1x0o Citations

Structural basis of ARNT PAS-B dimerization: use of a common beta-sheet interface for hetero- and homodimerization.

J. Mol. Biol. 353 664-77 (2005)
Cited: 83 times
EuropePMC logo PMID: 16181639

Abstract

The aryl hydrocarbon receptor nuclear translocator (ARNT) is a promiscuous bHLH-PAS (Per-ARNT-Sim) protein that forms heterodimeric transcriptional regulator complexes with several other bHLH-PAS subunits to control a variety of biological pathways, some of which are centrally involved in disease initiation and/or progression. One of these is the hypoxia response pathway, which allows eukaryotic cells to respond to low oxygen tension via the formation of a heterodimeric complex between ARNT and another bHLH-PAS protein, the hypoxia-inducible factor alpha (HIF-alpha). We have previously shown that the C-terminal PAS domains of an HIF-alpha isoform (HIF-2alpha) and ARNT interact in vitro, and that mutations in the solvent-exposed beta-sheet surface of the HIF-2alpha domain not only disrupt this interaction, but also greatly attenuate the hypoxia response in living cells. Here, we have solved the solution structure of the corresponding PAS domain of ARNT and show that it utilizes a very similar interface for the interaction with the HIF-2alpha PAS domain. We also show that this domain self-associates in a concentration-dependent manner, and that the interface used in this homodimeric complex is very similar to that used in the formation of heterodimer. In addition, using experimentally derived NMR restraints, we used the program HADDOCK to calculate a low-resolution model of the complex formed in solution by these two PAS domains, and confirm the validity of this model using site-directed spin labeling to obtain long-range distance information in solution. With this information, we propose a model for the mode of multi-PAS domain interaction in bHLH-PAS transcriptional activation complexes.

Reviews - 1x0o mentioned but not cited (2)

  1. bHLH-PAS Proteins: Their Structure and Intrinsic Disorder. Kolonko M, Greb-Markiewicz B. Int J Mol Sci 20 (2019)
  2. Structural characterization of mammalian bHLH-PAS transcription factors. Wu D, Rastinejad F. Curr. Opin. Struct. Biol. 43 1-9 (2017)

Articles - 1x0o mentioned but not cited (9)

  1. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. Pandini A, Denison MS, Song Y, Soshilov AA, Bonati L. Biochemistry 46 696-708 (2007)
  2. Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. Pandini A, Soshilov AA, Song Y, Zhao J, Bonati L, Denison MS. Biochemistry 48 5972-5983 (2009)
  3. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Li M, Liu P, Wiley JD, Ojani R, Bevan DR, Li J, Zhu J. Mol. Cell. Endocrinol. 394 47-58 (2014)
  4. Molecular basis of coiled coil coactivator recruitment by the aryl hydrocarbon receptor nuclear translocator (ARNT). Partch CL, Card PB, Amezcua CA, Gardner KH. J. Biol. Chem. 284 15184-15192 (2009)
  5. ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Iyer LM, Aravind L. Biol. Direct 7 39 (2012)
  6. Single-molecule experiments reveal the flexibility of a Per-ARNT-Sim domain and the kinetic partitioning in the unfolding pathway under force. Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W. Biophys. J. 102 2149-2157 (2012)
  7. Specific ligand binding domain residues confer low dioxin responsiveness to AHR1β of Xenopus laevis. Odio C, Holzman SA, Denison MS, Fraccalvieri D, Bonati L, Franks DG, Hahn ME, Powell WH. Biochemistry 52 1746-1754 (2013)
  8. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Shoots J, Fraccalvieri D, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. Environ. Sci. Technol. 49 6993-7001 (2015)
  9. Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR. Szöllősi D, Erdei Á, Gyimesi G, Magyar C, Hegedűs T. PLoS ONE 11 e0146066 (2016)


Reviews citing this publication (17)

