. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Devine T, Dai MS. Curr Pharm Des 19 3248-3262 (2013)
  151. The long and the short of it: the MDM4 tail so far. Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. J Mol Cell Biol 11 231-244 (2019)
  152. Chemical approaches to transcriptional regulation. Majmudar CY, Mapp AK. Curr Opin Chem Biol 9 467-474 (2005)
  153. Combinatorial gene regulation by eukaryotic transcription factors. Chen L. Curr Opin Struct Biol 9 48-55 (1999)
  154. Mdm2 in growth signaling and cancer. Levav-Cohen Y, Haupt S, Haupt Y. Growth Factors 23 183-192 (2005)
  155. Structure and apoptotic function of p73. Yoon MK, Ha JH, Lee MS, Chi SW. BMB Rep 48 81-90 (2015)
  156. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  157. Rational Design of Peptide-Based Inhibitors Disrupting Protein-Protein Interactions. Wang X, Ni D, Liu Y, Lu S. Front Chem 9 682675 (2021)
  158. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Laptenko O, Tong DR, Manfredi J, Prives C. Trends Biochem Sci 41 1022-1034 (2016)
  159. Regulation of MDM2 Stability After DNA Damage. Li J, Kurokawa M. J Cell Physiol 230 2318-2327 (2015)
  160. Drug discovery in the ubiquitin regulatory pathway. Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK. Drug Discov Today 8 746-754 (2003)
  161. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, Brown DG, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, Ryan EP, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH. Carcinogenesis 36 Suppl 1 S2-18 (2015)
  162. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Sorolla A, Wang E, Golden E, Duffy C, Henriques ST, Redfern AD, Blancafort P. Oncogene 39 1167-1184 (2020)
  163. Structural and sequential context of p53: A review of experimental and theoretical evidence. Saha T, Kar RK, Sa G. Prog Biophys Mol Biol 117 250-263 (2015)
  164. Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Silva JL, Rangel LP, Costa DC, Cordeiro Y, De Moura Gallo CV. Biosci Rep 33 e00054 (2013)
  165. MDM2 function. Lozano G, Montes de Oca Luna R. Biochim Biophys Acta 1377 M55-9 (1998)
  166. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Lemos A, Leão M, Soares J, Palmeira A, Pinto M, Saraiva L, Sousa ME. Med Res Rev 36 789-844 (2016)
  167. Novel cancer therapy by reactivation of the p53 apoptosis pathway. Bykov VJ, Wiman KG. Ann Med 35 458-465 (2003)
  168. Small-molecule MDM2-p53 inhibitors: recent advances. Zhang B, Golding BT, Hardcastle IR. Future Med Chem 7 631-645 (2015)
  169. Transcriptional switches: chemical approaches to gene regulation. Lee LW, Mapp AK. J Biol Chem 285 11033-11038 (2010)
  170. Reviving the guardian of the genome: Small molecule activators of p53. Nguyen D, Liao W, Zeng SX, Lu H. Pharmacol Ther 178 92-108 (2017)
  171. Using biology to guide the treatment of sarcomas and aggressive connective-tissue tumours. Dufresne A, Brahmi M, Karanian M, Blay JY. Nat Rev Clin Oncol 15 443-458 (2018)
  172. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Beck J, Turnquist C, Horikawa I, Harris C. Carcinogenesis 41 1017-1029 (2020)
  173. Thermodynamics-based drug design: strategies for inhibiting protein-protein interactions. Schön A, Lam SY, Freire E. Future Med Chem 3 1129-1137 (2011)
  174. Control of protein stability by post-translational modifications. Lee JM, Hammarén HM, Savitski MM, Baek SH. Nat Commun 14 201 (2023)
  175. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. Lane DP. Cold Spring Harb Symp Quant Biol 70 489-497 (2005)
  176. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. de Oliveira GA, Rangel LP, Costa DC, Silva JL. Front Oncol 5 97 (2015)
  177. Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. Martinelli AHS, Lopes FC, John EBO, Carlini CR, Ligabue-Braun R. Int J Mol Sci 20 E1322 (2019)
  178. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Wang H, Guo M, Wei H, Chen Y. Signal Transduct Target Ther 8 92 (2023)
  179. The role of p53 in human cancer. Malkin D. J Neurooncol 51 231-243 (2001)
  180. Eukaryotic transcription factors. Tan S, Richmond TJ. Curr Opin Struct Biol 8 41-48 (1998)
  181. Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target? Campillo-Marcos I, Lazo PA. Cell Mol Life Sci 75 2375-2388 (2018)
  182. Optimizing the hit-to-lead process using SPR analysis. Löfås S. Assay Drug Dev Technol 2 407-415 (2004)
  183. The Status of p53 Oligomeric and Aggregation States in Cancer. de Oliveira GAP, Petronilho EC, Pedrote MM, Marques MA, Vieira TCRG, Cino EA, Silva JL. Biomolecules 10 E548 (2020)
  184. Current management options for liposarcoma and challenges for the future. Kollár A, Benson C. Expert Rev Anticancer Ther 14 297-306 (2014)
  185. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Lazo PA, Santos CR. Rev Med Virol 21 285-300 (2011)
  186. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Lazo PA. Cell Signal 33 49-58 (2017)
  187. Substituted 1,4-benzodiazepine-2,5-diones as alpha-helix mimetic antagonists of the HDM2-p53 protein-protein interaction. Cummings MD, Schubert C, Parks DJ, Calvo RR, LaFrance LV, Lattanze J, Milkiewicz KL, Lu T. Chem Biol Drug Des 67 201-205 (2006)
  188. Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields. Ciemny MP, Badaczewska-Dawid AE, Pikuzinska M, Kolinski A, Kmiecik S. Int J Mol Sci 20 E606 (2019)
  189. Anatomy of Mdm2 and Mdm4 in evolution. Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. J Mol Cell Biol 9 3-15 (2017)
  190. In search of small molecules blocking interactions between HIV proteins and intracellular cofactors. Busschots K, De Rijck J, Christ F, Debyser Z. Mol Biosyst 5 21-31 (2009)
  191. Pathological implication of protein post-translational modifications in cancer. Pan S, Chen R. Mol Aspects Med 86 101097 (2022)
  192. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Zhan C, Li C, Wei X, Lu W, Lu W. Adv Drug Deliv Rev 90 101-118 (2015)
  193. F-Box Proteins and Cancer. Yumimoto K, Yamauchi Y, Nakayama KI. Cancers (Basel) 12 E1249 (2020)
  194. Mdm2 links genotoxic stress and metabolism to p53. Wang Z, Li B. Protein Cell 1 1063-1072 (2010)
  195. The principle of conformational signaling. Tompa P. Chem Soc Rev 45 4252-4284 (2016)
  196. Drug repositioning: Progress and challenges in drug discovery for various diseases. Hua Y, Dai X, Xu Y, Xing G, Liu H, Lu T, Chen Y, Zhang Y. Eur J Med Chem 234 114239 (2022)
  197. Li-Fraumeni syndrome and the role of the p53 tumor suppressor gene in cancer susceptibility. Akashi M, Koeffler HP. Clin Obstet Gynecol 41 172-199 (1998)
  198. Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Mousson A, Sick E, Carl P, Dujardin D, De Mey J, Rondé P. Cancers (Basel) 10 E278 (2018)
  199. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  200. Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. Testa L, Brocca S, Santambrogio C, D'Urzo A, Habchi J, Longhi S, Uversky VN, Grandori R. Intrinsically Disord Proteins 1 e25068 (2013)
  201. Systemic Therapy in Metastatic or Unresectable Well-Differentiated/Dedifferentiated Liposarcoma. McGovern Y, Zhou CD, Jones RL. Front Oncol 7 292 (2017)
  202. Targeting the p53 pathway. Golubovskaya VM, Cance WG. Surg Oncol Clin N Am 22 747-764 (2013)
  203. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Miles X, Vandevoorde C, Hunter A, Bolcaen J. Front Oncol 11 703442 (2021)
  204. Mouse bites dogma: how mouse models are changing our views of how P53 is regulated in vivo. Wahl GM. Cell Death Differ 13 973-983 (2006)
  205. The DNA damage checkpoint and human cancer. Schultz LB, Chehab NH, Malikzay A, DiTullio RA, Stavridi ES, Halazonetis TD. Cold Spring Harb Symp Quant Biol 65 489-498 (2000)
  206. Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins. Kim DH, Han KH. Int J Mol Sci 19 E3614 (2018)
  207. 2-Indolinone a versatile scaffold for treatment of cancer: a patent review (2008-2014). Leoni A, Locatelli A, Morigi R, Rambaldi M. Expert Opin Ther Pat 26 149-173 (2016)
  208. TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. George B, Kantarjian H, Baran N, Krocker JD, Rios A. Int J Mol Sci 22 10782 (2021)
  209. Control mechanisms in germ cells mediated by p53 family proteins. Gebel J, Tuppi M, Krauskopf K, Coutandin D, Pitzius S, Kehrloesser S, Osterburg C, Dötsch V. J Cell Sci jcs.204859 (2017)
  210. Intrasteric regulation of MDM2. Shimizu H, Hupp TR. Trends Biochem Sci 28 346-349 (2003)
  211. Resistance acquisition to MDM2 inhibitors. Cinatl J, Speidel D, Hardcastle I, Michaelis M. Biochem Soc Trans 42 752-757 (2014)
  212. Small-molecule regulators that mimic transcription factors. Rodríguez-Martínez JA, Peterson-Kaufman KJ, Ansari AZ. Biochim Biophys Acta 1799 768-774 (2010)
  213. Spiro-oxindoles as a Promising Class of Small Molecule Inhibitors of p53-MDM2 Interaction Useful in Targeted Cancer Therapy. Gupta AK, Bharadwaj M, Kumar A, Mehrotra R. Top Curr Chem (Cham) 375 3 (2017)
  214. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-mDM2 protein-protein interaction. Clark RC, Lee SY, Searcey M, Boger DL. Nat Prod Rep 26 465-477 (2009)
  215. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L. Cancers (Basel) 11 E1014 (2019)
  216. An integrated view of p53 dynamics, function, and reactivation. Demir Ö, Barros EP, Offutt TL, Rosenfeld M, Amaro RE. Curr Opin Struct Biol 67 187-194 (2021)
  217. How Do We Study the Dynamic Structure of Unstructured Proteins: A Case Study on Nopp140 as an Example of a Large, Intrinsically Disordered Protein. Na JH, Lee WK, Yu YG. Int J Mol Sci 19 E381 (2018)
  218. Isoform-Specific Roles of Mutant p63 in Human Diseases. Osterburg C, Osterburg S, Zhou H, Missero C, Dötsch V. Cancers (Basel) 13 536 (2021)
  219. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Van Roey K, Davey NE. Cell Commun Signal 13 45 (2015)
  220. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Cell Mol Biol Lett 26 53 (2021)
  221. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. Tan YS, Mhoumadi Y, Verma CS. J Mol Cell Biol 11 306-316 (2019)
  222. Structural and pharmacological effects of ring-closing metathesis in peptides. Jacobsen Ø, Klaveness J, Rongved P. Molecules 15 6638-6677 (2010)
  223. Structural diversity of p63 and p73 isoforms. Osterburg C, Dötsch V. Cell Death Differ 29 921-937 (2022)
  224. Targeting the Ubiquitin System in Glioblastoma. Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Front Oncol 10 574011 (2020)
  225. Integration of the pRB and p53 cell cycle control pathways. Stewart CL, Soria AM, Hamel PA. J Neurooncol 51 183-204 (2001)
  226. It's Getting Complicated-A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Kung CP, Weber JD. Front Cell Dev Biol 10 818744 (2022)
  227. Nucleosome distortion as a possible mechanism of transcription activation domain function. Erkina TY, Erkine AM. Epigenetics Chromatin 9 40 (2016)
  228. Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1. Chen D, Wang L, Lee TH. Front Cell Dev Biol 8 129 (2020)
  229. MDM2 oligomers: antagonizers of the guardian of the genome. Leslie PL, Zhang Y. Oncogene 35 6157-6165 (2016)
  230. Restoring p53 tumor suppressor activity as an anticancer therapeutic strategy. Martinez JD. Future Oncol 6 1857-1862 (2010)
  231. A novel application for murine double minute 2 antagonists: the p53 tumor suppressor network also controls angiogenesis. Binder BR. Circ Res 100 13-14 (2007)
  232. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Fusée LTS, Marín M, Fåhraeus R, López I. Cancers (Basel) 12 E401 (2020)
  233. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. Cells 10 2374 (2021)
  234. Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review. Teveroni E, Lucà R, Pellegrino M, Ciolli G, Pontecorvi A, Moretti F. Expert Opin Ther Pat 26 1417-1429 (2016)
  235. Protein-protein interaction inhibitors: advances in anticancer drug design. Ferreira LG, Oliva G, Andricopulo AD. Expert Opin Drug Discov 11 957-968 (2016)
  236. Constrained α-Helical Peptides as Inhibitors of Protein-Protein and Protein-DNA Interactions. Roy S, Ghosh P, Ahmed I, Chakraborty M, Naiya G, Ghosh B. Biomedicines 6 E118 (2018)
  237. Interaction modules that impart specificity to disordered protein. Cermakova K, Hodges HC. Trends Biochem Sci 48 477-490 (2023)
  238. New targets for the treatment of follicular lymphoma. Tageja N, Padheye S, Dandawate P, Al-Katib A, Mohammad RM. J Hematol Oncol 2 50 (2009)
  239. PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins. Kim DH, Han KH. Mol Cells 41 889-899 (2018)
  240. Animal models of well-differentiated/dedifferentiated liposarcoma: utility and limitations. Codenotti S, Mansoury W, Pinardi L, Monti E, Marampon F, Fanzani A. Onco Targets Ther 12 5257-5268 (2019)
  241. Computational approaches for the design of modulators targeting protein-protein interactions. Rehman AU, Khurshid B, Ali Y, Rasheed S, Wadood A, Ng HL, Chen HF, Wei Z, Luo R, Zhang J. Expert Opin Drug Discov 18 315-333 (2023)
  242. Genetic and Histopathological Heterogeneity of Neuroblastoma and Precision Therapeutic Approaches for Extremely Unfavorable Histology Subgroups. Shimada H, Ikegaki N. Biomolecules 12 79 (2022)
  243. Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Silva JL, Lima CGS, Rangel LP, Ferretti GDS, Pauli FP, Ribeiro RCB, da Silva TB, da Silva FC, Ferreira VF. Biomolecules 10 E635 (2020)
  244. Regulation of p53 by E3s. Pan M, Blattner C. Cancers (Basel) 13 745 (2021)
  245. Salient Features of Monomeric Alpha-Synuclein Revealed by NMR Spectroscopy. Kim DH, Lee J, Mok KH, Lee JH, Han KH. Biomolecules 10 E428 (2020)
  246. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. Karakostis K, Fåhraeus R. BMC Cancer 19 915 (2019)
  247. Targeting the MDM2-p53 pathway in dedifferentiated liposarcoma. Traweek RS, Cope BM, Roland CL, Keung EZ, Nassif EF, Erstad DJ. Front Oncol 12 1006959 (2022)
  248. The role of structural disorder in cell cycle regulation, related clinical proteomics, disease development and drug targeting. Tantos A, Kalmar L, Tompa P. Expert Rev Proteomics 12 221-233 (2015)
  249. The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. Caobi A, Dutta RK, Garbinski LD, Esteban-Lopez M, Ceyhan Y, Andre M, Manevski M, Ojha CR, Lapierre J, Tiwari S, Parira T, El-Hage N. Aging Dis 11 895-915 (2020)
  250. The challenge of p53: linking biochemistry, biology, and patient management. Bray SE, Schorl C, Hall PA. Stem Cells 16 248-260 (1998)
  251. Current strategies and progress for targeting the "undruggable" transcription factors. Zhuang JJ, Liu Q, Wu DL, Tie L. Acta Pharmacol Sin 43 2474-2481 (2022)
  252. Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System. Staszczak M. Int J Mol Sci 22 13309 (2021)
  253. The Intersection of Structural and Chemical Biology - An Essential Synergy. Zuercher WJ, Elkins JM, Knapp S. Cell Chem Biol 23 173-182 (2016)
  254. The Undervalued Avenue to Reinstate Tumor Suppressor Functionality of the p53 Protein Family for Improved Cancer Therapy-Drug Repurposing. Zawacka-Pankau JE. Cancers (Basel) 12 E2717 (2020)
  255. p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Horvat A, Tadijan A, Vlašić I, Slade N. Cancers (Basel) 13 2885 (2021)
  256. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Elwakeel A. Front Cell Dev Biol 10 879632 (2022)
  257. Adaptability in protein structures: structural dynamics and implications in ligand design. Maity A, Majumdar S, Priya P, De P, Saha S, Ghosh Dastidar S. J Biomol Struct Dyn 33 298-321 (2015)
  258. Chemical modulators working at pharmacological interface of target proteins. Jeon YH, Lee JY, Kim S. Bioorg Med Chem 20 1893-1901 (2012)
  259. Constrained peptides as miniature protein structures. Yin H. ISRN Biochem 2012 692190 (2012)
  260. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 4: p53 signaling pathway. Newton HB. Expert Rev Anticancer Ther 5 177-191 (2005)
  261. New trends in macromolecular X-ray crystallography. Wery JP, Schevitz RW. Curr Opin Chem Biol 1 365-369 (1997)
  262. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Front Mol Biosci 9 944955 (2022)
  263. Small organic molecules that modulate gene transcription. Jung D, Choi Y, Uesugi M. Drug Discov Today 11 452-457 (2006)
  264. TP53 in Myelodysplastic Syndromes. Jiang Y, Gao SJ, Soubise B, Douet-Guilbert N, Liu ZL, Troadec MB. Cancers (Basel) 13 5392 (2021)
  265. Therapeutic Strategies to Activate p53. Aguilar A, Wang S. Pharmaceuticals (Basel) 16 24 (2022)
  266. A closer view of an oncoprotein-tumor suppressor interaction. Shair MD. Chem Biol 4 791-794 (1997)
  267. Analysing p53 tumour suppressor functions in mice. Sluss HK, Jones SN. Expert Opin Ther Targets 7 89-99 (2003)
  268. Direct Interaction of miRNA and circRNA with the Oncosuppressor p53: An Intriguing Perspective in Cancer Research. Bizzarri AR, Cannistraro S. Cancers (Basel) 13 6108 (2021)
  269. Peptides and peptide mimics as modulators of apoptotic pathways. Orzáez M, Gortat A, Mondragón L, Pérez-Payá E. ChemMedChem 4 146-160 (2009)
  270. The Development of p53-Targeted Therapies for Human Cancers. Lu Y, Wu M, Xu Y, Yu L. Cancers (Basel) 15 3560 (2023)
  271. [Therapeutic agents targetting protein-protein interactions: myth or reality?]. Laudet B, Prudent R, Filhol O, Cochet C. Med Sci (Paris) 23 273-278 (2007)
  272. Artificial transcriptional activation domains. Lum JK, Mapp AK. Chembiochem 6 1311-1315 (2005)
  273. Novel activators of the tumour suppressor p53. Sunder-Plassmann N, Giannis A. Chembiochem 5 1635-1637 (2004)
  274. Progress in Anticancer Drug Development Targeting Ubiquitination-Related Factors. Li Q, Zhang W. Int J Mol Sci 23 15104 (2022)
  275. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly. Ricci CG, Li B, Cheng LT, Dzubiella J, McCammon JA. Front Mol Biosci 5 13 (2018)
  276. Targeting p53 as a promising therapeutic option for cancer by re-activating the wt or mutant p53's tumor suppression. Węsierska-Gądek J. Future Med Chem 10 755-777 (2018)
  277. The interplay of post-translational modification and gene therapy. Osamor VC, Chinedu SN, Azuh DE, Iweala EJ, Ogunlana OO. Drug Des Devel Ther 10 861-871 (2016)
  278. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Okuda M, Tsunaka Y, Nishimura Y. Biophys Rev 14 1449-1472 (2022)
  279. Prediction of protein-protein interaction sites in intrinsically disordered proteins. Chen R, Li X, Yang Y, Song X, Wang C, Qiao D. Front Mol Biosci 9 985022 (2022)
  280. Roles of NOLC1 in cancers and viral infection. Zhai F, Wang J, Luo X, Ye M, Jin X. J Cancer Res Clin Oncol 149 10593-10608 (2023)
  281. Small molecules targeting protein-protein interactions for cancer therapy. Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Acta Pharm Sin B 13 4060-4088 (2023)
  282. Structures composing protein domains. Kubrycht J, Sigler K, Souček P, Hudeček J. Biochimie 95 1511-1524 (2013)
  283. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Int J Mol Sci 24 7842 (2023)
  284. Utilizing NMR to study the structure of growth-inhibitory proteins. Marassi F. Methods Mol Biol 223 3-15 (2003)
  285. Emerging Pharmacotherapeutic Strategies to Overcome Undruggable Proteins in Cancer. Lu Y, Yang Y, Zhu G, Zeng H, Fan Y, Guo F, Xu D, Wang B, Chen D, Ge G. Int J Biol Sci 19 3360-3382 (2023)
  286. Molecular Peptide Grafting as a Tool to Create Novel Protein Therapeutics. Komar AA. Molecules 28 2383 (2023)
  287. Peptide and protein chemistry approaches to study the tumor suppressor protein p53. Chatterjee C, Singh SK. Org Biomol Chem 20 5500-5509 (2022)
  288. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Nat Rev Clin Oncol 21 106-120 (2024)
  289. Probing GPCR Dimerization Using Peptides. Farooq Z, Howell LA, McCormick PJ. Front Endocrinol (Lausanne) 13 843770 (2022)
  290. Targeting reversible post-translational modifications with PROTACs: a focus on enzymes modifying protein lysine and arginine residues. Pichlak M, Sobierajski T, Błażewska KM, Gendaszewska-Darmach E. J Enzyme Inhib Med Chem 38 2254012 (2023)
  291. p53 and Myofibroblast Apoptosis in Organ Fibrosis. McElhinney K, Irnaten M, O'Brien C. Int J Mol Sci 24 6737 (2023)

Articles citing this publication (748)

  1. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Shieh SY, Ikeda M, Taya Y, Prives C. Cell 91 325-334 (1997)
  2. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA. Cell 92 713-723 (1998)
  3. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ. Science 305 1466-1470 (2004)
  4. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. Biochim Biophys Acta 1804 996-1010 (2010)
  5. GlobPlot: Exploring protein sequences for globularity and disorder. Linding R, Russell RB, Russell RB, Neduva V, Gibson TJ. Nucleic Acids Res 31 3701-3708 (2003)
  6. Structure and specificity of nuclear receptor-coactivator interactions. Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR. Genes Dev 12 3343-3356 (1998)
  7. A simple physical model for binding energy hot spots in protein-protein complexes. Kortemme T, Baker D. Proc Natl Acad Sci U S A 99 14116-14121 (2002)
  8. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Chehab NH, Malikzay A, Appel M, Halazonetis TD. Genes Dev 14 278-288 (2000)
  9. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE. Cell 91 741-752 (1997)
  10. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G. Nat Med 10 1321-1328 (2004)
  11. Analysis of molecular recognition features (MoRFs). Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN. J Mol Biol 362 1043-1059 (2006)
  12. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. EMBO J 18 1660-1672 (1999)
  13. Intrinsic disorder in transcription factors. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Biochemistry 45 6873-6888 (2006)
  14. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. EMBO J 17 554-564 (1998)
  15. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S. Proc Natl Acad Sci U S A 105 3933-3938 (2008)
  16. Prediction of protein binding regions in disordered proteins. Mészáros B, Simon I, Dosztányi Z. PLoS Comput Biol 5 e1000376 (2009)
  17. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Ray-Coquard I, Blay JY, Italiano A, Le Cesne A, Penel N, Zhi J, Heil F, Rueger R, Graves B, Ding M, Geho D, Middleton SA, Vassilev LT, Nichols GL, Bui BN. Lancet Oncol 13 1133-1140 (2012)
  18. Drosophila p53 binds a damage response element at the reaper locus. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Cell 101 103-113 (2000)
  19. Attributes of short linear motifs. Davey NE, Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ. Mol Biosyst 8 268-281 (2012)
  20. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. J Proteome Res 6 1882-1898 (2007)
  21. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To KH, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK. Proc Natl Acad Sci U S A 110 E3445-54 (2013)
  22. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Mol Cell 3 707-716 (1999)
  23. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. Fuxreiter M, Simon I, Friedrich P, Tompa P. J Mol Biol 338 1015-1026 (2004)
  24. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. J Am Chem Soc 129 2456-2457 (2007)
  25. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z. Nat Chem Biol 6 442-448 (2010)
  26. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C. Cell 101 91-101 (2000)
  27. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E, Svergun DI, Blackledge M, Fersht AR. Proc Natl Acad Sci U S A 105 5762-5767 (2008)
  28. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Böttger A, Böttger V, Sparks A, Liu WL, Howard SF, Lane DP. Curr Biol 7 860-869 (1997)
  29. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G, Oren M, Haupt Y. EMBO J 18 1805-1814 (1999)
  30. Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK. Biochemistry 46 13468-13477 (2007)
  31. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, Boger DL, Vogt PK. Proc Natl Acad Sci U S A 99 3830-3835 (2002)
  32. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A. Proc Natl Acad Sci U S A 102 15412-15417 (2005)
  33. Molecular mechanism of the interaction between MDM2 and p53. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. J Mol Biol 323 491-501 (2002)
  34. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Yin Y, Stephen CW, Luciani MG, Fåhraeus R. Nat Cell Biol 4 462-467 (2002)
  35. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, Kung AL, Wahl GM, Walensky LD. Cancer Cell 18 411-422 (2010)
  36. Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, Tovar C, Packman K, Vassilev L, Graves B. ACS Med Chem Lett 4 466-469 (2013)
  37. P53 mRNA controls p53 activity by managing Mdm2 functions. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fåhraeus R. Nat Cell Biol 10 1098-1105 (2008)
  38. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G. Chem Biol Drug Des 75 348-359 (2010)
  39. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J. J Biol Chem 281 33030-33035 (2006)
  40. p53 contains large unstructured regions in its native state. Bell S, Klein C, Müller L, Hansen S, Buchner J. J Mol Biol 322 917-927 (2002)
  41. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao ZX, Kaelin WG, Harper JW, Wei W. Cancer Cell 18 147-159 (2010)
  42. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N, Prives C. EMBO J 26 90-101 (2007)
  43. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Di Lello P, Jenkins LMM, Jones TN, Nguyen BD, Hara T, Yamaguchi H, Dikeakos JD, Appella E, Legault P, Omichinski JG. Mol Cell 22 731-740 (2006)
  44. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M, Haupt Y. Oncogene 18 3205-3212 (1999)
  45. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE, Darimont BD, Duijf PH, Van Bokhoven H, McKeon F, Dötsch V. Mol Cell Biol 22 8601-8611 (2002)
  46. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Wang S, Sun W, Zhao Y, McEachern D, Meaux I, Barrière C, Stuckey JA, Meagher JL, Bai L, Liu L, Hoffman-Luca CG, Lu J, Shangary S, Yu S, Bernard D, Aguilar A, Dos-Santos O, Besret L, Guerif S, Pannier P, Gorge-Bernat D, Debussche L. Cancer Res 74 5855-5865 (2014)
  47. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Teufel DP, Freund SM, Bycroft M, Fersht AR. Proc Natl Acad Sci U S A 104 7009-7014 (2007)
  48. Rational drug design via intrinsically disordered protein. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese MS, Uversky VN, Dunker AK. Trends Biotechnol 24 435-442 (2006)
  49. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y. PLoS Biol 4 e27 (2006)
  50. Structural conservation of druggable hot spots in protein-protein interfaces. Kozakov D, Hall DR, Chuang GY, Cencic R, Brenke R, Grove LE, Beglov D, Pelletier J, Whitty A, Vajda S. Proc Natl Acad Sci U S A 108 13528-13533 (2011)
  51. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Jimenez GS, Nister M, Stommel JM, Beeche M, Barcarse EA, Zhang XQ, O'Gorman S, Wahl GM. Nat Genet 26 37-43 (2000)
  52. Identification and characterization of a p53 homologue in Drosophila melanogaster. Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW, Levine AJ. Proc Natl Acad Sci U S A 97 7301-7306 (2000)
  53. Molecular characterization of the hdm2-p53 interaction. Böttger A, Böttger V, Garcia-Echeverria C, Chène P, Hochkeppel HK, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP. J Mol Biol 269 744-756 (1997)
  54. Cyclin G recruits PP2A to dephosphorylate Mdm2. Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS, Prives C. Mol Cell 9 761-771 (2002)
  55. Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE. Proc Natl Acad Sci U S A 107 19290-19295 (2010)
  56. Targeting p53 for Novel Anticancer Therapy. Wang Z, Sun Y. Transl Oncol 3 1-12 (2010)
  57. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL. Mol Cell 23 251-263 (2006)
  58. The N-terminal domain of p53 is natively unfolded. Dawson R, Müller L, Dehner A, Klein C, Kessler H, Buchner J. J Mol Biol 332 1131-1141 (2003)
  59. Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 106 6591-6596 (2009)
  60. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Tidow H, Melero R, Mylonas E, Freund SM, Grossmann JG, Carazo JM, Svergun DI, Valle M, Fersht AR. Proc Natl Acad Sci U S A 104 12324-12329 (2007)
  61. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Liu D, Ishima R, Tong KI, Bagby S, Kokubo T, Muhandiram DR, Kay LE, Nakatani Y, Ikura M. Cell 94 573-583 (1998)
  62. Comparing models of evolution for ordered and disordered proteins. Brown CJ, Johnson AK, Daughdrill GW. Mol Biol Evol 27 609-621 (2010)
  63. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Brummelkamp TR, Fabius AW, Mullenders J, Madiredjo M, Velds A, Kerkhoven RM, Bernards R, Beijersbergen RL. Nat Chem Biol 2 202-206 (2006)
  64. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. Elife 5 e11994 (2016)
  65. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski M, May E. Oncogene 19 649-660 (2000)
  66. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Lau LM, Nugent JK, Zhao X, Irwin MS. Oncogene 27 997-1003 (2008)
  67. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Overholtzer M, Rao PH, Favis R, Lu XY, Elowitz MB, Barany F, Ladanyi M, Gorlick R, Levine AJ. Proc Natl Acad Sci U S A 100 11547-11552 (2003)
  68. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Brzovic PS, Heikaus CC, Kisselev L, Vernon R, Herbig E, Pacheco D, Warfield L, Littlefield P, Baker D, Klevit RE, Hahn S. Mol Cell 44 942-953 (2011)
  69. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Graves B, Thompson T, Xia M, Janson C, Lukacs C, Deo D, Di Lello P, Fry D, Garvie C, Huang KS, Gao L, Tovar C, Lovey A, Wanner J, Vassilev LT. Proc Natl Acad Sci U S A 109 11788-11793 (2012)
  70. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Liu M, Liu M, Li C, Pazgier M, Li C, Mao Y, Lv Y, Gu B, Wei G, Yuan W, Zhan C, Lu WY, Lu W. Proc Natl Acad Sci U S A 107 14321-14326 (2010)
  71. Regulation of Mdm2-directed degradation by the C terminus of p53. Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH. Mol Cell Biol 18 5690-5698 (1998)
  72. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C, Pan ZQ. Mol Cell Biol 17 7220-7229 (1997)
  73. Expanding the proteome: disordered and alternatively folded proteins. Dyson HJ. Q Rev Biophys 44 467-518 (2011)
  74. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. Ji Y, Majumder S, Millard M, Borra R, Bi T, Elnagar AY, Neamati N, Shekhtman A, Camarero JA. J Am Chem Soc 135 11623-11633 (2013)
  75. Adenovirus E1B 55K represses p53 activation in vitro. Martin ME, Berk AJ. J Virol 72 3146-3154 (1998)
  76. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Dobbelstein M, Wienzek S, König C, Roth J. Oncogene 18 2101-2106 (1999)
  77. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Borcherds W, Theillet FX, Katzer A, Finzel A, Mishall KM, Powell AT, Wu H, Manieri W, Dieterich C, Selenko P, Loewer A, Daughdrill GW. Nat Chem Biol 10 1000-1002 (2014)
  78. The C terminus of p53 binds the N-terminal domain of MDM2. Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, Byeon IJ, Gabizon R, Mattia M, Zupnick A, Brown LM, Friedler A, Prives C. Nat Struct Mol Biol 17 982-989 (2010)
  79. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. Plant Cell 12 265-278 (2000)
  80. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. Biochemistry 49 9964-9971 (2010)
  81. Widespread occurrence of the droplet state of proteins in the human proteome. Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M. Proc Natl Acad Sci U S A 117 33254-33262 (2020)
  82. TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, Pollok KE, Boothman DA, Mayo LD. J Clin Invest 120 290-302 (2010)
  83. The central region of HDM2 provides a second binding site for p53. Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR. Proc Natl Acad Sci U S A 103 1227-1232 (2006)
  84. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Lopez-Borges S, Lazo PA. Oncogene 19 3656-3664 (2000)
  85. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Yin H, Lee GI, Park HS, Payne GA, Rodriguez JM, Sebti SM, Hamilton AD. Angew Chem Int Ed Engl 44 2704-2707 (2005)
  86. The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Juven-Gershon T, Shifman O, Unger T, Elkeles A, Haupt Y, Oren M. Mol Cell Biol 18 3974-3982 (1998)
  87. Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Trinidad AG, Muller PA, Cuellar J, Klejnot M, Nobis M, Valpuesta JM, Vousden KH. Mol Cell 50 805-817 (2013)
  88. Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Lee C, Chang JH, Lee HS, Cho Y. Genes Dev 16 3199-3212 (2002)
  89. p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Vega FM, Sevilla A, Lazo PA. Mol Cell Biol 24 10366-10380 (2004)
  90. DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer. Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schäfer B, Hannewald J, Luh LM, Durst FG, Ibrahim M, Hoffmann J, Niesen FH, Sentürk A, Kunkel H, Brutschy B, Schleiff E, Knapp S, Acker-Palmer A, Grez M, McKeon F, Dötsch V. Cell 144 566-576 (2011)
  91. Stereospecific interactions of proline residues in protein structures and complexes. Bhattacharyya R, Chakrabarti P. J Mol Biol 331 925-940 (2003)
  92. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Zheleznova EE, Markham PN, Neyfakh AA, Brennan RG. Cell 96 353-362 (1999)
  93. p53 Family members p63 and p73 are SAM domain-containing proteins. Thanos CD, Bowie JU. Protein Sci 8 1708-1710 (1999)
  94. A "twist box" code of p53 inactivation: twist box: p53 interaction promotes p53 degradation. Piccinin S, Tonin E, Sessa S, Demontis S, Rossi S, Pecciarini L, Zanatta L, Pivetta F, Grizzo A, Sonego M, Rosano C, Dei Tos AP, Doglioni C, Maestro R. Cancer Cell 22 404-415 (2012)
  95. Defining the molecular basis of Arf and Hdm2 interactions. Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW. J Mol Biol 314 263-277 (2001)
  96. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam EW, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Mol Cancer 19 138 (2020)
  97. Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Xiong X, Zhao Y, He H, Sun Y. Oncogene 30 1798-1811 (2011)
  98. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE. J Mol Biol 363 433-450 (2006)
  99. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, Schönbrunn E, Chen J. J Biol Chem 285 2174-2183 (2010)
  100. Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. Petre CE, Sin SH, Dittmer DP. J Virol 81 1912-1922 (2007)
  101. Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN. J Mol Biol 350 587-598 (2005)
  102. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S. J Med Chem 56 5553-5561 (2013)
  103. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y. Structure 17 202-210 (2009)
  104. Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. MacPherson D, Kim J, Kim T, Rhee BK, Van Oostrom CT, DiTullio RA, Venere M, Halazonetis TD, Bronson R, De Vries A, Fleming M, Jacks T. EMBO J 23 3689-3699 (2004)
  105. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV. EMBO J 25 5191-5200 (2006)
  106. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. De Guzman RN, Liu HY, Martinez-Yamout M, Dyson HJ, Wright PE. J Mol Biol 303 243-253 (2000)
  107. The UMD TP53 database and website: update and revisions. Hamroun D, Kato S, Ishioka C, Claustres M, Béroud C, Soussi T. Hum Mutat 27 14-20 (2006)
  108. 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: discovery and SAR. Parks DJ, Lafrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD, Maguire D, Grasberger BL, Lu T. Bioorg Med Chem Lett 15 765-770 (2005)
  109. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B, Bruzzoni-Giovanelli H, Fåhraeus R. Oncogene 25 6936-6947 (2006)
  110. Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Leri A, Liu Y, Claudio PP, Kajstura J, Wang X, Wang S, Kang P, Malhotra A, Anversa P. Am J Pathol 154 567-580 (1999)
  111. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Uesugi M, Verdine GL. Proc Natl Acad Sci U S A 96 14801-14806 (1999)
  112. Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. Saha A, Murakami M, Kumar P, Bajaj B, Sims K, Robertson ES. J Virol 83 4652-4669 (2009)
  113. p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Wasylyk C, Salvi R, Argentini M, Dureuil C, Delumeau I, Abecassis J, Debussche L, Wasylyk B. Oncogene 18 1921-1934 (1999)
  114. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions. Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL. J Am Chem Soc 131 5564-5572 (2009)
  115. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Zilfou JT, Hoffman WH, Sank M, George DL, Murphy M. Mol Cell Biol 21 3974-3985 (2001)
  116. Malleable machines in transcription regulation: the mediator complex. Tóth-Petróczy A, Oldfield CJ, Simon I, Takagi Y, Dunker AK, Uversky VN, Fuxreiter M. PLoS Comput Biol 4 e1000243 (2008)
  117. beta-Peptides as inhibitors of protein-protein interactions. Kritzer JA, Stephens OM, Guarracino DA, Reznik SK, Schepartz A. Bioorg Med Chem 13 11-16 (2005)
  118. Core domain interactions in full-length p53 in solution. Veprintsev DB, Freund SM, Andreeva A, Rutledge SE, Tidow H, Cañadillas JM, Blair CM, Fersht AR. Proc Natl Acad Sci U S A 103 2115-2119 (2006)
  119. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Craig AL, Burch L, Vojtesek B, Mikutowska J, Thompson A, Hupp TR. Biochem J 342 ( Pt 1) 133-141 (1999)
  120. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Dornan D, Shimizu H, Burch L, Smith AJ, Hupp TR. Mol Cell Biol 23 8846-8861 (2003)
  121. Structure and VP16 binding of the Mediator Med25 activator interaction domain. Vojnic E, Mourão A, Seizl M, Simon B, Wenzeck L, Larivière L, Baumli S, Baumgart K, Meisterernst M, Sattler M, Cramer P. Nat Struct Mol Biol 18 404-409 (2011)
  122. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. Chène P, Fuchs J, Bohn J, García-Echeverría C, Furet P, Fabbro D. J Mol Biol 299 245-253 (2000)
  123. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Biochemistry 48 2115-2124 (2009)
  124. Dual roles of RNA helicase A in CREB-dependent transcription. Aratani S, Fujii R, Oishi T, Fujita H, Amano T, Ohshima T, Hagiwara M, Fukamizu A, Nakajima T. Mol Cell Biol 21 4460-4469 (2001)
  125. Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Zhang Y, Wang J, Yuan Y, Zhang W, Guan W, Wu Z, Jin C, Chen H, Zhang L, Yang X, He F. Nucleic Acids Res 38 6544-6554 (2010)
  126. Calmodulin signaling: analysis and prediction of a disorder-dependent molecular recognition. Radivojac P, Vucetic S, O'Connor TR, Uversky VN, Obradovic Z, Dunker AK. Proteins 63 398-410 (2006)
  127. p53 activity is essential for normal development in Xenopus. Wallingford JB, Seufert DW, Virta VC, Vize PD. Curr Biol 7 747-757 (1997)
  128. A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Lin CH, Hare BJ, Wagner G, Harrison SC, Maniatis T, Fraenkel E. Mol Cell 8 581-590 (2001)
  129. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, Meroueh SO, Lu H. EMBO Mol Med 4 298-312 (2012)
  130. Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Bustos DM, Iglesias AA. Proteins 63 35-42 (2006)
  131. NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Vise PD, Baral B, Latos AJ, Daughdrill GW. Nucleic Acids Res 33 2061-2077 (2005)
  132. Letter NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Krajewski M, Ozdowy P, D'Silva L, Rothweiler U, Holak TA. Nat Med 11 1135-6; author reply 1136-7 (2005)