  1. Circadian oscillator proteins across the kingdoms of life: structural aspects. Saini R, Jaskolski M, Davis SJ. BMC Biol. 17 13 (2019)
  2. The Role of Vascular Endothelial Growth Factor in Systemic Sclerosis. Flower VA, Barratt SL, Ward S, Pauling JD. Curr Rheumatol Rev 15 99-109 (2019)
  3. The role of hypoxia-inducible factor-2 alpha in angiogenesis. Befani C, Liakos P. J. Cell. Physiol. 233 9087-9098 (2018)
  4. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Front Immunol 7 290 (2016)
  5. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Toxicol. Sci. 124 1-22 (2011)
  6. Targeting tumour angiogenesis with small molecule inhibitors of hypoxia inducible factor. Nordgren IK, Tavassoli A. Chem Soc Rev 40 4307-4317 (2011)
  7. Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Zoltowski BD, Gardner KH. Biochemistry 50 4-16 (2011)
  8. Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family. Partch CL, Gardner KH. J. Cell. Physiol. 223 553-557 (2010)
  9. Mammalian Per-Arnt-Sim proteins in environmental adaptation. McIntosh BE, Hogenesch JB, Bradfield CA. Annu. Rev. Physiol. 72 625-645 (2010)
  10. Structure and signaling mechanism of Per-ARNT-Sim domains. Möglich A, Ayers RA, Moffat K. Structure 17 1282-1294 (2009)
  11. The structural analysis of protein-protein interactions by NMR spectroscopy. O'Connell MR, Gamsjaeger R, Mackay JP. Proteomics 9 5224-5232 (2009)
  12. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Clore GM, Iwahara J. Chem. Rev. 109 4108-4139 (2009)
  13. The human oxygen sensing machinery and its manipulation. Chowdhury R, Hardy A, Schofield CJ. Chem Soc Rev 37 1308-1319 (2008)
  14. Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement. Clore GM. Mol Biosyst 4 1058-1069 (2008)
  15. Atomic-level characterization of disordered protein ensembles. Mittag T, Forman-Kay JD. Curr. Opin. Struct. Biol. 17 3-14 (2007)
  16. Effects of hypoxia on tumor metabolism. Kim JW, Gao P, Dang CV. Cancer Metastasis Rev. 26 291-298 (2007)
  17. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Clore GM, Tang C, Iwahara J. Curr. Opin. Struct. Biol. 17 603-616 (2007)

Articles citing this publication (55)