  133. Structure-function analyses of the human SIX1-EYA2 complex reveal insights into metastasis and BOR syndrome. Patrick AN, Cabrera JH, Smith AL, Chen XS, Ford HL, Zhao R. Nat Struct Mol Biol 20 447-453 (2013)
  134. Structure-activity studies in a family of beta-hairpin protein epitope mimetic inhibitors of the p53-HDM2 protein-protein interaction. Fasan R, Dias RL, Moehle K, Zerbe O, Obrecht D, Mittl PR, Grütter MG, Robinson JA. Chembiochem 7 515-526 (2006)
  135. MDM2 enhances the function of estrogen receptor alpha in human breast cancer cells. Saji S, Okumura N, Eguchi H, Nakashima S, Suzuki A, Toi M, Nozawa Y, Saji S, Hayashi S. Biochem Biophys Res Commun 281 259-265 (2001)
  136. Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Long J, Parkin B, Ouillette P, Bixby D, Shedden K, Erba H, Wang S, Malek SN. Blood 116 71-80 (2010)
  137. Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Andresen C, Helander S, Lemak A, Farès C, Csizmok V, Carlsson J, Penn LZ, Forman-Kay JD, Arrowsmith CH, Lundström P, Sunnerhagen M. Nucleic Acids Res 40 6353-6366 (2012)
  138. Mutation of mouse p53 Ser23 and the response to DNA damage. Wu Z, Earle J, Saito S, Anderson CW, Appella E, Xu Y. Mol Cell Biol 22 2441-2449 (2002)
  139. Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53. Wong TS, Rajagopalan S, Townsley FM, Freund SM, Petrovich M, Loakes D, Fersht AR. Nucleic Acids Res 37 568-581 (2009)
  140. Scaffolding protein functional sites using deep learning. Wang J, Lisanza S, Juergens D, Tischer D, Watson JL, Castro KM, Ragotte R, Saragovi A, Milles LF, Baek M, Anishchenko I, Yang W, Hicks DR, Expòsit M, Schlichthaerle T, Chun JH, Dauparas J, Bennett N, Wicky BIM, Muenks A, DiMaio F, Correia B, Ovchinnikov S, Baker D. Science 377 387-394 (2022)
  141. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, Ding K, McEachern D, Qiu S, Nikolovska-Coleska Z, Miller R, Kang S, Yang D, Wang S. J Med Chem 52 7970-7973 (2009)
  142. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. Toth A, Nickson P, Qin LL, Erhardt P. J Biol Chem 281 3679-3689 (2006)
  143. A role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Baptiste-Okoh N, Barsotti AM, Prives C. Proc Natl Acad Sci U S A 105 1937-1942 (2008)
  144. Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Herbig E, Warfield L, Fish L, Fishburn J, Knutson BA, Moorefield B, Pacheco D, Hahn S. Mol Cell Biol 30 2376-2390 (2010)
  145. Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Huang F, Rajagopalan S, Settanni G, Marsh RJ, Armoogum DA, Nicolaou N, Bain AJ, Lerner E, Haas E, Ying L, Fersht AR. Proc Natl Acad Sci U S A 106 20758-20763 (2009)
  146. Flexible lid to the p53-binding domain of human Mdm2: implications for p53 regulation. McCoy MA, Gesell JJ, Senior MM, Wyss DF. Proc Natl Acad Sci U S A 100 1645-1648 (2003)
  147. Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations. Paul F, Wehmeyer C, Abualrous ET, Wu H, Crabtree MD, Schöneberg J, Clarke J, Freund C, Weikl TR, Noé F. Nat Commun 8 1095 (2017)
  148. Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Shangary S, Ding K, Ding K, Qiu S, Nikolovska-Coleska Z, Bauer JA, Liu M, Wang G, Lu Y, McEachern D, Bernard D, Bradford CR, Carey TE, Wang S. Mol Cancer Ther 7 1533-1542 (2008)
  149. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. Blanco S, Klimcakova L, Vega FM, Lazo PA. FEBS J 273 2487-2504 (2006)
  150. A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Warfield L, Tuttle LM, Pacheco D, Klevit RE, Hahn S. Proc Natl Acad Sci U S A 111 E3506-13 (2014)
  151. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. He B, Wilson EM. Mol Cell Biol 23 2135-2150 (2003)
  152. α-Helix mimicry with α/β-peptides. Johnson LM, Gellman SH. Methods Enzymol 523 407-429 (2013)
  153. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Krois AS, Ferreon JC, Martinez-Yamout MA, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 113 E1853-62 (2016)
  154. Comprehensive peptidomimetic libraries targeting protein-protein interactions. Whitby LR, Boger DL. Acc Chem Res 45 1698-1709 (2012)
  155. Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. Jensen LT, Winge DR. EMBO J 17 5400-5408 (1998)
  156. Miniature protein inhibitors of the p53-hDM2 interaction. Kritzer JA, Zutshi R, Cheah M, Ran FA, Webman R, Wongjirad TM, Schepartz A. Chembiochem 7 29-31 (2006)
  157. On easy implementation of a variant of the replica exchange with solute tempering in GROMACS. Terakawa T, Kameda T, Takada S. J Comput Chem 32 1228-1234 (2011)
  158. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW. Nat Struct Mol Biol 21 535-543 (2014)
  159. MDM2 and MDMX can interact differently with ARF and members of the p53 family. Wang X, Arooz T, Siu WY, Chiu CH, Lau A, Yamashita K, Poon RY. FEBS Lett 490 202-208 (2001)
  160. MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Tabe Y, Sebasigari D, Jin L, Rudelius M, Davies-Hill T, Miyake K, Miida T, Pittaluga S, Raffeld M. Clin Cancer Res 15 933-942 (2009)
  161. New force field on modeling intrinsically disordered proteins. Wang W, Ye W, Jiang C, Luo R, Chen HF. Chem Biol Drug Des 84 253-269 (2014)
  162. Three-dimensional structure of the anaphase-promoting complex. Gieffers C, Dube P, Harris JR, Stark H, Peters JM. Mol Cell 7 907-913 (2001)
  163. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Wanzel M, Vischedyk JB, Gittler MP, Gremke N, Seiz JR, Hefter M, Noack M, Savai R, Mernberger M, Charles JP, Schneikert J, Bretz AC, Nist A, Stiewe T. Nat Chem Biol 12 22-28 (2016)
  164. Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer. Kelley ML, Winge P, Heaney JD, Stephens RE, Farell JH, Van Beneden RJ, Reinisch CL, Lesser MP, Walker CW. Oncogene 20 748-758 (2001)
  165. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Krois AS, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 115 E11302-E11310 (2018)
  166. Mdm2 facilitates the association of p53 with the proteasome. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C. Proc Natl Acad Sci U S A 107 10038-10043 (2010)
  167. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Fortunato O, Boeri M, Moro M, Verri C, Mensah M, Conte D, Caleca L, Roz L, Pastorino U, Sozzi G. Cell Death Dis 5 e1564 (2014)
  168. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q. Bioorg Med Chem Lett 21 1472-1475 (2011)
  169. Distinct p53, p53:LANA, and LANA complexes in Kaposi's Sarcoma--associated Herpesvirus Lymphomas. Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP. J Virol 84 3898-3908 (2010)
  170. High-throughput discovery of functional disordered regions: investigation of transactivation domains. Ravarani CN, Erkina TY, De Baets G, Dudman DC, Erkine AM, Babu MM. Mol Syst Biol 14 e8190 (2018)
  171. A rapid library screen for tailoring beta-peptide structure and function. Kritzer JA, Luedtke NW, Harker EA, Schepartz A. J Am Chem Soc 127 14584-14585 (2005)
  172. Addressing the intrinsic disorder bottleneck in structural proteomics. Oldfield CJ, Ulrich EL, Cheng Y, Dunker AK, Markley JL. Proteins 59 444-453 (2005)
  173. Letter Aspartame and brain cancer. Roberts HJ. Lancet 349 362 (1997)
  174. Linear motifs confer functional diversity onto splice variants. Weatheritt RJ, Davey NE, Gibson TJ. Nucleic Acids Res 40 7123-7131 (2012)
  175. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E, Becker S. J Mol Biol 336 319-329 (2004)
  176. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. Melcher K, Xu HE. EMBO J 20 841-851 (2001)
  177. Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain. Terakawa T, Takada S. Biophys J 101 1450-1458 (2011)
  178. Photocontrollable peptide-based switches target the anti-apoptotic protein Bcl-xL. Kneissl S, Loveridge EJ, Williams C, Crump MP, Allemann RK. Chembiochem 9 3046-3054 (2008)
  179. Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Do TN, Rosal RV, Drew L, Raffo AJ, Michl J, Pincus MR, Friedman FK, Petrylak DP, Cassai N, Szmulewicz J, Sidhu G, Fine RL, Brandt-Rauf PW. Oncogene 22 1431-1444 (2003)
  180. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, Wu W, Tang J, Chen Z. Genes Dev 29 1524-1534 (2015)
  181. The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. Léveillard T, Wasylyk B. J Biol Chem 272 30651-30661 (1997)
  182. The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53-HDM2 complex structure. Zhao J, Wang M, Chen J, Luo A, Wang X, Wu M, Yin D, Liu Z. Cancer Lett 183 69-77 (2002)
  183. A genetic approach to mapping the p53 binding site in the MDM2 protein. Freedman DA, Epstein CB, Roth JC, Levine AJ. Mol Med 3 248-259 (1997)
  184. A network of substrates of the E3 ubiquitin ligases MDM2 and HUWE1 control apoptosis independently of p53. Kurokawa M, Kim J, Geradts J, Matsuura K, Liu L, Ran X, Xia W, Ribar TJ, Henao R, Dewhirst MW, Kim WJ, Lucas JE, Wang S, Spector NL, Kornbluth S. Sci Signal 6 ra32 (2013)
  185. Computational studies and peptidomimetic design for the human p53-MDM2 complex. Zhong H, Carlson HA. Proteins 58 222-234 (2005)
  186. Letter Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide. Zwier MC, Pratt AJ, Adelman JL, Kaus JW, Zuckerman DM, Chong LT. J Phys Chem Lett 7 3440-3445 (2016)
  187. Inhibition of a viral enzyme by a small-molecule dimer disruptor. Shahian T, Lee GM, Lazic A, Arnold LA, Velusamy P, Roels CM, Guy RK, Craik CS. Nat Chem Biol 5 640-646 (2009)
  188. Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-type TP53. Saleh MN, Patel MR, Bauer TM, Goel S, Falchook GS, Shapiro GI, Chung KY, Infante JR, Conry RM, Rabinowits G, Hong DS, Wang JS, Steidl U, Naik G, Guerlavais V, Vukovic V, Annis DA, Aivado M, Meric-Bernstam F. Clin Cancer Res 27 5236-5247 (2021)
  189. Sonogashira and "Click" reactions for the N-terminal and side-chain functionalization of peptides with [Mn(CO)3(tpm)]+-based CO releasing molecules (tpm = tris(pyrazolyl)methane). Pfeiffer H, Rojas A, Niesel J, Schatzschneider U. Dalton Trans 4292-4298 (2009)
  190. Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Heyken WT, Repenning A, Kumme J, Schüller HJ. Mol Microbiol 56 696-707 (2005)
  191. N-alkylated oligoamide alpha-helical proteomimetics. Campbell F, Plante JP, Edwards TA, Warriner SL, Wilson AJ. Org Biomol Chem 8 2344-2351 (2010)
  192. A left-handed solution to peptide inhibition of the p53-MDM2 interaction. Liu M, Liu M, Pazgier M, Li C, Yuan W, Li C, Lu W. Angew Chem Int Ed Engl 49 3649-3652 (2010)
  193. Recapitulation and design of protein binding peptide structures and sequences. Sood VD, Baker D. J Mol Biol 357 917-927 (2006)
  194. Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH. Okuda M, Tanaka A, Satoh M, Mizuta S, Takazawa M, Ohkuma Y, Nishimura Y. EMBO J 27 1161-1171 (2008)
  195. Susceptibility of p53 unstructured N terminus to 20 S proteasomal degradation programs the stress response. Tsvetkov P, Reuven N, Prives C, Shaul Y. J Biol Chem 284 26234-26242 (2009)
  196. Thermodynamics of p53 binding to hdm2(1-126): effects of phosphorylation and p53 peptide length. Lai Z, Auger KR, Manubay CM, Copeland RA. Arch Biochem Biophys 381 278-284 (2000)
  197. MI-63: a novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Canner JA, Sobo M, Ball S, Hutzen B, DeAngelis S, Willis W, Studebaker AW, Ding K, Ding K, Wang S, Yang D, Lin J. Br J Cancer 101 774-781 (2009)
  198. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. Luciani MG, Hutchins JR, Zheleva D, Hupp TR. J Mol Biol 300 503-518 (2000)
  199. The mycotoxin Zearalenone induces apoptosis in human hepatocytes (HepG2) via p53-dependent mitochondrial signaling pathway. Ayed-Boussema I, Bouaziz C, Rjiba K, Valenti K, Laporte F, Bacha H, Hassen W. Toxicol In Vitro 22 1671-1680 (2008)
  200. Trp-26 imparts functional versatility to human alpha-defensin HNP1. Wei G, Pazgier M, de Leeuw E, Rajabi M, Li J, Zou G, Jung G, Yuan W, Lu WY, Lehrer RI, Lu W. J Biol Chem 285 16275-16285 (2010)
  201. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Jenkins LM, Yamaguchi H, Hayashi R, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Mazur SJ. Biochemistry 48 1244-1255 (2009)
  202. p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Valbuena A, Vega FM, Blanco S, Lazo PA. Mol Cell Biol 26 4782-4793 (2006)
  203. Crystal Structures of Human MdmX (HdmX) in Complex with p53 Peptide Analogues Reveal Surprising Conformational Changes. Kallen J, Goepfert A, Blechschmidt A, Izaac A, Geiser M, Tavares G, Ramage P, Furet P, Masuya K, Lisztwan J. J Biol Chem 284 8812-8821 (2009)
  204. Efficient electrostatic solvation model for protein-fragment docking. Majeux N, Scarsi M, Caflisch A. Proteins 42 256-268 (2001)
  205. Induced N- and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53. Okorokov AL, Ponchel F, Milner J. EMBO J 16 6008-6017 (1997)
  206. Inhibitors of the p53/hdm2 protein-protein interaction-path to the clinic. Carry JC, Garcia-Echeverria C. Bioorg Med Chem Lett 23 2480-2485 (2013)
  207. Pathogenesis of haemophilic synovitis: experimental studies on blood-induced joint damage. Valentino LA, Hakobyan N, Rodriguez N, Hoots WK. Haemophilia 13 Suppl 3 10-13 (2007)
  208. Peptide and peptoid foldamers in medicinal chemistry. Horne WS. Expert Opin Drug Discov 6 1247-1262 (2011)
  209. Kinetic properties of p53 phosphorylation by the human vaccinia-related kinase 1. Barcia R, López-Borges S, Vega FM, Lazo PA. Arch Biochem Biophys 399 1-5 (2002)
  210. MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism. Sczaniecka M, Gladstone K, Pettersson S, McLaren L, Huart AS, Wallace M. J Biol Chem 287 14052-14068 (2012)
  211. NMR structure of a complex between MDM2 and a small molecule inhibitor. Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F. J Biomol NMR 30 163-173 (2004)
  212. Palladium-Mediated Arylation of Lysine in Unprotected Peptides. Lee HG, Lautrette G, Pentelute BL, Buchwald SL. Angew Chem Int Ed Engl 56 3177-3181 (2017)
  213. Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Bean LJ, Stark GR. Oncogene 20 1076-1084 (2001)
  214. Targeting tumor suppressor networks for cancer therapeutics. Guo XE, Ngo B, Modrek AS, Lee WH. Curr Drug Targets 15 2-16 (2014)
  215. A transcriptional activating region with two contrasting modes of protein interaction. Ansari AZ, Reece RJ, Ptashne M. Proc Natl Acad Sci U S A 95 13543-13548 (1998)
  216. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis. Hayano S, Komatsu Y, Pan H, Mishina Y. Development 142 1357-1367 (2015)
  217. DNA damage-induced phosphorylation of p53 at serine 20 correlates with p21 and Mdm-2 induction in vivo. Jabbur JR, Huang P, Zhang W. Oncogene 19 6203-6208 (2000)
  218. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX. Mol Cell Biol 25 6154-6164 (2005)
  219. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Zhao J, Blayney A, Liu X, Gandy L, Jin W, Yan L, Ha JH, Canning AJ, Connelly M, Yang C, Liu X, Xiao Y, Cosgrove MS, Solmaz SR, Zhang Y, Ban D, Chen J, Loh SN, Wang C. Nat Commun 12 986 (2021)
  220. Apamin as a template for structure-based rational design of potent peptide activators of p53. Li C, Pazgier M, Liu M, Liu M, Lu WY, Lu W. Angew Chem Int Ed Engl 48 8712-8715 (2009)
  221. Double Strain-Promoted Macrocyclization for the Rapid Selection of Cell-Active Stapled Peptides. Lau YH, Wu Y, Rossmann M, Tan BX, de Andrade P, Tan YS, Verma C, McKenzie GJ, Venkitaraman AR, Hyvönen M, Spring DR. Angew Chem Int Ed Engl 54 15410-15413 (2015)
  222. Solution structure of a beta-peptide ligand for hDM2. Kritzer JA, Hodsdon ME, Schepartz A. J Am Chem Soc 127 4118-4119 (2005)
  223. pH-induced folding of an apoptotic coiled coil. Dutta K, Alexandrov A, Huang H, Pascal SM. Protein Sci 10 2531-2540 (2001)
  224. A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, Murakami M, Ruetz S, Guthy DA, Rynn C, Jensen MR, Wiesmann M, Kallen J, Furet P, Gessier F, Holzer P, Masuya K, Würthner J, Halilovic E, Hofmann F, Sellers WR, Graus Porta D. Elife 4 e06498 (2015)
  225. Beta-peptides with improved affinity for hDM2 and hDMX. Harker EA, Daniels DS, Guarracino DA, Schepartz A. Bioorg Med Chem 17 2038-2046 (2009)
  226. Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro. Missirlis D, Khant H, Tirrell M. Biochemistry 48 3304-3314 (2009)
  227. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Arya AK, El-Fert A, Devling T, Eccles RM, Aslam MA, Rubbi CP, Vlatković N, Fenwick J, Lloyd BH, Sibson DR, Jones TM, Boyd MT. Br J Cancer 103 186-195 (2010)
  228. Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach. Salmaso V, Sturlese M, Cuzzolin A, Moro S. Structure 25 655-662.e2 (2017)
  229. Identification of a novel gene encoding a p53-associated protein. Zhou R, Wen H, Ao SZ. Gene 235 93-101 (1999)
  230. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis. Wan Y, Wu W, Yin Z, Guan P, Zhou B. BMC Cancer 11 208 (2011)
  231. Selective and potent proteomimetic inhibitors of intracellular protein-protein interactions. Barnard A, Long K, Martin HL, Miles JA, Edwards TA, Tomlinson DC, Macdonald A, Wilson AJ. Angew Chem Int Ed Engl 54 2960-2965 (2015)
  232. The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Santos CR, Vega FM, Blanco S, Barcia R, Lazo PA. Virology 328 254-265 (2004)
  233. p53 gene family p51(p63)-encoded, secondary transactivator p51B(TAp63alpha) occurs without forming an immunoprecipitable complex with MDM2, but responds to genotoxic stress by accumulation. Okada Y, Osada M, Kurata S, Sato S, Aisaki K, Kageyama Y, Kihara K, Ikawa Y, Katoh I. Exp Cell Res 276 194-200 (2002)
  234. A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. Chen J, Wang J, Zhu W, Li G. J Comput Aided Mol Des 27 965-974 (2013)
  235. A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K. Plant Physiol 137 317-327 (2005)
  236. Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding. Wu S, Chen L, Becker A, Schonbrunn E, Chen J. Mol Cell Biol 32 4821-4832 (2012)
  237. Hexylitaconic acid: a new inhibitor of p53-HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp. Tsukamoto S, Yoshida T, Hosono H, Ohta T, Yokosawa H. Bioorg Med Chem Lett 16 69-71 (2006)
  238. Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097. Weisberg E, Halilovic E, Cooke VG, Nonami A, Ren T, Sanda T, Simkin I, Yuan J, Antonakos B, Barys L, Ito M, Stone R, Galinsky I, Cowens K, Nelson E, Sattler M, Jeay S, Wuerthner JU, McDonough SM, Wiesmann M, Griffin JD. Mol Cancer Ther 14 2249-2259 (2015)
  239. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Vogel SM, Bauer MR, Joerger AC, Wilcken R, Brandt T, Veprintsev DB, Rutherford TJ, Fersht AR, Boeckler FM. Proc Natl Acad Sci U S A 109 16906-16910 (2012)
  240. Loss of one but not two mdm2 null alleles alters the tumour spectrum in p53 null mice. McDonnell TJ, Montes de Oca Luna R, Cho S, Amelse LL, Chavez-Reyes A, Lozano G. J Pathol 188 322-328 (1999)
  241. MDMX contains an autoinhibitory sequence element. Bista M, Petrovich M, Fersht AR. Proc Natl Acad Sci U S A 110 17814-17819 (2013)
  242. Molecular interaction maps as information organizers and simulation guides. Kohn KW. Chaos 11 84-97 (2001)
  243. Solution structure of the transactivation domain of ATF-2 comprising a zinc finger-like subdomain and a flexible subdomain. Nagadoi A, Nakazawa K, Uda H, Okuno K, Maekawa T, Ishii S, Nishimura Y. J Mol Biol 287 593-607 (1999)
  244. Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF). Mas C, Lussier-Price M, Soni S, Morse T, Arseneault G, Di Lello P, Lafrance-Vanasse J, Bieker JJ, Omichinski JG. Proc Natl Acad Sci U S A 108 10484-10489 (2011)
  245. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. Melcher K. J Mol Biol 301 1097-1112 (2000)