  1. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL. Proc. Natl. Acad. Sci. U.S.A. 106 17910-17915 (2009)
  2. Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. Iwahara J, Tang C, Marius Clore G. J. Magn. Reson. 184 185-195 (2007)
  3. Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription factor. Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Proc. Natl. Acad. Sci. U.S.A. 106 450-455 (2009)
  4. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Zoltowski BD, Crane BR. Biochemistry 47 7012-7019 (2008)
  5. Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. Nakasako M, Zikihara K, Matsuoka D, Katsura H, Tokutomi S. J. Mol. Biol. 381 718-733 (2008)
  6. MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins. Mukherjee K, Bürglin TR. Plant Physiol. 140 1142-1150 (2006)
  7. Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Rytkönen KT, Williams TA, Renshaw GM, Primmer CR, Nikinmaa M. Mol. Biol. Evol. 28 1913-1926 (2011)
  8. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Milane L, Duan Z, Amiji M. Mol. Pharm. 8 185-203 (2011)
  9. Visualizing transient dark states by NMR spectroscopy. Anthis NJ, Clore GM. Q. Rev. Biophys. 48 35-116 (2015)
  10. Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV-LOV dimerization and interdomain interactions. Buttani V, Losi A, Eggert T, Krauss U, Jaeger KE, Cao Z, Gärtner W. Photochem. Photobiol. Sci. 6 41-49 (2007)
  11. Unique and overlapping transcriptional roles of arylhydrocarbon receptor nuclear translocator (Arnt) and Arnt2 in xenobiotic and hypoxic responses. Sekine H, Mimura J, Yamamoto M, Fujii-Kuriyama Y. J Biol Chem 281 37507-37516 (2006)
  12. Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Partch CL, Gardner KH. Proc. Natl. Acad. Sci. U.S.A. 108 7739-7744 (2011)
  13. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Petrova OE, Sauer K. Proc. Natl. Acad. Sci. U.S.A. 109 16690-16695 (2012)
  14. Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. Lamb JS, Zoltowski BD, Pabit SA, Li L, Crane BR, Pollack L. J. Mol. Biol. 393 909-919 (2009)
  15. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. Hennig S, Strauss HM, Vanselow K, Yildiz O, Schulze S, Arens J, Kramer A, Wolf E. PLoS Biol. 7 e94 (2009)
  16. Analysis of Ah receptor-ARNT and Ah receptor-ARNT2 complexes in vitro and in cell culture. Dougherty EJ, Pollenz RS. Toxicol. Sci. 103 191-206 (2008)
  17. Changes in quaternary structure in the signaling mechanisms of PAS domains. Ayers RA, Moffat K. Biochemistry 47 12078-12086 (2008)
  18. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance. Stevenson SR, Kamisugi Y, Trinh CH, Schmutz J, Jenkins JW, Grimwood J, Muchero W, Tuskan GA, Rensing SA, Lang D, Reski R, Melkonian M, Rothfels CJ, Li FW, Larsson A, Wong GK, Edwards TA, Cuming AC. Plant Cell 28 1310-1327 (2016)
  19. Structure and dimerization properties of the aryl hydrocarbon receptor PAS-A domain. Wu D, Potluri N, Kim Y, Rastinejad F. Mol. Cell. Biol. 33 4346-4356 (2013)
  20. Structural properties of PAS domains from the KCNH potassium channels. Adaixo R, Harley CA, Castro-Rodrigues AF, Morais-Cabral JH. PLoS ONE 8 e59265 (2013)
  21. Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Hao N, Whitelaw ML, Shearwin KE, Dodd IB, Chapman-Smith A. Nucleic Acids Res. 39 3695-3709 (2011)
  22. Quaternary structure changes in a second Per-Arnt-Sim domain mediate intramolecular redox signal relay in the NifL regulatory protein. Slavny P, Little R, Salinas P, Clarke TA, Dixon R. Mol. Microbiol. 75 61-75 (2010)
  23. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering. Lamb JS, Zoltowski BD, Pabit SA, Crane BR, Pollack L. J. Am. Chem. Soc. 130 12226-12227 (2008)
  24. Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. Fraccalvieri D, Soshilov AA, Karchner SI, Franks DG, Pandini A, Bonati L, Hahn ME, Denison MS. Biochemistry 52 714-725 (2013)
  25. Optical analysis of the HIF-1 complex in living cells by FRET and FRAP. Wotzlaw C, Otto T, Berchner-Pfannschmidt U, Metzen E, Acker H, Fandrey J. FASEB J. 21 700-707 (2007)
  26. Identification of Cys255 in HIF-1α as a novel site for development of covalent inhibitors of HIF-1α/ARNT PasB domain protein-protein interaction. Cardoso R, Love R, Nilsson CL, Bergqvist S, Nowlin D, Yan J, Liu KK, Zhu J, Chen P, Deng YL, Dyson HJ, Greig MJ, Brooun A. Protein Sci. 21 1885-1896 (2012)
  27. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. Motto I, Bordogna A, Soshilov AA, Denison MS, Bonati L. J Chem Inf Model 51 2868-2881 (2011)
  28. A network model for angiogenesis in ovarian cancer. Glass K, Quackenbush J, Spentzos D, Haibe-Kains B, Yuan GC. BMC Bioinformatics 16 115 (2015)
  29. NMR-derived topology of a GFP-photoprotein energy transfer complex. Titushin MS, Feng Y, Stepanyuk GA, Li Y, Markova SV, Golz S, Wang BC, Lee J, Wang J, Vysotski ES, Liu ZJ. J. Biol. Chem. 285 40891-40900 (2010)
  30. Regulating the ARNT/TACC3 axis: multiple approaches to manipulating protein/protein interactions with small molecules. Guo Y, Partch CL, Key J, Card PB, Pashkov V, Patel A, Bruick RK, Wurdak H, Gardner KH. ACS Chem. Biol. 8 626-635 (2013)