  246. Discovery of a novel class of highly potent inhibitors of the p53-MDM2 interaction by structure-based design starting from a conformational argument. Furet P, Masuya K, Kallen J, Stachyra-Valat T, Ruetz S, Guagnano V, Holzer P, Mah R, Stutz S, Vaupel A, Chène P, Jeay S, Schlapbach A. Bioorg Med Chem Lett 26 4837-4841 (2016)
  247. Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. Hardcastle IR, Ahmed SU, Atkins H, Calvert AH, Curtin NJ, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Källblad P, Kemp SJ, Kitching MS, Newell DR, Norbedo S, Northen JS, Reid RJ, Saravanan K, Willems HM, Lunec J. Bioorg Med Chem Lett 15 1515-1520 (2005)
  248. The evolution of MDM2 family genes. Momand J, Villegas A, Belyi VA. Gene 486 23-30 (2011)
  249. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E. Biochemistry 54 2001-2010 (2015)
  250. Interaction between the transactivation domain of p53 and PC4 exemplifies acidic activation domains as single-stranded DNA mimics. Rajagopalan S, Andreeva A, Teufel DP, Freund SM, Fersht AR. J Biol Chem 284 21728-21737 (2009)
  251. Ligand deconstruction: Why some fragment binding positions are conserved and others are not. Kozakov D, Hall DR, Jehle S, Luo L, Ochiana SO, Jones EV, Pollastri M, Allen KN, Whitty A, Vajda S. Proc Natl Acad Sci U S A 112 E2585-94 (2015)
  252. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. Andreotti V, Ciribilli Y, Monti P, Bisio A, Lion M, Jordan J, Fronza G, Menichini P, Resnick MA, Inga A. PLoS One 6 e20643 (2011)
  253. Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. Schon O, Friedler A, Freund S, Fersht AR. J Mol Biol 336 197-202 (2004)
  254. Crystal structure of a transcriptionally active Smad4 fragment. Qin B, Lam SS, Lin K. Structure 7 1493-1503 (1999)
  255. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations. Verma S, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Grover A. PLoS One 11 e0149014 (2016)
  256. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21. Jabbur JR, Tabor AD, Cheng X, Wang H, Uesugi M, Lozano G, Zhang W. Oncogene 21 7100-7113 (2002)
  257. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Genes Dev 15 1007-1020 (2001)
  258. Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81. Rajesh S, Sridhar P, Tews BA, Fénéant L, Cocquerel L, Ward DG, Berditchevski F, Overduin M. J Virol 86 9606-9616 (2012)
  259. Unique complex between bacterial azurin and tumor-suppressor protein p53. Apiyo D, Wittung-Stafshede P. Biochem Biophys Res Commun 332 965-968 (2005)
  260. Amino acid residues required for physical and cooperative transcriptional interaction of STAT3 and AP-1 proteins c-Jun and c-Fos. Ginsberg M, Czeko E, Müller P, Ren Z, Chen X, Darnell JE. Mol Cell Biol 27 6300-6308 (2007)
  261. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein. Liu WL, Midgley C, Stephen C, Saville M, Lane DP. J Mol Biol 313 711-731 (2001)
  262. Folding pathway mediated by an intramolecular chaperone: intrinsically unstructured propeptide modulates stochastic activation of subtilisin. Subbian E, Yabuta Y, Shinde UP. J Mol Biol 347 367-383 (2005)
  263. Identifying long-range structure in the intrinsically unstructured transactivation domain of p53. Vise P, Baral B, Stancik A, Lowry DF, Daughdrill GW. Proteins 67 526-530 (2007)
  264. In Silico Improvement of beta3-peptide inhibitors of p53 x hDM2 and p53 x hDMX. Michel J, Harker EA, Tirado-Rives J, Jorgensen WL, Schepartz A. J Am Chem Soc 131 6356-6357 (2009)
  265. MDM2 overexpression generates a skin phenotype in both wild type and p53 null mice. Alkhalaf M, Ganguli G, Messaddeq N, Le Meur M, Wasylyk B. Oncogene 18 1419-1434 (1999)
  266. Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Gutierrez-Mariscal FM, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Camargo A, Delgado-Casado N, Cruz-Teno C, Santos-Gonzalez M, Rodriguez-Cantalejo F, Castaño JP, Villalba-Montoro JM, Fuentes F, Perez-Jimenez F, Perez-Jimenez F, Lopez-Miranda J. Age (Dordr) 34 389-403 (2012)
  267. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53. Lowry DF, Stancik A, Shrestha RM, Daughdrill GW. Proteins 71 587-598 (2008)
  268. Overexpression of MDM2 oncoprotein correlates with possession of estrogen receptor alpha and lack of MDM2 mRNA splice variants in human breast cancer. Hori M, Shimazaki J, Inagawa S, Itabashi M, Hori M. Breast Cancer Res Treat 71 77-83 (2002)
  269. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Carr MI, Jones SN. Transl Cancer Res 5 707-724 (2016)
  270. TRIM59 is upregulated and promotes cell proliferation and migration in human osteosarcoma. Liang J, Xing D, Li Z, Shen J, Zhao H, Li S. Mol Med Rep 13 5200-5206 (2016)
  271. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. Villiard E, Brinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S. BMC Evol Biol 7 180 (2007)
  272. Biphenyls as potential mimetics of protein alpha-helix. Jacoby E. Bioorg Med Chem Lett 12 891-893 (2002)
  273. De novo design of protein structure and function with RFdiffusion. Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, Ahern W, Borst AJ, Ragotte RJ, Milles LF, Wicky BIM, Hanikel N, Pellock SJ, Courbet A, Sheffler W, Wang J, Venkatesh P, Sappington I, Torres SV, Lauko A, De Bortoli V, Mathieu E, Ovchinnikov S, Barzilay R, Jaakkola TS, DiMaio F, Baek M, Baker D. Nature 620 1089-1100 (2023)
  274. ODiNPred: comprehensive prediction of protein order and disorder. Dass R, Mulder FAA, Nielsen JT. Sci Rep 10 14780 (2020)
  275. Requirements for chromatin modulation and transcription activation by the Pho4 acidic activation domain. McAndrew PC, Svaren J, Martin SR, Hörz W, Goding CR. Mol Cell Biol 18 5818-5827 (1998)
  276. Structural and functional comparison of the RING domains of two p53 E3 ligases, Mdm2 and Pirh2. Shloush J, Vlassov JE, Engson I, Duan S, Saridakis V, Dhe-Paganon S, Raught B, Sheng Y, Arrowsmith CH. J Biol Chem 286 4796-4808 (2011)
  277. The CBP/p300 TAZ1 domain in its native state is not a binding partner of MDM2. Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE. Biochem J 381 685-691 (2004)
  278. A function for the RING finger domain in the allosteric control of MDM2 conformation and activity. Wawrzynow B, Pettersson S, Zylicz A, Bramham J, Worrall E, Hupp TR, Ball KL. J Biol Chem 284 11517-11530 (2009)
  279. In-solution enrichment identifies peptide inhibitors of protein-protein interactions. Touti F, Gates ZP, Bandyopadhyay A, Lautrette G, Pentelute BL. Nat Chem Biol 15 410-418 (2019)
  280. Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo. Sivakolundu SG, Nourse A, Moshiach S, Bothner B, Ashley C, Satumba J, Lahti J, Kriwacki RW. J Mol Biol 384 240-254 (2008)
  281. Long-range modulation of chain motions within the intrinsically disordered transactivation domain of tumor suppressor p53. Lum JK, Neuweiler H, Fersht AR. J Am Chem Soc 134 1617-1622 (2012)
  282. MDM2 antagonist can inhibit tumor growth in hepatocellular carcinoma with different types of p53 in vitro. Wang J, Zheng T, Chen X, Song X, Meng X, Bhatta N, Pan S, Jiang H, Liu L. J Gastroenterol Hepatol 26 371-377 (2011)
  283. Virtual interaction profiles of proteins. Wollacott AM, Desjarlais JR. J Mol Biol 313 317-342 (2001)
  284. Effect of phosphorylation on the structure and fold of transactivation domain of p53. Kar S, Sakaguchi K, Shimohigashi Y, Samaddar S, Banerjee R, Basu G, Swaminathan V, Kundu TK, Roy S. J Biol Chem 277 15579-15585 (2002)
  285. Facile synthesis of stapled, structurally reinforced peptide helices via a photoinduced intramolecular 1,3-dipolar cycloaddition reaction. Madden MM, Rivera Vera CI, Song W, Lin Q. Chem Commun (Camb) 5588-5590 (2009)
  286. Mdm2 in evolution. Lane DP, Verma C. Genes Cancer 3 320-324 (2012)
  287. Nucleation effects in peptide foldamers. Patgiri A, Joy ST, Arora PS. J Am Chem Soc 134 11495-11502 (2012)
  288. Prevalence of the EH1 Groucho interaction motif in the metazoan Fox family of transcriptional regulators. Yaklichkin S, Vekker A, Stayrook S, Lewis M, Kessler DS. BMC Genomics 8 201 (2007)
  289. Stabilized helical peptides: overview of the technologies and therapeutic promises. Estieu-Gionnet K, Guichard G. Expert Opin Drug Discov 6 937-963 (2011)
  290. Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein. Mal TK, Masutomi Y, Zheng L, Nakata Y, Ohta H, Nakatani Y, Kokubo T, Ikura M. J Mol Biol 339 681-693 (2004)
  291. The activation domain of the MotA transcription factor from bacteriophage T4. Finnin MS, Cicero MP, Davies C, Porter SJ, White SW, Kreuzer KN. EMBO J 16 1992-2003 (1997)
  292. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, Tan YS, Madhumalar A, Tay BH, Brenner S, Verma CS, Ghadessy FJ, Venkatesh B, Lane DP. Genes Dev 30 281-292 (2016)
  293. VRK1 interacts with p53 forming a basal complex that is activated by UV-induced DNA damage. López-Sánchez I, Valbuena A, Vázquez-Cedeira M, Khadake J, Sanz-García M, Carrillo-Jiménez A, Lazo PA. FEBS Lett 588 692-700 (2014)
  294. 2-O-alkylated para-benzamide α-helix mimetics: the role of scaffold curvature. Azzarito V, Prabhakaran P, Bartlett AI, Murphy NS, Hardie MJ, Kilner CA, Edwards TA, Warriner SL, Wilson AJ. Org Biomol Chem 10 6469-6472 (2012)
  295. Deconstruction of a nutlin: dissecting the binding determinants of a potent protein-protein interaction inhibitor. Fry DC, Wartchow C, Graves B, Janson C, Lukacs C, Kammlott U, Belunis C, Palme S, Klein C, Vu B. ACS Med Chem Lett 4 660-665 (2013)
  296. Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. Fukuchi S, Homma K, Minezaki Y, Gojobori T, Nishikawa K. BMC Struct Biol 9 26 (2009)
  297. Molecular basis of the interactions between the p73 N terminus and p300: effects on transactivation and modulation by phosphorylation. Burge S, Teufel DP, Townsley FM, Freund SM, Bycroft M, Fersht AR. Proc Natl Acad Sci U S A 106 3142-3147 (2009)
  298. Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli. Maeng CY, Oh MS, Park IH, Hong HJ. Biochem Biophys Res Commun 282 787-792 (2001)
  299. Small molecules that bind the Mdm2 RING stabilize and activate p53. Roxburgh P, Hock AK, Dickens MP, Mezna M, Fischer PM, Vousden KH. Carcinogenesis 33 791-798 (2012)
  300. The 9aaTAD Transactivation Domains: From Gal4 to p53. Piskacek M, Havelka M, Rezacova M, Knight A. PLoS One 11 e0162842 (2016)
  301. The ETS family member ERM contains an alpha-helical acidic activation domain that contacts TAFII60. Defossez PA, Baert JL, Monnot M, de Launoit Y. Nucleic Acids Res 25 4455-4463 (1997)
  302. Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. Thépaut M, Maiorano D, Guichou JF, Augé MT, Dumas C, Méchali M, Padilla A. J Mol Biol 342 275-287 (2004)
  303. Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53-MDM2 interaction with a distinct binding mode. Gessier F, Kallen J, Jacoby E, Chène P, Stachyra-Valat T, Ruetz S, Jeay S, Holzer P, Masuya K, Furet P. Bioorg Med Chem Lett 25 3621-3625 (2015)
  304. Effects of MDM2 promoter polymorphisms and p53 codon 72 polymorphism on risk and age at onset of squamous cell carcinoma of the head and neck. Yu H, Huang YJ, Liu Z, Wang LE, Li G, Sturgis EM, Johnson DG, Wei Q. Mol Carcinog 50 697-706 (2011)
  305. Identification of a domain within MDMX-S that is responsible for its high affinity interaction with p53 and high-level expression in mammalian cells. Rallapalli R, Strachan G, Tuan RS, Hall DJ. J Cell Biochem 89 563-575 (2003)
  306. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation. Deng Z, Chen CJ, Zerby D, Delecluse HJ, Lieberman PM. J Virol 75 10334-10347 (2001)
  307. Identifying binding hot spots on protein surfaces by mixed-solvent molecular dynamics: HIV-1 protease as a test case. Ung PM, Ghanakota P, Graham SE, Lexa KW, Carlson HA. Biopolymers 105 21-34 (2016)
  308. N and C-terminal sub-regions in the c-Myc transactivation region and their joint role in creating versatility in folding and binding. Fladvad M, Zhou K, Moshref A, Pursglove S, Säfsten P, Sunnerhagen M. J Mol Biol 346 175-189 (2005)
  309. Photoreactive stapled BH3 peptides to dissect the BCL-2 family interactome. Braun CR, Mintseris J, Gavathiotis E, Bird GH, Gygi SP, Walensky LD. Chem Biol 17 1325-1333 (2010)
  310. Physical and functional antagonism between tumor suppressor protein p53 and fortilin, an anti-apoptotic protein. Chen Y, Fujita T, Zhang D, Doan H, Pinkaew D, Liu Z, Wu J, Koide Y, Chiu A, Lin CC, Chang JY, Ruan KH, Fujise K. J Biol Chem 286 32575-32585 (2011)
  311. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Xue B, Dunker AK, Uversky VN. Int J Mol Sci 11 3725-3747 (2010)
  312. The structure of an MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant. Anil B, Riedinger C, Endicott JA, Noble ME. Acta Crystallogr D Biol Crystallogr 69 1358-1366 (2013)
  313. Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Phang BH, Othman R, Bougeard G, Chia RH, Frebourg T, Tang CL, Cheah PY, Sabapathy K. Proc Natl Acad Sci U S A 112 E6349-58 (2015)
  314. Baculovirus p33 binds human p53 and enhances p53-mediated apoptosis. Prikhod'ko GG, Wang Y, Freulich E, Prives C, Miller LK. J Virol 73 1227-1234 (1999)
  315. Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. Kane SA, Fleener CA, Zhang YS, Davis LJ, Musselman AL, Huang PS. Anal Biochem 278 29-38 (2000)
  316. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Swetzig WM, Wang J, Das GM. Oncotarget 7 16049-16069 (2016)
  317. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Rufini A, Cavallo F, Condò I, Fortuni S, De Martino G, Incani O, Di Venere A, Benini M, Massaro DS, Arcuri G, Serio D, Malisan F, Testi R. Neurobiol Dis 75 91-99 (2015)
  318. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA. Burch LR, Midgley CA, Currie RA, Lane DP, Hupp TR. FEBS Lett 472 93-98 (2000)
  319. Mechanistic validation of a clinical lead stapled peptide that reactivates p53 by dual HDM2 and HDMX targeting. Wachter F, Morgan AM, Godes M, Mourtada R, Bird GH, Walensky LD. Oncogene 36 2184-2190 (2017)
  320. Retroperitoneal liposarcoma with combined well-differentiated and myxoid malignant fibrous histiocytoma-like myxoid areas. Hisaoka M, Morimitsu Y, Hashimoto H, Ishida T, Mukai H, Satoh H, Motoi T, Machinami R. Am J Surg Pathol 23 1480-1492 (1999)
  321. Solution conformation of an essential region of the p53 transactivation domain. Botuyan MV, Momand J, Chen Y. Fold Des 2 331-342 (1997)
  322. A DNA-binding mutant of TAL1 cooperates with LMO2 to cause T cell leukemia in mice. Draheim KM, Hermance N, Yang Y, Arous E, Calvo J, Kelliher MA. Oncogene 30 1252-1260 (2011)
  323. A High-Throughput Screen for Transcription Activation Domains Reveals Their Sequence Features and Permits Prediction by Deep Learning. Erijman A, Kozlowski L, Sohrabi-Jahromi S, Fishburn J, Warfield L, Schreiber J, Noble WS, Söding J, Hahn S. Mol Cell 78 890-902.e6 (2020)
  324. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo. Shimizu H, Saliba D, Wallace M, Finlan L, Langridge-Smith PR, Hupp TR. Biochem J 397 355-367 (2006)
  325. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions. Barakat K, Mane J, Friesen D, Tuszynski J. J Mol Graph Model 28 555-568 (2010)
  326. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, Zhao H, Miyagishi M, Kasim V. Sci Adv 3 e1701383 (2017)
  327. Molecular dynamics of the full-length p53 monomer. Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Cell Cycle 12 3098-3108 (2013)
  328. SMAR1 forms a ternary complex with p53-MDM2 and negatively regulates p53-mediated transcription. Pavithra L, Mukherjee S, Sreenath K, Kar S, Sakaguchi K, Roy S, Chattopadhyay S. J Mol Biol 388 691-702 (2009)
  329. Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Raboisson P, Marugán JJ, Schubert C, Koblish HK, Lu T, Zhao S, Player MR, Maroney AC, Reed RL, Huebert ND, Lattanze J, Parks DJ, Cummings MD. Bioorg Med Chem Lett 15 1857-1861 (2005)
  330. Zinc deficiency causes neural tube defects through attenuation of p53 ubiquitylation. Li H, Zhang J, Niswander L. Development 145 dev169797 (2018)
  331. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. Yoon JW, Lamm M, Iannaccone S, Higashiyama N, Leong KF, Iannaccone P, Walterhouse D. DNA Repair (Amst) 34 9-17 (2015)
  332. Cytotoxicity of Pyrazine-Based Cyclometalated (C^Npz^C)Au(III) Carbene Complexes: Impact of the Nature of the Ancillary Ligand on the Biological Properties. Bertrand B, Fernandez-Cestau J, Angulo J, Cominetti MMD, Waller ZAE, Searcey M, O'Connell MA, Bochmann M. Inorg Chem 56 5728-5740 (2017)
  333. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway. Das U, Manna K, Khan A, Sinha M, Biswas S, Sengupta A, Chakraborty A, Dey S. Free Radic Res 51 47-63 (2017)
  334. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation. Koga T, Hashimoto S, Sugio K, Yoshino I, Nakagawa K, Yonemitsu Y, Sugimachi K, Sueishi K. Int J Cancer 95 232-239 (2001)
  335. Identification of a CK2 phosphorylation site in mdm2. Götz C, Kartarius S, Scholtes P, Nastainczyk W, Montenarh M. Eur J Biochem 266 493-501 (1999)
  336. Negative regulation of p53 by Ras superfamily protein RBEL1A. Lui K, An J, Montalbano J, Shi J, Corcoran C, He Q, Sun H, Sheikh MS, Huang Y. J Cell Sci 126 2436-2445 (2013)
  337. Proteasomal degradation of p53 by human papillomavirus E6 oncoprotein relies on the structural integrity of p53 core domain. Bernard X, Robinson P, Nominé Y, Masson M, Charbonnier S, Ramirez-Ramos JR, Deryckere F, Travé G, Orfanoudakis G. PLoS One 6 e25981 (2011)
  338. Structural characterization of the DAXX N-terminal helical bundle domain and its complex with Rassf1C. Escobar-Cabrera E, Lau DK, Giovinazzi S, Ishov AM, McIntosh LP. Structure 18 1642-1653 (2010)
  339. Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents. Ribeiro CJ, Amaral JD, Rodrigues CM, Moreira R, Santos MM. Bioorg Med Chem 22 577-584 (2014)
  340. Trp53 regulates Notch 4 signaling through Mdm2. Sun Y, Klauzinska M, Lake RJ, Lee JM, Santopietro S, Raafat A, Salomon D, Callahan R, Artavanis-Tsakonas S. J Cell Sci 124 1067-1076 (2011)
  341. Conformational changes of the p53-binding cleft of MDM2 revealed by molecular dynamics simulations. Espinoza-Fonseca LM, Trujillo-Ferrara JG. Biopolymers 83 365-373 (2006)
  342. Expansion of protein interaction maps by phage peptide display using MDM2 as a prototypical conformationally flexible target protein. Burch L, Shimizu H, Smith A, Patterson C, Hupp TR. J Mol Biol 337 129-145 (2004)
  343. Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: the functional role of Ser17 phosphorylation in MDM2 reexamined. Zhan C, Varney K, Yuan W, Zhao L, Lu W. J Am Chem Soc 134 6855-6864 (2012)
  344. Intracellular expression of Peptide fusions for demonstration of protein essentiality in bacteria. Benson RE, Gottlin EB, Christensen DJ, Hamilton PT. Antimicrob Agents Chemother 47 2875-2881 (2003)
  345. Intrinsically disordered protein-specific force field CHARMM36IDPSFF. Liu H, Song D, Lu H, Luo R, Chen HF. Chem Biol Drug Des 92 1722-1735 (2018)
  346. It Takes 15 to Tango: Making Sense of the Many Ubiquitin Ligases of p53. Love IM, Grossman SR. Genes Cancer 3 249-263 (2012)
  347. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Chen J, Wang J, Zhang Q, Chen K, Zhu W. Sci Rep 5 17421 (2015)
  348. The effects of phosphomimetic lid mutation on the thermostability of the N-terminal domain of MDM2. Worrall EG, Worrall L, Blackburn E, Walkinshaw M, Hupp TR. J Mol Biol 398 414-428 (2010)
  349. The glutamine-rich domain of the Drosophila GAGA factor is necessary for amyloid fibre formation in vitro, but not for chromatin remodelling. Agianian B, Leonard K, Bonte E, Van der Zandt H, Becker PB, Tucker PA. J Mol Biol 285 527-544 (1999)
  350. Two distinct domains in Staf to selectively activate small nuclear RNA-type and mRNA promoters. Schuster C, Krol A, Carbon P. Mol Cell Biol 18 2650-2658 (1998)
  351. A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK. Anal Biochem 300 230-236 (2002)
  352. Combination of radiotherapy and adenovirus-mediated p53 gene therapy for MDM2-overexpressing hepatocellular carcinoma. Koom WS, Park SY, Kim W, Kim M, Kim JS, Kim H, Choi IK, Yun CO, Seong J. J Radiat Res 53 202-210 (2012)
  353. Comparison of the protein-protein interfaces in the p53-DNA crystal structures: towards elucidation of the biological interface. Ma B, Pan Y, Gunasekaran K, Venkataraghavan RB, Levine AJ, Nussinov R. Proc Natl Acad Sci U S A 102 3988-3993 (2005)
  354. Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins. Lee C, Kalmar L, Xue B, Tompa P, Daughdrill GW, Uversky VN, Han KH. Biochim Biophys Acta 1840 993-1003 (2014)
  355. Directed evolution of highly selective proteases by using a novel FACS-based screen that capitalizes on the p53 regulator MDM2. Yoo TH, Pogson M, Iverson BL, Georgiou G. Chembiochem 13 649-653 (2012)
  356. Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy. Zhang Z, Ding Q, Liu JJ, Zhang J, Jiang N, Chu XJ, Bartkovitz D, Luk KC, Janson C, Tovar C, Filipovic ZM, Higgins B, Glenn K, Packman K, Vassilev LT, Graves B. Bioorg Med Chem 22 4001-4009 (2014)
  357. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Li X, Tolbert WD, Hu HG, Gohain N, Zou Y, Zou Y, Niu F, He WX, Yuan W, Su JC, Pazgier M, Lu W. Chem Sci 10 1522-1530 (2019)
  358. Effect of an hdm-2 antagonist peptide inhibitor on cell cycle progression in p53-deficient H1299 human lung carcinoma cells. VanderBorght A, Valckx A, Van Dun J, Grand-Perret T, De Schepper S, Vialard J, Janicot M, Arts J. Oncogene 25 6672-6677 (2006)
  359. Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction. Li C, Zhan C, Zhao L, Chen X, Lu WY, Lu W. Bioorg Med Chem 21 4045-4050 (2013)
  360. Implementation of a 220,000-compound HCS campaign to identify disruptors of the interaction between p53 and hDM2 and characterization of the confirmed hits. Dudgeon DD, Shinde S, Hua Y, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA. J Biomol Screen 15 766-782 (2010)
  361. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor. Lawrence CF, Margetts MB, Menting JG, Smith NA, Smith BJ, Ward CW, Lawrence MC. J Biol Chem 291 15473-15481 (2016)
  362. NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Nguyen BD, Abbott KL, Potempa K, Kobor MS, Archambault J, Greenblatt J, Legault P, Omichinski JG. Proc Natl Acad Sci U S A 100 5688-5693 (2003)
  363. PNC-28, a p53-derived peptide that is cytotoxic to cancer cells, blocks pancreatic cancer cell growth in vivo. Michl J, Scharf B, Schmidt A, Huynh C, Hannan R, von Gizycki H, Friedman FK, Brandt-Rauf P, Fine RL, Pincus MR. Int J Cancer 119 1577-1585 (2006)
  364. Residual Structures and Transient Long-Range Interactions of p53 Transactivation Domain: Assessment of Explicit Solvent Protein Force Fields. Liu X, Chen J. J Chem Theory Comput 15 4708-4720 (2019)
  365. Reversible α-helix formation controlled by a hydrogen bond surrogate. Miller SE, Kallenbach NR, Arora PS. Tetrahedron 68 4434-4437 (2012)
  366. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Buel GR, Chen X, Chari R, O'Neill MJ, Ebelle DL, Jenkins C, Sridharan V, Tarasov SG, Tarasova NI, Andresson T, Walters KJ. Nat Commun 11 1291 (2020)
  367. The structurally disordered KRAB repression domain is incorporated into a protease resistant core upon binding to KAP-1-RBCC domain. Peng H, Gibson LC, Capili AD, Borden KL, Osborne MJ, Harper SL, Speicher DW, Zhao K, Marmorstein R, Rock TA, Rauscher FJ. J Mol Biol 370 269-289 (2007)
  368. Total synthesis of chlorofusin, its seven chromophore diastereomers, and key partial structures. Clark RC, Lee SY, Boger DL. J Am Chem Soc 130 12355-12369 (2008)
  369. A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls. Jessen-Eller K, Kreiling JA, Begley GS, Steele ME, Walker CW, Stephens RE, Reinisch CL. Environ Health Perspect 110 377-385 (2002)
  370. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: I. phosphorylation at SER269 in vivo is linked to inactivation of p53 function. Fraser JA, Vojtesek B, Hupp TR. J Biol Chem 285 37762-37772 (2010)
  371. A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Sun X, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 118 e2021456118 (2021)
  372. In silico design of tubulin-targeted antimitotic peptides. Pieraccini S, Saladino G, Cappelletti G, Cartelli D, Francescato P, Speranza G, Manitto P, Sironi M. Nat Chem 1 642-648 (2009)
  373. Increased Mdm2 expression in rat brain after transient middle cerebral artery occlusion. Tu Y, Hou ST, Huang Z, Robertson GS, MacManus JP. J Cereb Blood Flow Metab 18 658-669 (1998)
  374. Microwave assisted solid phase synthesis of highly functionalized N-alkylated oligobenzamide α-helix mimetics. Long K, Edwards TA, Wilson AJ. Bioorg Med Chem 21 4034-4040 (2013)
  375. Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations. Ganguly D, Chen J. PLoS Comput Biol 11 e1004247 (2015)
  376. Prognostic value of immunohistochemistry for p53 in primary soft-tissue sarcomas: a multivariate analysis of five antibodies. Würl P, Taubert H, Meye A, Berger D, Lautenschläger C, Holzhausen HJ, Schmidt H, Kalthoff H, Rath FW, Dralle H. J Cancer Res Clin Oncol 123 502-508 (1997)
  377. Regulatory domain of protein stability of human P51/TAP63, a P53 homologue. Osada M, Inaba R, Shinohara H, Hagiwara M, Nakamura M, Ikawa Y. Biochem Biophys Res Commun 283 1135-1141 (2001)
  378. Surface charge of Merkel cell polyomavirus small T antigen determines cell transformation through allosteric FBW7 WD40 domain targeting. Nwogu N, Ortiz LE, Kwun HJ. Oncogenesis 9 53 (2020)
  379. An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Muttray AF, O'Toole TF, Morrill W, Van Beneden RJ, Baldwin SA. Comp Biochem Physiol B Biochem Mol Biol 156 298-308 (2010)
  380. Analysis of molecular interactions of the p53-family p51(p63) gene products in a yeast two-hybrid system: homotypic and heterotypic interactions and association with p53-regulatory factors. Kojima T, Ikawa Y, Katoh I. Biochem Biophys Res Commun 281 1170-1175 (2001)
  381. Autoactivation of the MDM2 E3 ligase by intramolecular interaction. Cheng Q, Song T, Chen L, Chen J. Mol Cell Biol 34 2800-2810 (2014)
  382. Cell proliferation and invasion is promoted by circSERPINA3 in nasopharyngeal carcinoma by regulating miR-944/MDM2 axis. Liu R, Zhou M, Zhang P, Zhao Y, Zhang Y. J Cancer 11 3910-3918 (2020)
  383. Design of protein-protein interaction inhibitors based on protein epitope mimetics. Robinson JA. Chembiochem 10 971-973 (2009)
  384. Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. Wang B, Liu J, Tandon I, Wu S, Teng P, Liao J, Tang W. Eur J Med Chem 219 113425 (2021)
  385. Effects of side chains in helix nucleation differ from helix propagation. Miller SE, Watkins AM, Kallenbach NR, Arora PS. Proc Natl Acad Sci U S A 111 6636-6641 (2014)
  386. Expression of full-length p53 and its isoform Deltap53 in breast carcinomas in relation to mutation status and clinical parameters. Baumbusch LO, Myhre S, Langerød A, Bergamaschi A, Geisler SB, Lønning PE, Deppert W, Dornreiter I, Børresen-Dale AL. Mol Cancer 5 47 (2006)
  387. Hydrophobicity at the surface of proteins. Scarsi M, Majeux N, Caflisch A. Proteins 37 565-575 (1999)
  388. Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry. Hernychova L, Man P, Verma C, Nicholson J, Sharma CA, Ruckova E, Teo JY, Ball K, Vojtesek B, Hupp TR. Proteomics 13 2512-2525 (2013)
  389. L-GILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells. Ayroldi E, Petrillo MG, Bastianelli A, Marchetti MC, Ronchetti S, Nocentini G, Ricciotti L, Cannarile L, Riccardi C. Cell Death Differ 22 118-130 (2015)
  390. Leucine-rich hydrophobic clusters promote folding of the N-terminus of the intrinsically disordered transactivation domain of p53. Espinoza-Fonseca LM. FEBS Lett 583 556-560 (2009)
  391. Optimization of CD4/gp120 inhibitors by thermodynamic-guided alanine-scanning mutagenesis. Liu Y, Schön A, Freire E. Chem Biol Drug Des 81 72-78 (2013)
  392. Oxidative stress enhances phosphorylation of p53 in neonatal rat cardiomyocytes. Long X, Goldenthal MJ, Marín-García J. Mol Cell Biochem 303 167-174 (2007)
  393. Probing the Small-Molecule Inhibition of an Anticancer Therapeutic Protein-Protein Interaction Using a Solid-State Nanopore. Kwak DK, Chae H, Lee MK, Ha JH, Goyal G, Kim MJ, Kim KB, Chi SW. Angew Chem Int Ed Engl 55 5713-5717 (2016)
  394. The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members. Verger A, Baert JL, Verreman K, Dewitte F, Ferreira E, Lens Z, de Launoit Y, Villeret V, Monté D. Nucleic Acids Res 41 4847-4859 (2013)
  395. mdm2 mRNA level is a prognostic factor in soft tissue sarcoma. Taubert H, Koehler T, Meye A, Bartel F, Lautenschläger C, Borchert S, Bache M, Schmidt H, Würl P. Mol Med 6 50-59 (2000)
  396. Discovery of DS-5272 as a promising candidate: A potent and orally active p53-MDM2 interaction inhibitor. Miyazaki M, Uoto K, Sugimoto Y, Naito H, Yoshida K, Okayama T, Kawato H, Miyazaki M, Kitagawa M, Seki T, Fukutake S, Aonuma M, Soga T. Bioorg Med Chem 23 2360-2367 (2015)
  397. Effect of the peptide secondary structure on the peptide amphiphile supramolecular structure and interactions. Missirlis D, Chworos A, Fu CJ, Khant HA, Krogstad DV, Tirrell M. Langmuir 27 6163-6170 (2011)
  398. Estradiol stabilizes p53 protein in breast cancer cell line, MCF-7. Okumura N, Saji S, Eguchi H, Hayashi S, Saji S, Nakashima S. Jpn J Cancer Res 93 867-873 (2002)
  399. Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides. Lau YH, de Andrade P, McKenzie GJ, Venkitaraman AR, Spring DR. Chembiochem 15 2680-2683 (2014)
  400. Oxidative Stress Induced by MnSOD-p53 Interaction: Pro- or Anti-Tumorigenic? Robbins D, Zhao Y. J Signal Transduct 2012 101465 (2012)
  401. Protein hot spots: the islands of stability. Kuttner YY, Engel S. J Mol Biol 415 419-428 (2012)
  402. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting. Brown CJ, Dastidar SG, See HY, Coomber DW, Ortiz-Lombardía M, Verma C, Lane DP. J Mol Biol 395 871-883 (2010)
  403. Stochastic modeling and simulation of the p53-MDM2/MDMX loop. Cai X, Yuan ZM. J Comput Biol 16 917-933 (2009)
  404. TA-p63-gamma regulates expression of DeltaN-p63 in a manner that is sensitive to p53. Li N, Li H, Cherukuri P, Farzan S, Harmes DC, DiRenzo J. Oncogene 25 2349-2359 (2006)
  405. The DEAD box protein Ddx42p modulates the function of ASPP2, a stimulator of apoptosis. Uhlmann-Schiffler H, Kiermayer S, Stahl H. Oncogene 28 2065-2073 (2009)
  406. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury JN, Garofalo F, Zhu Y, Friedler A, Prives C. Genes Dev 32 430-447 (2018)
  407. Zinc-finger protein p52-ZER6 accelerates colorectal cancer cell proliferation and tumour progression through promoting p53 ubiquitination. Huang C, Wu S, Li W, Herkilini A, Miyagishi M, Zhao H, Kasim V. EBioMedicine 48 248-263 (2019)
  408. A Cyclized Helix-Loop-Helix Peptide as a Molecular Scaffold for the Design of Inhibitors of Intracellular Protein-Protein Interactions by Epitope and Arginine Grafting. Fujiwara D, Kitada H, Oguri M, Nishihara T, Michigami M, Shiraishi K, Yuba E, Nakase I, Im H, Cho S, Joung JY, Kodama S, Kono K, Ham S, Fujii I. Angew Chem Int Ed Engl 55 10612-10615 (2016)
  409. A conserved helix-unfolding motif in the naturally unfolded proteins. Zetina CR. Proteins 44 479-483 (2001)
  410. A hydrophobic segment within the 81-amino-acid domain of TFIIIA from Saccharomyces cerevisiae is essential for its transcription factor activity. Rowland O, Segall J. Mol Cell Biol 18 420-432 (1998)
  411. Characterization and optimization of a novel protein-protein interaction biosensor high-content screening assay to identify disruptors of the interactions between p53 and hDM2. Dudgeon DD, Shinde SN, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA. Assay Drug Dev Technol 8 437-458 (2010)
  412. Designer macrocyclic organo-peptide hybrids inhibit the interaction between p53 and HDM2/X by accommodating a functional α-helix. Smith JM, Frost JR, Fasan R. Chem Commun (Camb) 50 5027-5030 (2014)
  413. End-Capped α-Helices as Modulators of Protein Function. Mahon AB, Arora PS. Drug Discov Today Technol 9 e57-e62 (2012)
  414. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study. Patil SP, Pacitti MF, Gilroy KS, Ruggiero JC, Griffin JD, Butera JJ, Notarfrancesco JM, Tran S, Stoddart JW. J Comput Aided Mol Des 29 155-163 (2015)
  415. Identification of tumour-associated and germ line p53 mutations in canine mammary cancer. Veldhoen N, Watterson J, Brash M, Milner J. Br J Cancer 81 409-415 (1999)
  416. Interaction of p53 with Mdm2 and azurin as studied by atomic force spectroscopy. Funari G, Domenici F, Nardinocchi L, Puca R, D'Orazi G, Bizzarri AR, Cannistraro S. J Mol Recognit 23 343-351 (2010)
  417. Internalization of p53(14-29) peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death. Missirlis D, Krogstad DV, Tirrell M. Mol Pharm 7 2173-2184 (2010)
  418. Modeling multi-component protein-DNA complexes: the role of bending and dimerization in the complex of p53 dimers with DNA. Lebrun A, Lavery R, Weinstein H. Protein Eng 14 233-243 (2001)
  419. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. Xue Y, Hong X, Gao J, Shen R, Ye Z. Int J Nanomedicine 14 483-498 (2019)
  420. Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems. Bolanos-Garcia VM, Wu Q, Ochi T, Chirgadze DY, Sibanda BL, Blundell TL. Philos Trans A Math Phys Eng Sci 370 3023-3039 (2012)
  421. Structural insights into the dual-targeting mechanism of Nutlin-3. Shin JS, Ha JH, He F, Muto Y, Ryu KS, Yoon HS, Kang S, Park SG, Park BC, Choi SU, Chi SW. Biochem Biophys Res Commun 420 48-53 (2012)
  422. The use of ion mobility mass spectrometry to probe modulation of the structure of p53 and of MDM2 by small molecule inhibitors. Dickinson ER, Jurneczko E, Nicholson J, Hupp TR, Zawacka-Pankau J, Selivanova G, Barran PE. Front Mol Biosci 2 39 (2015)
  423. Using BRET to study chemical compound-induced disruptions of the p53-HDM2 interactions in live cells. Mazars A, Fåhraeus R. Biotechnol J 5 377-384 (2010)
  424. Variation of free-energy landscape of the p53 C-terminal domain induced by acetylation: Enhanced conformational sampling. Iida S, Mashimo T, Kurosawa T, Hojo H, Muta H, Goto Y, Fukunishi Y, Nakamura H, Higo J. J Comput Chem 37 2687-2700 (2016)
  425. De novo coiled-coil peptides as scaffolds for disrupting protein-protein interactions. Fletcher JM, Horner KA, Bartlett GJ, Rhys GG, Wilson AJ, Woolfson DN. Chem Sci 9 7656-7665 (2018)
  426. Azurin modulates the association of Mdm2 with p53: SPR evidence from interaction of the full-length proteins. Domenici F, Frasconi M, Mazzei F, D'Orazi G, Bizzarri AR, Cannistraro S. J Mol Recognit 24 707-714 (2011)
  427. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53. Ou WB, Lu M, Eilers G, Li H, Ding J, Meng X, Wu Y, He Q, Sheng Q, Zhou HM, Fletcher JA. Br J Cancer 115 1253-1263 (2016)
  428. Combining coarse-grained nonbonded and atomistic bonded interactions for protein modeling. Zacharias M. Proteins 81 81-92 (2013)
  429. Design of libraries targeting protein-protein interfaces. Fry D, Huang KS, Di Lello P, Mohr P, Müller K, So SS, Harada T, Stahl M, Vu B, Mauser H. ChemMedChem 8 726-732 (2013)
  430. Development of cell-penetrating peptide-based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions. Philippe G, Huang YH, Cheneval O, Lawrence N, Zhang Z, Fairlie DP, Craik DJ, de Araujo AD, Henriques ST. Biopolymers 106 853-863 (2016)
  431. Diaryl- and triaryl-pyrrole derivatives: inhibitors of the MDM2-p53 and MDMX-p53 protein-protein interactions†Electronic supplementary information (ESI) available: Experimental details for compound synthesis, analytical data for all compounds and intermediates. Details for the biological evaluation. Further details for the modeling. Table of combustion analysis data. See DOI: 10.1039/c3md00161jClick here for additional data file. Blackburn TJ, Ahmed S, Coxon CR, Liu J, Lu X, Golding BT, Griffin RJ, Hutton C, Newell DR, Ojo S, Watson AF, Zaytzev A, Zhao Y, Lunec J, Hardcastle IR. Medchemcomm 4 1297-1304 (2013)
  432. Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery. Thean D, Ebo JS, Luxton T, Lee XC, Yuen TY, Ferrer FJ, Johannes CW, Lane DP, Brown CJ. Sci Rep 7 1763 (2017)
  433. Guinea pig p53 mRNA: identification of new elements in coding and untranslated regions and their functional and evolutionary implications. D'erchia AM, Pesole G, Tullo A, Saccone C, Sbisà E. Genomics 58 50-64 (1999)
  434. Have p53 gene mutations and protein expression a different biological significance in colorectal cancer? Bazan V, Migliavacca M, Tubiolo C, Macaluso M, Zanna I, Corsale S, Amato A, Calò V, Dardanoni G, Morello V, La Farina M, Albanese I, Tomasino RM, Gebbia N, Russo A. J Cell Physiol 191 237-246 (2002)
  435. Identification of the core domain and the secondary structure of the transcriptional coactivator MBF1. Ozaki J, Takemaru KI, Ikegami T, Mishima M, Ueda H, Hirose S, Kabe Y, Handa H, Shirakawa M. Genes Cells 4 415-424 (1999)
  436. Inhibiting the apoptosis pathway using MDM2 in mammalian cell cultures. Arden N, Majors BS, Ahn SH, Oyler G, Betenbaugh MJ. Biotechnol Bioeng 97 601-614 (2007)
  437. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin. Taranta M, Bizzarri AR, Cannistraro S. J Mol Recognit 22 215-222 (2009)
  438. Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Robson AF, Hupp TR, Lickiss F, Ball KL, Faulds K, Graham D. Proc Natl Acad Sci U S A 109 8073-8078 (2012)
  439. Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. Surmiak E, Neochoritis CG, Musielak B, Twarda-Clapa A, Kurpiewska K, Dubin G, Camacho C, Holak TA, Dömling A. Eur J Med Chem 126 384-407 (2017)
  440. The functional and structural characterization of a novel oncogene GIG47 involved in the breast tumorigenesis. Han KH, Lee SH, Ha SA, Kim HK, Lee C, Kim DH, Gong KH, Yoo J, Kim S, Kim JW. BMC Cancer 12 274 (2012)
  441. Transient-state kinetic analysis of transcriptional activator·DNA complexes interacting with a key coactivator. Wands AM, Wang N, Lum JK, Hsieh J, Fierke CA, Mapp AK. J Biol Chem 286 16238-16245 (2011)
  442. cDNA cloning and expression analysis of flounder p53 tumour suppressor gene. Cachot J, Galgani F, Vincent F. Comp Biochem Physiol B Biochem Mol Biol 121 235-242 (1998)
  443. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2. Karakostis K, Ponnuswamy A, Fusée LT, Bailly X, Laguerre L, Worall E, Vojtesek B, Nylander K, Fåhraeus R. Mol Biol Evol 33 1280-1292 (2016)
  444. A composite motif of the Drosophila morphogenetic protein bicoid critical to transcription control. Zhao C, Fu D, Dave V, Ma J. J Biol Chem 278 43901-43909 (2003)
  445. Corp Regulates P53 in Drosophila melanogaster via a Negative Feedback Loop. Chakraborty R, Li Y, Zhou L, Golic KG. PLoS Genet 11 e1005400 (2015)
  446. Demonstration of protein-fragment complementation assay using purified firefly luciferase fragments. Ohmuro-Matsuyama Y, Chung CI, Ueda H. BMC Biotechnol 13 31 (2013)
  447. Design and synthesis of new bioisosteres of spirooxindoles (MI-63/219) as anti-breast cancer agents. Kumar A, Gupta G, Bishnoi AK, Saxena R, Saini KS, Konwar R, Kumar S, Dwivedi A. Bioorg Med Chem 23 839-848 (2015)
  448. Detection of p73 antibodies in patients with various types of cancer: immunological characterization. Tominaga O, Unsal K, Zalcman G, Soussi T. Br J Cancer 84 57-63 (2001)