  31. ARNT PAS-B has a fragile native state structure with an alternative beta-sheet register nearby in sequence space. Evans MR, Card PB, Gardner KH. Proc. Natl. Acad. Sci. U.S.A. 106 2617-2622 (2009)
  32. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. Lindfors HE, de Koning PE, Drijfhout JW, Venezia B, Ubbink M. J. Biomol. NMR 41 157-167 (2008)
  33. Aryl hydrocarbon receptor nuclear translocator and upstream stimulatory factor regulate Cytochrome P450 2a5 transcription through a common E-box site. Arpiainen S, Lämsä V, Pelkonen O, Yim SH, Gonzalez FJ, Hakkola J. J. Mol. Biol. 369 640-652 (2007)
  34. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Michael AK, Fribourgh JL, Chelliah Y, Sandate CR, Hura GL, Schneidman-Duhovny D, Tripathi SM, Takahashi JS, Partch CL. Proc. Natl. Acad. Sci. U.S.A. 114 1560-1565 (2017)
  35. Coiled-coil coactivators play a structural role mediating interactions in hypoxia-inducible factor heterodimerization. Guo Y, Scheuermann TH, Partch CL, Tomchick DR, Gardner KH. J. Biol. Chem. 290 7707-7721 (2015)
  36. Solution structure of the PAS domain of a thermophilic YybT protein homolog reveals a potential ligand-binding site. Tan E, Rao F, Pasunooti S, Pham TH, Soehano I, Turner MS, Liew CW, Lescar J, Pervushin K, Liang ZX. J. Biol. Chem. 288 11949-11959 (2013)
  37. Stability of dimer and domain-domain interaction of Arabidopsis phototropin 1 LOV2. Nakasone Y, Eitoku T, Zikihara K, Matsuoka D, Tokutomi S, Terazima M. J. Mol. Biol. 383 904-913 (2008)
  38. Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms. Bonati L, Corrada D, Tagliabue SG, Motta S. Curr Opin Toxicol 2 42-49 (2017)
  39. Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. Pudasaini A, Shim JS, Song YH, Shi H, Kiba T, Somers DE, Imaizumi T, Zoltowski BD. Elife 6 (2017)
  40. MgcRacGAP, a cytoskeleton regulator, inhibits HIF-1 transcriptional activity by blocking its dimerization. Lyberopoulou A, Mylonis I, Papachristos G, Sagris D, Kalousi A, Befani C, Liakos P, Simos G, Georgatsou E. Biochim. Biophys. Acta 1833 1378-1387 (2013)
  41. Nanoscopy of the cellular response to hypoxia by means of fluorescence resonance energy transfer (FRET) and new FRET software. Wotzlaw C, Gneuss S, Konietzny R, Fandrey J. PMC Biophys 3 5 (2010)
  42. Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. Nabuurs SM, de Kort BJ, Westphal AH, van Mierlo CP. Eur. Biophys. J. 39 689-698 (2010)
  43. Computational approaches to shed light on molecular mechanisms in biological processes. Moro G, Bonati L, Bruschi M, Cosentino U, De Gioia L, Fantucci PC, Pandini A, Papaleo E, Pitea D, Saracino GA, Zampella G. Theor Chem Acc 117 723-741 (2007)
  44. Human aryl-hydrocarbon receptor and its interaction with dioxin and physiological ligands investigated by molecular modelling and docking simulations. Salzano M, Marabotti A, Milanesi L, Facchiano A. Biochem. Biophys. Res. Commun. 413 176-181 (2011)
  45. Protein dynamics of the HIF-2α PAS-B domain upon heterodimerization and ligand binding. Masetti M, Falchi F, Recanatini M. PLoS ONE 9 e94986 (2014)
  46. The expression of hypoxia-inducible factor-1α gene is not affected by low-oxygen conditions in yellow perch (Perca flavescens) juveniles. Kwasek K, Rimoldi S, Cattaneo AG, Parker T, Dabrowski K, Terova G. Fish Physiol. Biochem. 43 849-862 (2017)
  47. Effect of a Paramagnetic Spin Label on the Intrinsically Disordered Peptide Ensemble of Amyloid-β. Sasmal S, Lincoff J, Head-Gordon T. Biophys. J. 113 1002-1011 (2017)
  48. Forced homodimerization of the c-Fos leucine zipper in designed bHLHZ-like hybrid proteins MaxbHLH-Fos and ArntbHLH-Fos. Chen G, De Jong AT, Shin JA. Mol Biosyst 8 1286-1296 (2012)
  49. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study. Xue T, Song C, Wang Q, Wang Y, Chen G. PLoS ONE 11 e0155105 (2016)
  50. Molecular dynamics investigation of stereoselective inhibition mechanism of HIF-2α/ARNT heterodimer. Sun DR, Zheng QC, Zhang HX. J. Mol. Recognit. 31 (2018)
  51. Photokinetic, biochemical and structural features of chimeric photoactive yellow protein constructs. Kyndt JA, Meyer TE, Olson KT, Van Beeumen J, Cusanovich MA. Photochem. Photobiol. 89 349-360 (2013)
  52. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. Chitrala KN, Yang X, Nagarkatti P, Nagarkatti M. BMC Struct. Biol. 18 15 (2018)
  53. IGS sequences in Cestrum present AT- and GC-rich conserved domains, with strong regulatory potential for 5S rDNA. de Souza TB, Gaeta ML, Martins C, Vanzela ALL. Mol. Biol. Rep. 47 55-66 (2020)
  54. Properties that rank protein:protein docking poses with high accuracy. Simões ICM, Coimbra JTS, Neves RPP, Costa IPD, Ramos MJ, Fernandes PA. Phys Chem Chem Phys 20 20927-20942 (2018)
  55. The Treponema denticola PAS Domain-Containing Histidine Kinase Hpk2 Is a Heme Binding Sensor of Oxygen Levels. Sarkar J, Miller DP, Oliver LD, Marconi RT. J. Bacteriol. 200 (2018)