  449. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling. Wu Y, Olsen LB, Lau YH, Jensen CH, Rossmann M, Baker YR, Sore HF, Collins S, Spring DR. Chembiochem 17 689-692 (2016)
  450. Downregulation of cyclin D1 sensitizes cancer cells to MDM2 antagonist Nutlin-3. Yang P, Chen W, Li X, Eilers G, He Q, Liu L, Wu Y, Wu Y, Yu W, Fletcher JA, Ou WB. Oncotarget 7 32652-32663 (2016)
  451. Immobilized peptides as high-affinity capture agents for self-associating proteins. Naffin JL, Han Y, Olivos HJ, Reddy MM, Sun T, Kodadek T. Chem Biol 10 251-259 (2003)
  452. Inducible epitope imprinting: 'generating' the required binding site in membrane receptors for targeted drug delivery. Liu S, Bi Q, Long Y, Li Z, Bhattacharyya S, Li C. Nanoscale 9 5394-5397 (2017)
  453. Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis. Fedorova O, Daks A, Petrova V, Petukhov A, Lezina L, Shuvalov O, Davidovich P, Kriger D, Lomert E, Tentler D, Kartsev V, Uyanik B, Tribulovich V, Demidov O, Melino G, Barlev NA. Cell Cycle 17 1917-1930 (2018)
  454. Requirement for HDM2 activity in the rapid degradation of p53 in neuroblastoma. Isaacs JS, Saito S, Neckers LM. J Biol Chem 276 18497-18506 (2001)
  455. Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain. Magnussen HM, Ahmed SF, Sibbet GJ, Hristova VA, Nomura K, Hock AK, Archibald LJ, Jamieson AG, Fushman D, Vousden KH, Weissman AM, Huang DT. Nat Commun 11 2094 (2020)
  456. A highly potent and cellularly active beta-peptidic inhibitor of the p53/hDM2 interaction. Hintersteiner M, Kimmerlin T, Garavel G, Schindler T, Bauer R, Meisner NC, Seifert JM, Uhl V, Auer M. Chembiochem 10 994-998 (2009)
  457. Aromatic-aromatic interactions in the formation of the MDM2-p53 complex. Espinoza-Fonseca LM, García-Machorro J. Biochem Biophys Res Commun 370 547-551 (2008)
  458. Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches. Schluttig J, Alamanova D, Helms V, Schwarz US. J Chem Phys 129 155106 (2008)
  459. Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway. Lin J, Jin X, Bu Y, Cao D, Zhang N, Li S, Sun Q, Tan C, Gao C, Jiang Y. Org Biomol Chem 10 9734-9746 (2012)
  460. Modification of the p53 transgene of a replication-competent adenovirus prevents mdm2- and E1b-55kD-mediated degradation of p53. Sauthoff H, Pipiya T, Chen S, Heitner S, Cheng J, Huang YQ, Rom WN, Hay JG. Cancer Gene Ther 13 686-695 (2006)
  461. Multiple hTAF(II)31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. Kim DH, Lee SH, Nam KH, Chi SW, Chang I, Han KH. BMB Rep 42 411-417 (2009)
  462. Overexpression of MDM2 in MCF-7 promotes both growth advantage and p53 accumulation in response to estradiol. Saji S, Nakashima S, Hayashi S, Toi M, Saji S, Nozawa Y. Jpn J Cancer Res 90 210-218 (1999)
  463. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition. Patil SP, Ballester PJ, Kerezsi CR. J Comput Aided Mol Des 28 89-97 (2014)
  464. Screening Outside the Catalytic Site: Inhibition of Macromolecular Inter-actions Through Structure-Based Virtual Ligand Screening Experiments. Sperandio O, Miteva MA, Segers K, Nicolaes GA, Villoutreix BO. Open Biochem J 2 29-37 (2008)
  465. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning. Riaz M, Ashfaq UA, Qasim M, Yasmeen E, Ul Qamar MT, Anwar F. Anticancer Drugs 28 1032-1038 (2017)
  466. Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. Wang F, Li Y, Ma Z, Wang X, Wang Y. J Mol Model 18 295-306 (2012)
  467. Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins. Borcherds W, Kashtanov S, Wu H, Daughdrill GW. Proteins 81 1686-1698 (2013)
  468. TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation. Bae S, Jung JH, Kim K, An IS, Kim SY, Lee JH, Park IC, Jin YW, Lee SJ, An S. FEBS Lett 586 3057-3063 (2012)
  469. Tetra-substituted imidazoles as a new class of inhibitors of the p53-MDM2 interaction. Vaupel A, Bold G, De Pover A, Stachyra-Valat T, Lisztwan JH, Kallen J, Masuya K, Furet P. Bioorg Med Chem Lett 24 2110-2114 (2014)
  470. The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues. Kistanova E, Dell H, Tsantili P, Falvey E, Cladaras C, Hadzopoulou-Cladaras M. Biochem J 356 635-642 (2001)
  471. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Medina-Medina I, Martínez-Sánchez M, Hernández-Monge J, Fahraeus R, Muller P, Olivares-Illana V. Protein Sci 27 976-986 (2018)
  472. In vitro and in vivo Induction of p53-Dependent Apoptosis by Extract of Euryale ferox Salisb in A549 Human Caucasian Lung Carcinoma Cancer Cells Is Mediated Through Akt Signaling Pathway. Nam GH, Jo KJ, Park YS, Kawk HW, Kim SY, Kim YM. Front Oncol 9 406 (2019)
  473. A Suite of Tutorials for the WESTPA Rare-Events Sampling Software [Article v1.0]. Bogetti AT, Mostofian B, Dickson A, Pratt AJ, Saglam AS, Harrison PO, Adelman JL, Dudek M, Torrillo PA, DeGrave AJ, Adhikari U, Zwier MC, Zuckerman DM, Chong LT. Living J Comput Mol Sci 1 10607 (2019)
  474. A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Tsuburaya N, Homma K, Higuchi T, Balia A, Yamakoshi H, Shibata N, Nakamura S, Nakagawa H, Ikeda SI, Umezawa N, Kato N, Yokoshima S, Shibuya M, Shimonishi M, Kojima H, Okabe T, Nagano T, Naguro I, Imamura K, Inoue H, Fujisawa T, Ichijo H. Nat Commun 9 2668 (2018)
  475. Alteration of protein structure induced by low-energy (<18 eV) electrons. I. The peptide and disulfide bridges. Abdoul-Carime H, Cecchini S, Sanche L. Radiat Res 158 23-31 (2002)
  476. BLM interaction with EZH2 regulates MDM2 expression and is a poor prognostic biomarker for prostate cancer. Ruan Y, Xu H, Ji X, Zhao J. Am J Cancer Res 11 1347-1368 (2021)
  477. Computational analysis of spiro-oxindole inhibitors of the MDM2-p53 interaction: insights and selection of novel inhibitors. Huang W, Cai L, Chen C, Xie X, Zhao Q, Zhao X, Zhou HY, Han B, Peng C. J Biomol Struct Dyn 34 341-351 (2016)
  478. Cytotoxic effect of a non-peptidic small molecular inhibitor of the p53-HDM2 interaction on tumor cells. Li WD, Wang MJ, Ding F, Yin DL, Liu ZH. World J Gastroenterol 11 2927-2931 (2005)
  479. Detection of complex formation and determination of intermolecular geometry through electrical anharmonic coupling of molecular vibrations using electron-vibration-vibration two-dimensional infrared spectroscopy. Guo R, Fournier F, Donaldson PM, Gardner EM, Gould IR, Klug DR. Phys Chem Chem Phys 11 8417-8421 (2009)
  480. Free energy evaluation of the p53-Mdm2 complex from unbinding work measured by dynamic force spectroscopy. Bizzarri AR, Cannistraro S. Phys Chem Chem Phys 13 2738-2743 (2011)
  481. Insulin receptor tyrosine kinase substrate enhances low levels of MDM2-mediated p53 ubiquitination. Wang KS, Chen G, Shen HL, Li TT, Chen F, Wang QW, Wang ZQ, Han ZG, Zhang X. PLoS One 6 e23571 (2011)
  482. Interactions between the otitis media gene, Fbxo11, and p53 in the mouse embryonic lung. Tateossian H, Morse S, Simon MM, Dean CH, Brown SD. Dis Model Mech 8 1531-1542 (2015)
  483. JNK2 downregulation promotes tumorigenesis and chemoresistance by decreasing p53 stability in bladder cancer. Pan CW, Liu H, Zhao Y, Qian C, Wang L, Qi J. Oncotarget 7 35119-35131 (2016)
  484. P53-independent down-regulation of Mdm2 in human cancer cells treated with adriamycin. Ma Y, Yuan R, Meng Q, Goldberg ID, Rosen EM, Fan S. Mol Cell Biol Res Commun 3 122-128 (2000)
  485. Patented small molecule inhibitors of p53-MDM2 interaction. Deng J, Dayam R, Neamati N. Expert Opin Ther Pat 16 165-188 (2006)
  486. Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug screening in test tubes. Zhou M, Li W, Li J, Xie L, Wu R, Wang L, Fu S, Su W, Hu J, Wang J, Li P. J Biol Chem 295 11420-11434 (2020)
  487. Selective and Potent Proteomimetic Inhibitors of Intracellular Protein-Protein Interactions. Barnard A, Long K, Martin HL, Miles JA, Edwards TA, Tomlinson DC, Macdonald A, Wilson AJ. Angew Chem Weinheim Bergstr Ger 127 3003-3008 (2015)
  488. Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the p53-MDM2 protein-protein interaction. Zhuang C, Miao Z, Zhu L, Zhang Y, Guo Z, Yao J, Dong G, Wang S, Liu Y, Chen H, Sheng C, Zhang W. Eur J Med Chem 46 5654-5661 (2011)
  489. Synthesis and evaluation of novel orally active p53-MDM2 interaction inhibitors. Miyazaki M, Naito H, Sugimoto Y, Yoshida K, Kawato H, Okayama T, Shimizu H, Miyazaki M, Kitagawa M, Seki T, Fukutake S, Shiose Y, Aonuma M, Soga T. Bioorg Med Chem 21 4319-4331 (2013)
  490. Targeted nutlin-3a loaded nanoparticles inhibiting p53-MDM2 interaction: novel strategy for breast cancer therapy. Das M, Dilnawaz F, Sahoo SK. Nanomedicine (Lond) 6 489-507 (2011)
  491. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids. Svetlov V, Cooper TG. J Bacteriol 179 7644-7652 (1997)
  492. Transcription Activation Domains of the Yeast Factors Met4 and Ino2: Tandem Activation Domains with Properties Similar to the Yeast Gcn4 Activator. Pacheco D, Warfield L, Brajcich M, Robbins H, Luo J, Ranish J, Hahn S. Mol Cell Biol 38 e00038-18 (2018)
  493. Transient stability of the helical pattern of region F19-L22 of the N-terminal domain of p53: a molecular dynamics simulation study. Espinoza-Fonseca LM, Trujillo-Ferrara JG. Biochem Biophys Res Commun 343 110-116 (2006)
  494. p53: Multiple Facets of a Rubik's Cube. Zhang Y, Lozano G. Annu Rev Cancer Biol 1 185-201 (2017)
  495. Cell Cycle Arrest and Cytotoxic Effects of SAHA and RG7388 Mediated through p21WAF1/CIP1 and p27KIP1 in Cancer Cells. Natarajan U, Venkatesan T, Radhakrishnan V, Samuel S, Rasappan P, Rathinavelu A. Medicina (Kaunas) 55 E30 (2019)
  496. Expression and spectroscopic analysis of a mutant hepatitis B virus onco-protein HBx without cysteine residues. Rui E, Moura PR, Gonçalves Kde A, Kobarg J. J Virol Methods 126 65-74 (2005)
  497. Flexibility is important for inhibition of the MDM2/p53 protein-protein interaction by cyclic β-hairpins. Danelius E, Pettersson M, Bred M, Min J, Waddell MB, Guy RK, Grøtli M, Erdelyi M. Org Biomol Chem 14 10386-10393 (2016)
  498. HAUSP-regulated switch from auto- to p53 ubiquitination by Mdm2 (in silico discovery). Brazhnik P, Kohn KW. Math Biosci 210 60-77 (2007)
  499. Long-term administration of the fungus toxin, sterigmatocystin, induces intestinal metaplasia and increases the proliferative activity of PCNA, p53, and MDM2 in the gastric mucosa of aged Mongolian gerbils. Kusunoki M, Misumi J, Shimada T, Aoki K, Matsuo N, Sumiyoshi H, Yamaguchi T, Yoshioka H. Environ Health Prev Med 16 224-231 (2011)
  500. Mdm2 enhances ligase activity of parkin and facilitates mitophagy. Kook S, Zhan X, Thibeault K, Ahmed MR, Gurevich VV, Gurevich EV. Sci Rep 10 5028 (2020)
  501. Prognostic relevance of C-terminal Mdm2 detection is enhanced by p53 positivity in soft tissue sarcomas. Würl P, Meye A, Berger D, Bache M, Lautenschläger C, Schmidt H, Kalthoff H, Rath FW, Taubert H. Diagn Mol Pathol 6 249-254 (1997)
  502. Protein-protein interactions for cancer therapy. Harris CC. Proc Natl Acad Sci U S A 103 1659-1660 (2006)
  503. Regulation of the cell cycle by p53 after DNA damage in an amphibian cell line. Bensaad K, Rouillard D, Soussi T. Oncogene 20 3766-3775 (2001)
  504. Selection for constrained peptides that bind to a single target protein. King AM, Anderson DA, Glassey E, Segall-Shapiro TH, Zhang Z, Niquille DL, Embree AC, Pratt K, Williams TL, Gordon DB, Voigt CA. Nat Commun 12 6343 (2021)
  505. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. Barcia-Sanjurjo I, Vázquez-Cedeira M, Barcia R, Lazo PA. J Biol Inorg Chem 18 473-482 (2013)
  506. Structural assessment of single amino acid mutations: application to TP53 function. Yip YL, Zoete V, Scheib H, Michielin O. Hum Mutat 27 926-937 (2006)
  507. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition. Shirai NC, Kikuchi M. J Chem Phys 139 225103 (2013)
  508. Structure- and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2. Houston DR, Yen LH, Pettit S, Walkinshaw MD. PLoS One 10 e0121424 (2015)
  509. The MDM2 ligand Nutlin-3 differentially alters expression of the immune blockade receptors PD-L1 and CD276. Li R, Zatloukalova P, Muller P, Gil-Mir M, Kote S, Wilkinson S, Kemp AJ, Hernychova L, Wang Y, Ball KL, Tao K, Hupp T, Vojtesek B. Cell Mol Biol Lett 25 41 (2020)
  510. The contribution of the Trp/Met/Phe residues to physical interactions of p53 with cellular proteins. Ma B, Pan Y, Gunasekaran K, Keskin O, Venkataraghavan RB, Levine AJ, Nussinov R. Phys Biol 2 S56-66 (2005)
  511. The paradox of conformational constraint in the design of Cbl(TKB)-binding peptides. Kumar EA, Chen Q, Kizhake S, Kolar C, Kang M, Chang CE, Borgstahl GE, Natarajan A. Sci Rep 3 1639 (2013)
  512. The protective effects of XH-105 against radiation-induced intestinal injury. Cheng Y, Dong Y, Hou Q, Wu J, Zhang W, Tian H, Li D. J Cell Mol Med 23 2238-2247 (2019)
  513. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2. Heyne K, Förster J, Schüle R, Roemer K. Nucleic Acids Res 42 3565-3579 (2014)
  514. Tumor-specific induction of apoptosis by a p53-reactivating compound. Hedström E, Issaeva N, Enge M, Selivanova G. Exp Cell Res 315 451-461 (2009)
  515. VRK1 Phosphorylates Tip60/KAT5 and Is Required for H4K16 Acetylation in Response to DNA Damage. García-González R, Morejón-García P, Campillo-Marcos I, Salzano M, Lazo PA. Cancers (Basel) 12 E2986 (2020)
  516. Walleye dermal sarcoma virus rv-cyclin inhibits NF-kappaB-dependent transcription. Quackenbush SL, Linton A, Brewster CD, Rovnak J. Virology 386 55-60 (2009)
  517. Why is F19Ap53 unable to bind MDM2? Simulations suggest crack propagation modulates binding. Dastidar SG, Lane DP, Verma CS. Cell Cycle 11 2239-2247 (2012)
  518. A cell-based high-throughput assay for the screening of small-molecule inhibitors of p53-MDM2 interaction. Li J, Zhang S, Gao L, Chen Y, Xie X. J Biomol Screen 16 450-456 (2011)
  519. A single alpha-helical turn stabilized by replacement of an internal hydrogen bond with a covalent ethylene bridge. Vernall AJ, Cassidy P, Alewood PF. Angew Chem Int Ed Engl 48 5675-5678 (2009)
  520. A spiroligomer α-helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. Brown ZZ, Akula K, Arzumanyan A, Alleva J, Jackson M, Bichenkov E, Sheffield JB, Feitelson MA, Schafmeister CE. PLoS One 7 e45948 (2012)
  521. Binding and templation of nanoparticle receptors to peptide alpha-helices through surface recognition. Ghosh PS, Verma A, Rotello VM. Chem Commun (Camb) 2796-2798 (2007)
  522. Comparative validated molecular modeling of p53-HDM2 inhibitors as antiproliferative agents. Mondal C, Halder AK, Adhikari N, Saha A, Saha KD, Gayen S, Jha T. Eur J Med Chem 90 860-875 (2015)
  523. Computational strategy for intrinsically disordered protein ligand design leads to the discovery of p53 transactivation domain I binding compounds that activate the p53 pathway. Ruan H, Yu C, Niu X, Zhang W, Liu H, Chen L, Xiong R, Sun Q, Jin C, Liu Y, Lai L. Chem Sci 12 3004-3016 (2020)
  524. Cooperative fluctuations point to the dimerization interface of p53 core domain. Kantarci N, Doruker P, Haliloglu T. Biophys J 91 421-432 (2006)
  525. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations. Xiong K, Zwier MC, Myshakina NS, Burger VM, Asher SA, Chong LT. J Phys Chem A 115 9520-9527 (2011)
  526. Folding for binding or binding for folding? Caflisch A. Trends Biotechnol 21 423-425 (2003)
  527. Group-based QSAR and molecular dynamics mechanistic analysis revealing the mode of action of novel piperidinone derived protein-protein inhibitors of p53-MDM2. Goyal S, Grover S, Dhanjal JK, Tyagi C, Goyal M, Grover A. J Mol Graph Model 51 64-72 (2014)
  528. Identification of new inhibitors of Mdm2-p53 interaction via pharmacophore and structure-based virtual screening. Atatreh N, Ghattas MA, Bardaweel SK, Rawashdeh SA, Sorkhy MA. Drug Des Devel Ther 12 3741-3752 (2018)
  529. MDM4 binds ligands via a mechanism in which disordered regions become structured. Sanchez MC, Renshaw JG, Davies G, Barlow PN, Vogtherr M. FEBS Lett 584 3035-3041 (2010)
  530. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions. Scholes NS, Weinzierl RO. PLoS Comput Biol 12 e1004935 (2016)
  531. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Bowne WB, Michl J, Bluth MH, Zenilman ME, Pincus MR. Cancer Ther 5B 331-344 (2007)
  532. Re-engineered p53 activates apoptosis in vivo and causes primary tumor regression in a dominant negative breast cancer xenograft model. Okal A, Matissek KJ, Matissek SJ, Price R, Salama ME, Janát-Amsbury MM, Lim CS. Gene Ther 21 903-912 (2014)
  533. Letter Sequence-specific 1H, 15N, and 13C assignment of the N-terminal domain of the human oncoprotein MDM2 that binds to p53. Stoll R, Renner C, Mühlhahn P, Hansen S, Schumacher R, Hesse F, Kaluza B, Engh RA, Voelter W, Holak TA. J Biomol NMR 17 91-92 (2000)
  534. Structure of human MDM4 N-terminal domain bound to a single-domain antibody. Yu GW, Vaysburd M, Allen MD, Settanni G, Fersht AR. J Mol Biol 385 1578-1589 (2009)
  535. Towards more drug-like proteomimetics: two-faced, synthetic α-helix mimetics based on a purine scaffold. Lanning ME, Wilder PT, Bailey H, Drennen B, Cavalier M, Chen L, Yap JL, Raje M, Fletcher S. Org Biomol Chem 13 8642-8646 (2015)
  536. mRNA display selection of an optimized MDM2-binding peptide that potently inhibits MDM2-p53 interaction. Shiheido H, Takashima H, Doi N, Yanagawa H. PLoS One 6 e17898 (2011)
  537. p53 Amino-terminus region (1-125) stabilizes and restores heat denatured p53 wild phenotype. Sharma AK, Ali A, Gogna R, Singh AK, Pati U. PLoS One 4 e7159 (2009)
  538. Analysis of a minimal model for p53 oscillations. Bottani S, Grammaticos B. J Theor Biol 249 235-245 (2007)
  539. Cancer-Associated Mutations Perturb the Disordered Ensemble and Interactions of the Intrinsically Disordered p53 Transactivation Domain. Schrag LG, Liu X, Thevarajan I, Prakash O, Zolkiewski M, Chen J. J Mol Biol 433 167048 (2021)
  540. Comparative estimation of vibrational entropy changes in proteins through normal modes analysis. Carrington BJ, Mancera RL. J Mol Graph Model 23 167-174 (2004)
  541. Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction. Muppidi A, Li X, Chen J, Lin Q. Bioorg Med Chem Lett 21 7412-7415 (2011)
  542. Core modification of substituted piperidines as novel inhibitors of HDM2-p53 protein-protein interaction. Pan W, Lahue BR, Ma Y, Nair LG, Shipps GW, Wang Y, Doll R, Bogen SL. Bioorg Med Chem Lett 24 1983-1986 (2014)
  543. Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors. Yu Z, Zhuang C, Wu Y, Guo Z, Li J, Dong G, Yao J, Sheng C, Miao Z, Zhang W. Int J Mol Sci 15 15741-15753 (2014)
  544. Disorder predictors also predict backbone dynamics for a family of disordered proteins. Daughdrill GW, Borcherds WM, Wu H. PLoS One 6 e29207 (2011)
  545. Flaxseed sprouts induce apoptosis and inhibit growth in MCF-7 and MDA-MB-231 human breast cancer cells. Lee J, Cho K. In Vitro Cell Dev Biol Anim 48 244-250 (2012)
  546. Intracellular displacement of p53 using transactivation domain (p53 TAD) specific nanobodies. Steels A, Verhelle A, Zwaenepoel O, Gettemans J. MAbs 10 1045-1059 (2018)
  547. MDM2 in Breast Cancer. Toi M, Saji S, Suzuki A, Yamamoto Y, Tominaga T. Breast Cancer 4 264-268 (1997)
  548. Phosphorylated and unphosphorylated serine 13 of CDC37 stabilize distinct interactions between its client and HSP90 binding domains. Liu W, Landgraf R. Biochemistry 54 1493-1504 (2015)
  549. Probing the origin of structural stability of single and double stapled p53 peptide analogs bound to MDM2. Guo Z, Streu K, Krilov G, Mohanty U. Chem Biol Drug Des 83 631-642 (2014)
  550. Substituted piperidines as HDM2 inhibitors. Ma Y, Lahue BR, Shipps GW, Brookes J, Wang Y. Bioorg Med Chem Lett 24 1026-1030 (2014)
  551. The transduction of His-TAT-p53 fusion protein into the human osteogenic sarcoma cell line (Saos-2) and its influence on cell cycle arrest and apoptosis. Jiang L, Ma Y, Wang J, Tao X, Wei D. Mol Biol Rep 35 1-8 (2008)
  552. Thermodynamic and computational studies on the binding of p53-derived peptides and peptidomimetic inhibitors to HDM2. Grässlin A, Amoreira C, Baldridge KK, Robinson JA. Chembiochem 10 1360-1368 (2009)
  553. Understanding small-molecule binding to MDM2: insights into structural effects of isoindolinone inhibitors from NMR spectroscopy. Riedinger C, Noble ME, Wright DJ, Mulks F, Hardcastle IR, Endicott JA, McDonnell JM. Chem Biol Drug Des 77 301-308 (2011)
  554. A pre-structured helix in the intrinsically disordered 4EBP1. Kim DH, Lee C, Cho YJ, Lee SH, Cha EJ, Lim JE, Sabo TM, Griesinger C, Lee D, Han KH. Mol Biosyst 11 366-369 (2015)
  555. A site-directed mutagenesis study of the MdmX RING domain. Egorova O, Mis M, Sheng Y. Biochem Biophys Res Commun 447 696-701 (2014)
  556. Abnormal stability of wild-type p53 protein in a human lung carcinoma cell line. Yamauchi M, Suzuki K, Kodama S, Watanabe M. Biochem Biophys Res Commun 330 483-488 (2005)
  557. Critical residues of epitopes recognized by several anti-p53 monoclonal antibodies correspond to key residues of p53 involved in interactions with the mdm2 protein. Portefaix JM, Thebault S, Bourgain-Guglielmetti F, Del Rio M, Granier C, Mani JC, Navarro-Teulon I, Nicolas M, Soussi T, Pau B. J Immunol Methods 244 17-28 (2000)
  558. Expanding the repertoire of small molecule transcriptional activation domains. Casey RJ, Desaulniers JP, Hojfeldt JW, Mapp AK. Bioorg Med Chem 17 1034-1043 (2009)
  559. Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cell-penetrating peptides, and lentiviral infection. van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Jenster G, Trapman J. Prostate 71 241-253 (2011)
  560. Molecular analysis of the p53 gene in pancreatic adenocarcinoma. Li Y, Bhuiyan M, Vaitkevicius VK, Sarkar FH. Diagn Mol Pathol 7 4-9 (1998)
  561. Protein grafting of p53TAD onto a leucine zipper scaffold generates a potent HDM dual inhibitor. Lee JH, Kang E, Lee J, Kim J, Lee KH, Han J, Kang HY, Ahn S, Oh Y, Shin D, Hur K, Chae SY, Song PH, Kim YI, Park JC, Lee JI. Nat Commun 5 3814 (2014)
  562. QSAR: hydropathic analysis of inhibitors of the p53-mdm2 interaction. Galatin PS, Abraham DJ. Proteins 45 169-175 (2001)
  563. Real-time and simultaneous monitoring of the phosphorylation and enhanced interaction of p53 and XPC acidic domains with the TFIIH p62 subunit. Okuda M, Nishimura Y. Oncogenesis 4 e150 (2015)
  564. Screening analysis of ubiquitin ligases reveals G2E3 as a potential target for chemosensitizing cancer cells. Schmidt F, Kunze M, Loock AC, Dobbelstein M. Oncotarget 6 617-632 (2015)
  565. Small Molecule Sequestration of the Intrinsically Disordered Protein, p27Kip1, Within Soluble Oligomers. Iconaru LI, Das S, Nourse A, Shelat AA, Zuo J, Kriwacki RW. J Mol Biol 433 167120 (2021)
  566. Structure of the Taz2 domain of p300: insights into ligand binding. Miller M, Dauter Z, Cherry S, Tropea JE, Wlodawer A. Acta Crystallogr D Biol Crystallogr 65 1301-1308 (2009)
  567. p53 unfolding detected by CD but not by tryptophan fluorescence. Nichols NM, Matthews KS. Biochem Biophys Res Commun 288 111-115 (2001)
  568. 14-3-3σ mediates G2-M arrest produced by 5-aza-2'-deoxycytidine and possesses a tumor suppressor role in endometrial carcinoma cells. Steiner M, Clark B, Tang JZ, Zhu T, Lobie PE. Gynecol Oncol 127 231-240 (2012)
  569. A novel exon within the mdm2 gene modulates translation initiation in vitro and disrupts the p53-binding domain of mdm2 protein. Veldhoen N, Metcalfe S, Milner J. Oncogene 18 7026-7033 (1999)
  570. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Comiskey DF, Jacob AG, Sanford BL, Montes M, Goodwin AK, Steiner H, Matsa E, Tapia-Santos AS, Bebee TW, Grieves J, La Perle K, Boyaka P, Chandler DS. Oncogene 37 95-106 (2018)
  571. A robust approach for analyzing a heterogeneous structural ensemble. Lowry DF, Hausrath AC, Daughdrill GW. Proteins 73 918-928 (2008)
  572. Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors. Singh N, Li W. Int J Mol Sci 21 E4765 (2020)
  573. An immunochemical analysis of mdm2 expression in human breast cancer and the identification of a growth-regulated cross-reacting species p170. O'Neill M, Campbell SJ, Save V, Thompson AM, Hall PA. J Pathol 186 254-261 (1998)
  574. Calculation of hot spots for protein-protein interaction in p53/PMI-MDM2/MDMX complexes. Huang D, Qi Y, Song J, Zhang JZH. J Comput Chem 40 1045-1056 (2019)
  575. Computational prediction of MoRFs based on protein sequences and minimax probability machine. He H, Zhao J, Sun G. BMC Bioinformatics 20 529 (2019)
  576. Discovery of Novel 3,3-Disubstituted Piperidines as Orally Bioavailable, Potent, and Efficacious HDM2-p53 Inhibitors. Bogen SL, Pan W, Gibeau CR, Lahue BR, Ma Y, Nair LG, Seigel E, Shipps GW, Tian Y, Wang Y, Lin Y, Liu M, Liu S, Mirza A, Wang X, Lipari P, Seidel-Dugan C, Hicklin DJ, Bishop WR, Rindgen D, Nomeir A, Prosise W, Reichert P, Scapin G, Strickland C, Doll RJ. ACS Med Chem Lett 7 324-329 (2016)
  577. Effect of an adenoviral vector that expresses the canine p53 gene on cell growth of canine osteosarcoma and mammary adenocarcinoma cell lines. Yazawa M, Setoguchi A, Hong SH, Uyama R, Nakagawa T, Kanaya N, Nishimura R, Sasaki N, Masuda K, Ohno K, Tsujimoto H. Am J Vet Res 64 880-888 (2003)
  578. Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens. Siau JW, Coffill CR, Zhang WV, Tan YS, Hundt J, Lane D, Verma C, Ghadessy F. Sci Rep 6 33972 (2016)
  579. High-resolution protein-protein interaction mapping using all-versus-all sequencing (AVA-Seq). Andrews SS, Schaefer-Ramadan S, Al-Thani NM, Ahmed I, Mohamoud YA, Malek JA. J Biol Chem 294 11549-11558 (2019)
  580. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex. Oka O, Waters LC, Strong SL, Dosanjh NS, Veverka V, Muskett FW, Renshaw PS, Klempnauer KH, Carr MD. PLoS One 7 e52906 (2012)
  581. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. Zhang W, Zhong T, Chen Y. J Proteomics 152 172-180 (2017)
  582. Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics. Pantelopulos GA, Mukherjee S, Voelz VA. Proteins 83 1665-1676 (2015)
  583. Multivalent helix mimetics for PPI-inhibition. Barnard A, Miles JA, Burslem GM, Barker AM, Wilson AJ. Org Biomol Chem 13 258-264 (2015)
  584. Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx. Bharatham N, Finch KE, Min J, Mayasundari A, Dyer MA, Guy RK, Bashford D. J Mol Graph Model 74 54-60 (2017)
  585. Pharmacological rescue of p53 in cancer therapy: widening the sensitive tumor spectrum by targeting MDMX. Marine JC. Cancer Cell 18 399-400 (2010)
  586. Pivotal Role of an Aliphatic Side Chain in the Development of an HDM2 Inhibitor. Ma Y, Lahue BR, Gibeau CR, Shipps GW, Bogen SL, Wang Y, Guo Z, Guzi TJ. ACS Med Chem Lett 5 572-575 (2014)
  587. Role of the N-terminal lid in regulating the interaction of phosphorylated MDMX with p53. Chan JV, Ping Koh DX, Liu Y, Joseph TL, Lane DP, Verma CS, Tan YS. Oncotarget 8 112825-112840 (2017)
  588. Solid-state nanopore analysis on conformation change of p53TAD-MDM2 fusion protein induced by protein-protein interaction. Chae H, Kwak DK, Lee MK, Chi SW, Kim KB. Nanoscale 10 17227-17235 (2018)
  589. Structural basis for the conserved binding mechanism of MDM2-inhibiting peptides and anti-apoptotic Bcl-2 family proteins. Lee MS, Ha JH, Yoon HS, Lee CK, Chi SW. Biochem Biophys Res Commun 445 120-125 (2014)
  590. Synchronized release of Doxil and Nutlin-3 by remote degradation of polysaccharide matrices and its possible use in the local treatment of colorectal cancer. Nadler-Milbauer M, Apter L, Haupt Y, Haupt S, Barenholz Y, Minko T, Rubinstein A. J Drug Target 19 859-873 (2011)
  591. TBP-like Protein (TLP) Disrupts the p53-MDM2 Interaction and Induces Long-lasting p53 Activation. Maeda R, Tamashiro H, Takano K, Takahashi H, Suzuki H, Saito S, Kojima W, Adachi N, Ura K, Endo T, Tamura TA. J Biol Chem 292 3201-3212 (2017)
  592. The Involvement of Splicing Factor hnRNP A1 in UVB-induced Alternative Splicing of hdm2. Feng J, Li L, Tong L, Tang L, Wu S. Photochem Photobiol 92 318-324 (2016)
  593. The transiently ordered regions in intrinsically disordered ExsE are correlated with structural elements involved in chaperone binding. Zheng Z, Ma D, Yahr TL, Chen L. Biochem Biophys Res Commun 417 129-134 (2012)
  594. Unraveling the mechanism of a potent transcriptional activator. Lu Z, Rowe SP, Brennan BB, Davis SE, Metzler RE, Nau JJ, Majmudar CY, Mapp AK, Ansari AZ. J Biol Chem 280 29689-29698 (2005)
  595. p53 participates in the protective effects of ischemic post-conditioning against OGD-reperfusion injury in primary cultured spinal cord neurons. Li J, Chen G, Gao X, Shen C, Zhou P, Wu X, Che X, Xie R. Neurosci Lett 638 129-134 (2017)
  596. A "no-hybrids" screen for functional antagonizers of human p53 transactivator function: dominant negativity in fission yeast. Waddell S, Jenkins JR, Proikas-Cezanne T. Oncogene 20 6001-6008 (2001)
  597. A fluorescent probe for imaging p53-MDM2 protein-protein interaction. Liu Z, Miao Z, Li J, Fang K, Zhuang C, Du L, Sheng C, Li M. Chem Biol Drug Des 85 411-417 (2015)
  598. AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters. Katigbak J, Li H, Rooklin D, Zhang Y. J Chem Inf Model 60 1494-1508 (2020)
  599. Disulfide trapping of protein complexes on the yeast surface. Lim KH, Madabhushi SR, Mann J, Neelamegham S, Park S. Biotechnol Bioeng 106 27-41 (2010)
  600. Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH. Okuda M, Higo J, Komatsu T, Konuma T, Sugase K, Nishimura Y. Biophys J 111 950-962 (2016)
  601. Evaluation and Elucidation Studies of Natural Aglycones for Anticancer Potential using Apoptosis-Related Markers: An In silico Study. Akhtar S, Khan MKA, Arif JM. Interdiscip Sci 10 297-310 (2018)
  602. Facile synthesis, optical and conformational characteristics, and efficient intracellular delivery of a peptide-DNA conjugate. Lee MK, Lim YB. Bioorg Med Chem 22 4204-4209 (2014)
  603. Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. Neochoritis CG, Atmaj J, Twarda-Clapa A, Surmiak E, Skalniak L, Köhler LM, Muszak D, Kurpiewska K, Kalinowska-Tłuścik J, Beck B, Holak TA, Dömling A. Eur J Med Chem 182 111588 (2019)
  604. How does a hydrocarbon staple affect peptide hydrophobicity? Sim AY, Verma C. J Comput Chem 36 773-784 (2015)
  605. Inactivation of the MDM2 RING domain enhances p53 transcriptional activity in mice. Tian H, Tackmann NR, Jin A, Zheng J, Zhang Y. J Biol Chem 292 21614-21622 (2017)
  606. Intrinsic protein disorder uncouples affinity from binding specificity. Lazar T, Tantos A, Tompa P, Schad E. Protein Sci 31 e4455 (2022)
  607. MDM2, MDM2-C, and mutant p53 expression influence breast cancer survival in a multiethnic population. Loo LWM, Gao C, Shvetsov YB, Okoro DR, Hernandez BY, Bargonetti J. Breast Cancer Res Treat 174 257-269 (2019)
  608. MDM2/MDMX inhibitor peptide: WO2008106507. Macchiarulo A, Pellicciari R. Expert Opin Ther Pat 19 721-726 (2009)
  609. Modulation of p53 Transactivation Domain Conformations by Ligand Binding and Cancer-Associated Mutations. Liu X, Chen J. Pac Symp Biocomput 25 195-206 (2020)
  610. Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. Fraser JA, Worrall EG, Lin Y, Landre V, Pettersson S, Blackburn E, Walkinshaw M, Muller P, Vojtesek B, Ball K, Hupp TR. J Mol Biol 427 1728-1747 (2015)
  611. Single-molecule analysis of interaction between p53TAD and MDM2 using aerolysin nanopores. Oh S, Lee MK, Chi SW. Chem Sci 12 5883-5891 (2021)
  612. Structural Basis for the Interaction between p53 Transactivation Domain and the Mediator Subunit MED25. Lee MS, Lim K, Lee MK, Chi SW. Molecules 23 E2726 (2018)
  613. Structure of the p53/RNA polymerase II assembly. Liou SH, Singh SK, Singer RH, Coleman RA, Liu WL. Commun Biol 4 397 (2021)
  614. Structure-based designing efficient peptides based on p53 binding site residues to disrupt p53-MDM2/X interaction. Rasafar N, Barzegar A, Mehdizadeh Aghdam E. Sci Rep 10 11449 (2020)
  615. Targeting the conformational transitions of MDM2 and MDMX: insights into key residues affecting p53 recognition. Carotti A, Macchiarulo A, Giacchè N, Pellicciari R. Proteins 77 524-535 (2009)
  616. Therapeutic considerations for Mdm2: not just a one trick pony. Lehman JA, Eitel JA, Batuello CN, Mayo LD. Expert Opin Drug Discov 3 1309-1321 (2008)
  617. Application of spin-ratio scaled MP2 for the prediction of intermolecular interactions in chemical systems. Tan SYS, Wylie L, Begic I, Tran D, Izgorodina EI. Phys Chem Chem Phys 19 28936-28942 (2017)
  618. Computationally designed peptide inhibitors of the ubiquitin E3 ligase SCF(Fbx4). Lee J, Sammond DW, Fiorini Z, Saludes JP, Resch MG, Hao B, Wang W, Yin H, Liu X. Chembiochem 14 445-451 (2013)
  619. Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. Lawrence N, Philippe GJ, Harvey PJ, Condon ND, Benfield AH, Cheneval O, Craik DJ, Troeira Henriques S. RSC Chem Biol 1 405-420 (2020)
  620. Determination of nutlin-3a in murine plasma by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Bai F, Zhu F, Tagen M, Miller L, Owens TS, Mallari J, Derrick E, Zhang F, Stewart CF. J Pharm Biomed Anal 51 915-920 (2010)
  621. Discovery of novel polycyclic spiro-fused carbocyclicoxindole-based anticancer agents. Zhang L, Ren W, Wang X, Zhang J, Liu J, Zhao L, Zhang X. Eur J Med Chem 126 1071-1082 (2017)
  622. Human serum albumin and p53-activating peptide fusion protein is able to promote apoptosis and deliver fatty acid-modified molecules. Joshi MR, Yao N, Myers KA, Li Z. PLoS One 8 e80926 (2013)
  623. Interaction between human angiogenin and the p53 TAD2 domain and its implication for inhibitor discovery. Yeo KJ, Jee JG, Hwang E, Kim EH, Jeon YH, Cheong HK. FEBS Lett 591 3916-3925 (2017)
  624. Investigation of the inhibitory mechanism of apomorphine against MDM2-p53 interaction. Ishiba H, Noguchi T, Shu K, Ohno H, Honda K, Kondoh Y, Osada H, Fujii N, Oishi S. Bioorg Med Chem Lett 27 2571-2574 (2017)
  625. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage. Nishihara T, Kitada H, Fujiwara D, Fujii I. Biopolymers 106 415-421 (2016)
  626. Nuclear Localization Signal and p53 Binding Site in MAP/ERK Kinase Kinase 1 (MEKK1). Chipps E, Protzman A, Muhi MZ, Ando S, Calvet JP, Islam MR. J Cell Biochem 116 2903-2914 (2015)
  627. Oncogene and tumor suppressor gene expression changes in the peripheral blood leukocytes of patients with colorectal cancer. Csontos Z, Nádasi E, Csejtey A, Illényi L, Kassai M, Lukács L, Kelemen D, Kvarda A, Zólyomi A, Horváth OP, Ember I. Tumori 94 79-82 (2008)
  628. Over-expression of the human MDM2 p53 binding domain by fusion to a p53 transactivation peptide. Liu Z, Olejniczak ET, Fesik SW. Protein Expr Purif 37 493-498 (2004)
  629. Searching for Dual Inhibitors of the MDM2-p53 and MDMX-p53 Protein-Protein Interaction by a Scaffold-Hopping Approach. Zaytsev A, Dodd B, Magnani M, Ghiron C, Golding BT, Griffin RJ, Liu J, Lu X, Micco I, Newell DR, Padova A, Robertson G, Lunec J, Hardcastle IR. Chem Biol Drug Des 86 180-189 (2015)
  630. Synthetic 10FN3-based mono- and bivalent inhibitors of MDM2/X function. Lau SY, Siau JW, Sobota RM, Wang CI, Zhong P, Lane DP, Ghadessy FJ. Protein Eng Des Sel 31 301-312 (2018)
  631. The Mechanism of p53 Rescue by SUSP4. Kim DH, Lee C, Lee SH, Kim KT, Han JJ, Cha EJ, Lim JE, Cho YJ, Hong SH, Han KH. Angew Chem Int Ed Engl 56 1278-1282 (2017)
  632. Tunable Helicity, Stability and DNA-Binding Properties of Short Peptides with Hybrid Metal Coordination Motifs. Smith SJ, Radford RJ, Subramanian RH, Barnett BR, Figueroa JS, Tezcan FA. Chem Sci 7 5453-5461 (2016)
  633. UBE2M Drives Hepatocellular Cancer Progression as a p53 Negative Regulator by Binding to MDM2 and Ribosomal Protein L11. Kim JH, Jung JH, Lee HJ, Sim DY, Im E, Park J, Park WY, Ahn CH, Shim BS, Kim B, Kim SH. Cancers (Basel) 13 4901 (2021)
  634. p53 Phosphomimetics Preserve Transient Secondary Structure but Reduce Binding to Mdm2 and MdmX. Levy R, Gregory E, Borcherds W, Daughdrill G. Biomolecules 9 E83 (2019)
  635. 4,4'-Unsymmetrically substituted 3,3'-biphenyl alpha helical proteomimetics as potential coactivator binding inhibitors. Weiser PT, Chang CY, McDonnell DP, Hanson RN. Bioorg Med Chem 22 917-926 (2014)
  636. An antibody-free strategy for screening putative HDM2 inhibitors using crude bacterial lysates expressing GST-HDM2 recombinant protein. Costa B, Grillone AF, Salvetti A, Rocchiccioli S, Iacopetti P, Daniele S, Da Pozzo E, Campiglia P, Novellino E, Martini C, Rossi L. Drug Test Anal 5 596-601 (2013)
  637. An α-quaternary chiral latam derivative, YH-304 as a novel broad-spectrum anticancer agent. Hwang SJ, Park HG, Park Y, Lee HJ. Int J Oncol 49 2480-2486 (2016)
  638. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3',4',7-trimethoxyflavone in human breast cancer cells MCF-7: an in vitro and in silico approach. Sudha A, Srinivasan P, Kanimozhi V, Palanivel K, Kadalmani B. J Recept Signal Transduct Res 38 179-190 (2018)
  639. Binding of nanoparticle receptors to peptide alpha-helices using amino acid-functionalized nanoparticles. Ghosh PS, Han G, Erdogan B, Rosado O, Rotello VM. J Pept Sci 14 134-138 (2008)
  640. Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. Micewicz ED, Sharma S, Waring AJ, Luong HT, McBride WH, Ruchala P. Int J Pept Res Ther 22 67-81 (2016)
  641. Construction of Peptide Library in Mammalian Cells by dsDNA-Based Strategy. Su W, Wang Y, Zou S, Zhao Y, Li Y, Zhang C, Guo X, Li S. ACS Omega 8 1037-1046 (2023)
  642. Construction of a Stapled α-Helix Peptide Library Displayed on Phage for the Screening of Galectin-3-Binding Peptide Ligands. Anananuchatkul T, Chang IV, Miki T, Tsutsumi H, Mihara H. ACS Omega 5 5666-5674 (2020)
  643. Design and Synthesis of Functionalized Trisaccharides as p53-Peptide Mimics. Sakurai K, Kahne D. Tetrahedron Lett 51 3724-3727 (2010)
  644. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction. Pettersson M, Quant M, Min J, Iconaru L, Kriwacki RW, Waddell MB, Guy RK, Luthman K, Grøtli M. PLoS One 10 e0137867 (2015)
  645. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99. Lee XA, Verma C, Sim AYL. Proteins 85 1493-1506 (2017)
  646. Disrupting the p53-mdm2 interaction as a potential therapeutic modality. Moll UM, Zaika A. Drug Resist Updat 3 217-221 (2000)
  647. DoMY-Seq: A yeast two-hybrid-based technique for precision mapping of protein-protein interaction motifs. Castel P, Holtz-Morris A, Kwon Y, Suter BP, McCormick F. J Biol Chem 296 100023 (2021)
  648. Dynamical Behavior and Conformational Selection Mechanism of the Intrinsically Disordered Sic1 Kinase-Inhibitor Domain. Sala D, Cosentino U, Ranaudo A, Greco C, Moro G. Life (Basel) 10 E110 (2020)
  649. FOLICation: engineering approved drugs as potential p53-MDM2 interaction inhibitors for cancer therapy. Patil SP. Med Hypotheses 81 1104-1107 (2013)
  650. FOXO4 interacts with p53 TAD and CRD and inhibits its binding to DNA. Mandal R, Kohoutova K, Petrvalska O, Horvath M, Srb P, Veverka V, Obsilova V, Obsil T. Protein Sci 31 e4287 (2022)
  651. Intrinsically Disordered Bacterial Polar Organizing Protein Z, PopZ, Interacts with Protein Binding Partners Through an N-terminal Molecular Recognition Feature. Nordyke CT, Ahmed YM, Puterbaugh RZ, Bowman GR, Varga K. J Mol Biol 432 6092-6107 (2020)
  652. Localization and interactions of Plasmodium falciparum SWIB/MDM2 homologues. Vieira WA, Coetzer TL. Malar J 15 32 (2016)
  653. MDM2 Inhibits Axin-Induced p53 Activation Independently of its E3 Ligase Activity. He Y, Lian G, Lin S, Ye Z, Li Q. PLoS One 8 e67529 (2013)
  654. Modifying effect of mouse double minute-2 promoter variants on risk of recurrence for patients with squamous cell carcinoma of oropharynx. Zhang Y, Sturgis EM, Li Y, Wei Q, Huang Z, Li G. Sci Rep 7 39765 (2017)
  655. Monoclonal antibodies raised against Xenopus p53 interact with human p73. Le Bras M, Delattre V, Bensaad K, Blandino G, Soussi T. Oncogene 21 1304-1308 (2002)
  656. Polymorphisms in the p53 pathway genes and micronucleus occurrence in Chinese vinyl chloride-exposed workers. Li Y, Feng NN, Zhang GH, Wang Q, Hao YH, Ya-Nanzhang, Long C, Li Y, Brandt-Rauf PW, Xia ZL. Int J Occup Med Environ Health 26 825-836 (2013)
  657. Potential for the detection of molecular complexes and determination of interaction geometry by 2DIR: application to protein sciences. Guo R, Miele M, Gardner EM, Fournier F, Kornau KM, Gould IR, Klug DR. Faraday Discuss 150 161-74; discussion 257-92 (2011)
  658. Quantitative prediction of ensemble dynamics, shapes and contact propensities of intrinsically disordered proteins. Yu L, Brüschweiler R. PLoS Comput Biol 18 e1010036 (2022)
  659. Regulation of mdm2 mRNA expression in human breast tumor-derived GI-101A cells. Zell JA, Ramakrishnan R, Rathinavelu A. Life Sci 71 2331-2339 (2002)
  660. Structure-guided design of CPPC-paired disulfide-rich peptide libraries for ligand and drug discovery. Wu Y, Fan S, Dong M, Li J, Kong C, Zhuang J, Meng X, Lu S, Zhao Y, Wu C. Chem Sci 13 7780-7789 (2022)
  661. Synthesis of a tetrasubstituted tetrahydronaphthalene scaffold for α-helix mimicry via a MgBr2-catalyzed Friedel-Crafts epoxide cycloalkylation. Naduthambi D, Bhor S, Elbaum MB, Zondlo NJ. Org Lett 15 4892-4895 (2013)
  662. Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Shin JS, Ha JH, Chi SW. Biochem Biophys Res Commun 443 882-887 (2014)
  663. The Evolution of Tumor Formation in Humans and Mice with Inherited Mutations in the p53 Gene. Levine AJ. Curr Top Microbiol Immunol 407 205-221 (2017)
  664. hMTH1 depletion promotes oxidative-stress-induced apoptosis through a Noxa- and caspase-3/7-mediated signaling pathway. Youn CK, Jun JY, Hyun JW, Hwang G, Lee BR, Chung MH, Chang IY, You HJ. DNA Repair (Amst) 7 1809-1823 (2008)
  665. p53 N‑terminal binding and stabilisation by PIAS3 inhibits MDM2‑induced p53 ubiquitination and regulates cell growth. Zhao Z, Wu L, Shi H, Wu C. Mol Med Rep 9 1903-1908 (2014)
  666. 3-Arylidene-N-hydroxyoxindoles: A New Class of Compounds Endowed with Antitumor Activity. Musso L, Cincinelli R, Zuco V, De Cesare M, Zunino F, Fallacara AL, Botta M, Dallavalle S. ChemMedChem 11 1700-1704 (2016)
  667. A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity. Cetkovská K, Šustová H, Kosztyu P, Uldrijan S. PLoS One 10 e0144753 (2015)
  668. A general synthesis of dirhodium metallopeptides as MDM2 ligands. Zaykov AN, Ball ZT. Chem Commun (Camb) 47 10927-10929 (2011)
  669. A novel protease activity assay method based on an engineered autoinhibited protein using an enzyme-linked immunoassay. Yoon HK, Yoo TH. Analyst 138 7164-7168 (2013)
  670. Adenovirus Ad-p53AIP1-mediated gene therapy and its regulation of p53-MDM2 interactions. Jiang Y, Chen H, Jia H, Xu Y, Liu G, Wang Y, Yang X, Lu Y. Exp Ther Med 1 363-368 (2010)
  671. Analysis for loss of heterozygosity (LOH) of p53 allele in tumors derived from p53+/- and CD-1 mice following repeated subcutaneous injections of solutions containing antioxidants. Youssef AF, Borellini F, Jacobson-Kram D, Fort FL. Environ Mol Mutagen 37 27-30 (2001)
  672. Characterization of cancer-associated missense mutations in MDM2. Chauhan KM, Ramakrishnan G, Kollareddy M, Martinez LA. Mol Cell Oncol 3 e1125986 (2016)
  673. Computational prediction and validation of specific EmbR binding site on PknH. Na I, Dai H, Li H, Gupta A, Kreda D, Zhang P, Chen X, Zhang L, Alterovitz G. Synth Syst Biotechnol 6 429-436 (2021)
  674. Discovery, X-ray structure and CPP-conjugation enabled uptake of p53/MDM2 macrocyclic peptide inhibitors. Schneider AFL, Kallen J, Ottl J, Reid PC, Ripoche S, Ruetz S, Stachyra TM, Hintermann S, Dumelin CE, Hackenberger CPR, Marzinzik AL. RSC Chem Biol 2 1661-1668 (2021)
  675. Dual-channel surface plasmon resonance monitoring of intracellular levels of the p53-MDM2 complex and caspase-3 induced by MDM2 antagonist Nutlin-3. Wu L, Hu Y, He Y, Xia Y, Lu H, Cao Z, Yi X, Wang J. Analyst 144 3959-3966 (2019)
  676. Engineering an autonomous VH domain to modulate intracellular pathways and to interrogate the eIF4F complex. Frosi Y, Lin YC, Shimin J, Ramlan SR, Hew K, Engman AH, Pillai A, Yeung K, Cheng YX, Cornvik T, Nordlund P, Goh M, Lama D, Gates ZP, Verma CS, Thean D, Lane DP, Asial I, Brown CJ. Nat Commun 13 4854 (2022)
  677. Environment-sensitive turn-on fluorescent probes for p53-MDM2 protein-protein interaction. Liu T, Jiang Y, Liu Z, Li J, Fang K, Zhuang C, Du L, Fang H, Sheng C, Li M. Medchemcomm 8 1668-1672 (2017)
  678. Evaluation of Chlorofusin, its Seven Chromophore Diastereomers, and Key Analogues. Clark RC, Lee SY, Hwang I, Searcey M, Boger DL. Tetrahedron Lett 50 3151-3153 (2009)
  679. Genome and network visualization facilitates the analyses of the effects of drugs and mutations on protein-protein and drug-protein networks. Céol A, Verhoef LG, Wade M, Muller H. BMC Bioinformatics 17 Suppl 4 54 (2016)
  680. HOPPI-NMR: Hot-Peptide-Based Screening Assay for Inhibitors of Protein-Protein Interactions by NMR. Brancaccio D, Di Maro S, Cerofolini L, Giuntini S, Fragai M, Luchinat C, Tomassi S, Limatola A, Russomanno P, Merlino F, Novellino E, Carotenuto A. ACS Med Chem Lett 11 1047-1053 (2020)
  681. Human herpesvirus-6B protein U19 contains a p53 BOX I homology motif for HDM2 binding and p53 stabilization. Kofod-Olsen E, Pettersson S, Wallace M, Abduljabar AB, Oster B, Hupp T, Höllsberg P. Virology 448 33-42 (2014)
  682. Hydrophobic residue contributions to sequence-specific DNA binding by the bovine papillomavirus helicase E1. West M, Wilson VG. Virology 296 52-61 (2002)
  683. Insights into intramolecular Trp and His side-chain orientation and stereospecific π interactions surrounding metal centers: an investigation using protein metal-site mimicry in solution. Yang CM, Zhang J. Chemistry 16 10854-10865 (2010)
  684. MDM2 and its functional polymorphism SNP309 contribute to the development of esophageal carcinoma. Xiao FK, Guo S, Yang F, Zhao LS, Wang LD. J Gene Med 21 e3086 (2019)
  685. Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery. Park IS, Kim S, Yim Y, Park G, Choi J, Won C, Min DH. Nat Commun 13 4568 (2022)
  686. New insights into cancer: MDM2 binds to the citrullinating enzyme PADI4. Araujo-Abad S, Rizzuti B, Villamarin-Ortiz A, Pantoja-Uceda D, Moreno-Gonzalez CM, Abian O, Velazquez-Campoy A, Neira JL, de Juan Romero C. Protein Sci 32 e4723 (2023)
  687. Nondenaturing polyacrylamide gel electrophoresis to study the dissociation of the p53·MDM2/X complex by potentially anticancer compounds. Sgammato R, Desiderio D, Lamberti A, Raimo G, Novellino E, Carotenuto A, Masullo M. Electrophoresis 36 3101-3104 (2015)
  688. Novel Allosteric Mechanism of Dual p53/MDM2 and p53/MDM4 Inhibition by a Small Molecule. Grinkevich VV, Vema A, Fawkner K, Issaeva N, Andreotti V, Dickinson ER, Hedström E, Spinnler C, Inga A, Larsson LG, Karlén A, Wilhelm M, Barran PE, Okorokov AL, Selivanova G, Zawacka-Pankau JE. Front Mol Biosci 9 823195 (2022)
  689. Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns. Lin P, Yao H, Zha J, Zhao Y, Wu C. Chembiochem 20 1514-1518 (2019)
  690. Pattern enrichment analysis for phage selection of stapled peptide ligands. Miki T, Namii K, Seko K, Kakehi S, Moro G, Mihara H. Chem Sci 13 12634-12642 (2022)
  691. Sensitive and simultaneous surface plasmon resonance detection of free and p53-bound MDM2 proteins from human sarcomas. Wu L, Tang H, Hu S, Xia Y, Lu Z, Fan Y, Wang Z, Yi X, Zhou F, Wang J. Analyst 143 2029-2034 (2018)
  692. Sequence Properties of An Intramolecular Interaction That Inhibits p53 DNA Binding. Gregory E, Daughdrill GW. Biomolecules 12 1558 (2022)
  693. Suppression of IKK, but not activation of p53 is responsible for cell death mediated by naturally occurring oxidized tetranortriterpenoid. Gupta P, Zaidi AH, Manna SK. J Cell Biochem 119 6828-6841 (2018)
  694. Synthesis, Antitumor Evaluation, Molecular Modeling and Quantitative Structure-Activity Relationship (QSAR) of Novel 2-[(4-Amino-6-N-substituted-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl-N-(1H-benzo[d]imidazol-2(3H)-ylidene)Benzenesulfonamides. Tomorowicz Ł, Sławiński J, Żołnowska B, Szafrański K, Kawiak A. Int J Mol Sci 21 E2924 (2020)
  695. The N-terminal domain of MDM2 resembles calmodulin and its relatives. Milner-White EJ. J Mol Biol 292 957-963 (1999)
  696. The intracellular region of ClC-3 chloride channel is in a partially folded state and a monomer. Li SJ, Kawazaki M, Ogasahara K, Nakagawa A. J Biochem 139 813-820 (2006)
  697. The structural characteristics of human preprotein translocase of the inner mitochondrial membrane Tim23: implications for its physiological activities. Zhang Y, Xu Y, Zhao Q, Ji Z, Deng H, Li SJ. Protein Expr Purif 82 255-262 (2012)
  698. Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study. Srdanović S, Wolter M, Trinh CH, Ottmann C, Warriner SL, Wilson AJ. FEBS J 289 5341-5358 (2022)
  699. Use of multimodality imaging, histology, and treatment feasibility to characterize a transgenic Rag2-null rat model of glioblastoma. Jackson LR, Masi MR, Selman BM, Sandusky GE, Zarrinmayeh H, Das SK, Maharjan S, Wang N, Zheng QH, Pollok KE, Snyder SE, Sun PZ, Hutchins GD, Butch ER, Veronesi MC. Front Oncol 12 939260 (2022)
  700. 8-Triazolylpurines: Towards Fluorescent Inhibitors of the MDM2/p53 Interaction. Pettersson M, Bliman D, Jacobsson J, Nilsson JR, Min J, Iconaru L, Guy RK, Kriwacki RW, Andréasson J, Grøtli M. PLoS One 10 e0124423 (2015)
  701. A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling Software [Article v2.0]. Bogetti AT, Leung JMG, Russo JD, Zhang S, Thompson JP, Saglam AS, Ray D, Mostofian B, Pratt AJ, Abraham RC, Harrison PO, Dudek M, Torrillo PA, DeGrave AJ, Adhikari U, Faeder JR, Andricioaei I, Adelman JL, Zwier MC, LeBard DN, Zuckerman DM, Chong LT. Living J Comput Mol Sci 5 1655 (2023)
  702. Absence of mutations in the functional domains of the human MDM2 oncogene in non-small cell lung carcinomas. Mariatos G, Gorgoulis VG, Kotsinas A, Zacharatos P, Kokotas S, Yannoukakos D, Kittas C. Mutat Res 456 59-63 (2000)
  703. Association of p53 Arg72Pro and MDM2 SNP309 polymorphisms with glioma. Zhang JN, Yi SH, Zhang XH, Liu XY, Mao Q, Li SQ, Xiong WH, Qiu YM, Chen T, Ge JW. Genet Mol Res 11 3618-3628 (2012)
  704. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding. Samanta S, Mukherjee S. J Comput Aided Mol Des 31 891-903 (2017)
  705. Design, Synthesis, and Biological Evaluation of Pyrazole Derivatives. Hu C, Gao Y, Du W. Chem Biol Drug Des 87 673-679 (2016)
  706. Development of a novel immunoassay to detect interactions with the transactivation domain of p53: application to screening of new drugs. Xiong Y, Wu Y, Luo S, Gao Y, Xiong Y, Chen D, Deng H, Hao W, Liu T, Li M. Sci Rep 7 9185 (2017)
  707. Dinuclear platinum complexes containing planar aromatic ligands to enhance stacking interactions with proteins. Ma ES, Daniel AG, Farrell NP. ChemMedChem 9 1155-1160 (2014)
  708. Functionalized Double Strain-Promoted Stapled Peptides for Inhibiting the p53-MDM2 Interaction. Sharma K, Strizhak AV, Fowler E, Xu W, Chappell B, Sore HF, Galloway WRJD, Grayson MN, Lau YH, Itzhaki LS, Spring DR. ACS Omega 5 1157-1169 (2020)
  709. FuzPred: a web server for the sequence-based prediction of the context-dependent binding modes of proteins. Hatos A, Teixeira JMC, Barrera-Vilarmau S, Horvath A, Tosatto SCE, Vendruscolo M, Fuxreiter M. Nucleic Acids Res 51 W198-W206 (2023)
  710. Identification of a Catalytic Active but Non-Aggregating MDM2 RING Domain Variant. Magnussen HM, Huang DT. J Mol Biol 433 166807 (2021)
  711. Impact of MDM2 single nucleotide polymorphism on oral squamous cell carcinoma risk. Xie JL, Yang JL, Liu DS, Xie YG, Ji P. Cell Biochem Biophys 71 993-998 (2015)
  712. Inhibiting mechanism of small molecule toward the p53-MDM2 interaction: A molecular dynamic exploration. Chen J, Wang J, Pang L, Zhu W. Chem Biol Drug Des 92 1763-1777 (2018)
  713. Intra molecular interactions in the regulation of p53 pathway. Chen J. Transl Cancer Res 5 639-649 (2016)
  714. Investigation of the In-Vivo Cytotoxicity and the In Silico-Prediction of MDM2-p53 Inhibitor Potential of Euphorbia peplus Methanolic Extract in Rats. Abd-Elhakim YM, Abdo Nassan M, Salem GA, Sasi A, Aldhahrani A, Ben Issa K, Abdel-Rahman Mohamed A. Toxins (Basel) 11 E642 (2019)
  715. Nuclear Fructose-1,6-Bisphosphate Inhibits Tumor Growth and Sensitizes Chemotherapy by Targeting HMGB1. Li Y, Fu Y, Zhang Y, Duan B, Zhao Y, Shang M, Cheng Y, Zhang K, Yu Q, Wang T. Adv Sci (Weinh) 10 e2203528 (2023)
  716. Nutlin-3a Nanodisks Induce p53 Stabilization and Apoptosis in a Subset of Cultured Glioblastoma Cells. Krishnamoorthy A, Witkowski A, Ryan RO. J Nanomed Nanotechnol 8 454 (2017)
  717. Simultaneous measurement of p53:Mdm2 and p53:Mdm4 protein-protein interactions in whole cells using fluorescence labelled foci. Frosi Y, Inoue K, Ramlan SR, Lane DP, Watanabe T, Brown CJ. Sci Rep 9 17933 (2019)
  718. Stabilization of α-helices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition. Kim B, Choi SJ, Han SH, Choi KY, Lim YB. Chem Commun (Camb) 49 7617-7619 (2013)
  719. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. Vaas S, Zimmermann MO, Klett T, Boeckler FM. Drug Des Devel Ther 17 1247-1274 (2023)
  720. The MDMX Acidic Domain Uses Allovalency to Bind Both p53 and MDMX. Fenton M, Borcherds W, Chen L, Anbanandam A, Levy R, Chen J, Daughdrill G. J Mol Biol 434 167844 (2022)
  721. USP49-Mediated Histone H2B Deubiquitination Regulates HCT116 Cell Proliferation through MDM2-p53 Axis. Shi L, Shen X, Shen Y. Mol Cell Biol 42 e0043421 (2022)
  722. ZNF500 abolishes breast cancer proliferation and sensitizes chemotherapy by stabilizing P53 via competing with MDM2. Ma X, Fan M, Yang K, Wang Y, Hu R, Guan M, Hou Y, Ying J, Deng N, Li Q, Jiang G, Zhang Y, Zhang X. Cancer Sci 114 4237-4251 (2023)
  723. p53 Transactivation Domain Mediates Binding and Phase Separation with Poly-PR/GR. Usluer S, Spreitzer E, Bourgeois B, Madl T. Int J Mol Sci 22 11431 (2021)
  724. A Quantitative Systems Approach to Define Novel Effects of Tumour p53 Mutations on Binding Oncoprotein MDM2. Fuentes M, Srivastava S, Gronenborn AM, LaBaer J. Int J Mol Sci 23 53 (2021)
  725. Arnie Levine and the MDM2-p53 discovery: a postdoctoral fellow's perspective. Zambetti GP. J Mol Cell Biol 11 620-623 (2019)
  726. Arnold J. Levine and my career development. Shi Y. J Mol Cell Biol 11 546-550 (2019)
  727. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Pan Q, Portelli S, Nguyen TB, Ascher DB. Brief Bioinform 25 bbad428 (2023)
  728. Computed Protein-Protein Enthalpy Signatures as a Tool for Identifying Conformation Sampling Problems. Çınaroğlu SS, Biggin PC. J Chem Inf Model 63 6095-6108 (2023)
  729. Conformational Stability of the N-Terminal Region of MDM2. Rizzuti B, Abian O, Velazquez-Campoy A, Neira JL. Molecules 28 7578 (2023)
  730. Design and Synthesis of Novel Helix Mimetics Based on the Covalent H-Bond Replacement and Amide Surrogate. Liu J, Tang S, Yan JL, Ye T. Molecules 28 780 (2023)
  731. Discovery of Small-Molecule VapC1 Nuclease Inhibitors by Virtual Screening and Scaffold Hopping from an Atomic Structure Revealing Protein-Protein Interactions with a Native VapB1 Inhibitor. Sun H, Coussens NP, Danchik C, Wachsmuth LM, Henderson MJ, Patnaik S, Hall MD, Molinaro AL, Daines DA, Shen M. J Chem Inf Model 62 1249-1258 (2022)
  732. Discovery of new sites for drug binding to the hypertension-related renin-angiotensinogen complex. Brás NF, Fernandes PA, Ramos MJ. Chem Biol Drug Des 83 427-439 (2014)
  733. Effect of introducing aib in a designed helical inhibitor of hdm2-p53 interaction: A molecular dynamics study. Chattopadhyay S, Ajani H, Ajani H, Basu G. Biopolymers 106 51-61 (2016)
  734. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Preston AJ, Rogers A, Sharp M, Mitchell G, Toruno C, Barney BB, Donovan LN, Bly J, Kennington R, Payne E, Iovino A, Furukawa G, Robinson R, Shamloo B, Buccilli M, Anders R, Eckstein S, Fedak EA, Wright T, Maley CC, Kiso WK, Schmitt D, Malkin D, Schiffman JD, Abegglen LM. Cell Death Discov 9 66 (2023)
  735. Gain-of-Function p53N236S Mutation Drives the Bypassing of HRasV12-Induced Cellular Senescence via PGC-1α. Yang H, Zhang K, Guo Y, Guo X, Hou K, Hou J, Luo Y, Liu J, Jia S. Int J Mol Sci 24 3790 (2023)
  736. Identification of a Novel p53 Modulator Endowed with Antitumoural and Antibacterial Activity through a Scaffold Repurposing Approach. Nuti E, La Pietra V, Daniele S, Cuffaro D, Ciccone L, Giacomelli C, Cason C, Carotenuto A, D'Amore VM, Pozzo ED, Costa B, Di Leo R, Comar M, Marinelli L, Martini C, Rossello A. Pharmaceuticals (Basel) 15 1318 (2022)
  737. Lipotropes enhance the anti-proliferative effect of chemotherapeutic drugs in MCF-7 human breast cancer cells. Cho K, Mabasa L, Walters MW, Park CS. Oncol Rep 29 2237-2242 (2013)
  738. Low Energy Conformations for S100 Binding Peptide from the Negative Regulatory Domain of p53. Carty RP, Lin B, Fridman D, Pincus MR. Protein J 37 510-517 (2018)
  739. Multiple independent pseudogene derivations indicate increased instability of the Mdm2 locus in Mus caroli. Ford KK, Mack JA, O'Neill RJ. Mol Biol Rep 32 95-101 (2005)
  740. No evidence of direct binding between ursodeoxycholic acid and the p53 DNA-binding domain. Amaral JD, Correia AR, Steer CJ, Gomes CM, Rodrigues CM. Biosci Rep 30 359-364 (2010)
  741. Nutlin-3 suppresses tumorigenesis and progression of oral squamous cell carcinoma and enhances chemosensitivity to cisplatin. Zheng K, Li Z, Ding X, Li H. Cytotechnology 75 17-25 (2023)
  742. Prediction of secondary structure population and intrinsic disorder of proteins using multitask deep learning. Ying X, Leier A, Marquez-Lago TT, Xie J, Jimeno Yepes AJ, Whisstock JC, Wilson C, Song J. AMIA Annu Symp Proc 2020 1325-1334 (2020)
  743. Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides. Tokareva OS, Li K, Travaline TL, Thomson TM, Swiecicki JM, Moussa M, Ramirez JD, Litchman S, Verdine GL, McGee JH. Nat Commun 14 6992 (2023)
  744. Surface plasmon resonance and cytotoxicity assays of drug efficacies predicted computationally to inhibit p53/MDM2 interaction. Wang X, Magdziarz P, Enriquez E, Zhao W, Quan C, Darabedian N, Momand J, Zhou F. Anal Biochem 569 53-58 (2019)
  745. Synthesis of complex phosphopeptides as mimics of p53 functional domains. Varadi G, Otvos L. J Pept Sci 8 621-633 (2002)
  746. Targeting Cullin-RING E3 Ubiquitin Ligase 4 by Small Molecule Modulators. Wu K, Hopkins BD, Sanchez R, DeVita RJ, Pan ZQ. J Cell Signal 2 195-205 (2021)
  747. The facile and visualizable identification of broad-spectrum inhibitors of MDM2/p53 using co-expressed protein complexes. Yang Y, Dong Z, Hu H, Peng J, Sheng Y, Tong Y, Yuan S, Li Z, Yang J, Wells T, Qu Y, Farrell NP, Liu Y. Analyst 144 3773-3781 (2019)
  748. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor. Jabbar S, Mathews P, Wang X, Sundaramoorthy P, Chu E, Piryani SO, Ding S, Shen X, Doan PL, Kang Y. Exp Hematol Oncol 11 83 (2022)