1x02 Citations

Optimal isotope labelling for NMR protein structure determinations.

Nature 440 52-7 (2006)
Cited: 250 times
EuropePMC logo PMID: 16511487

Abstract

Nuclear-magnetic-resonance spectroscopy can determine the three-dimensional structure of proteins in solution. However, its potential has been limited by the difficulty of interpreting NMR spectra in the presence of broadened and overlapping resonance lines and low signal-to-noise ratios. Here we present stereo-array isotope labelling (SAIL), a technique that can overcome many of these problems by applying a complete stereospecific and regiospecific pattern of stable isotopes that is optimal with regard to the quality and information content of the resulting NMR spectra. SAIL uses exclusively chemically and enzymatically synthesized amino acids for cell-free protein expression. We demonstrate for the 17-kDa protein calmodulin and the 41-kDa maltodextrin-binding protein that SAIL offers sharpened lines, spectral simplification without loss of information, and the ability to rapidly collect the structural restraints required to solve a high-quality solution structure for proteins twice as large as commonly solved by NMR. It thus makes a large class of proteins newly accessible to detailed solution structure determination.

Articles - 1x02 mentioned but not cited (11)

  1. Objective identification of residue ranges for the superposition of protein structures. Kirchner DK, Güntert P. BMC Bioinformatics 12 170 (2011)
  2. Lanatoside C Induces G2/M Cell Cycle Arrest and Suppresses Cancer Cell Growth by Attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR Signaling Pathways. Reddy D, Kumavath R, Ghosh P, Barh D. Biomolecules 9 (2019)
  3. Multicolor protein FRET with tryptophan, selective coumarin-cysteine labeling, and genetic acridonylalanine encoding. Ferrie JJ, Ieda N, Haney CM, Walters CR, Sungwienwong I, Yoon J, Petersson EJ. Chem Commun (Camb) 53 11072-11075 (2017)
  4. Retention of conformational entropy upon calmodulin binding to target peptides is driven by transient salt bridges. Smith DM, Straatsma TP, Squier TC. Biophys J 103 1576-1584 (2012)
  5. Paramagnetic Ligand Tagging To Identify Protein Binding Sites. Brath U, Swamy SI, Veiga AX, Tung CC, Van Petegem F, Erdélyi M. J Am Chem Soc 137 11391-11398 (2015)
  6. Molecular Dynamics Study of the Changes in Conformation of Calmodulin with Calcium Binding and/or Target Recognition. Kawasaki H, Soma N, Kretsinger RH. Sci Rep 9 10688 (2019)
  7. The arrhythmogenic N53I variant subtly changes the structure and dynamics in the calmodulin N-terminal domain, altering its interaction with the cardiac ryanodine receptor. Holt C, Hamborg L, Lau K, Brohus M, Sørensen AB, Larsen KT, Sommer C, Van Petegem F, Overgaard MT, Wimmer R. J Biol Chem 295 7620-7634 (2020)
  8. Alternative pathways for association and dissociation of the calmodulin-binding domain of plasma membrane Ca(2+)-ATPase isoform 4b (PMCA4b). Penniston JT, Caride AJ, Strehler EE. J Biol Chem 287 29664-29671 (2012)
  9. Assessing the Role of Calmodulin's Linker Flexibility in Target Binding. Sun B, Kekenes-Huskey PM. Int J Mol Sci 22 4990 (2021)
  10. Functional role of the flexible N-terminal extension of FKBP38 in catalysis. Kang C, Ye H, Chia J, Choi BH, Dhe-Paganon S, Simon B, Schütz U, Sattler M, Yoon HS. Sci Rep 3 2985 (2013)
  11. Mapping the sevoflurane-binding sites of calmodulin. Brath U, Lau K, Van Petegem F, Erdélyi M. Pharmacol Res Perspect 2 5 (2014)


Reviews citing this publication (55)

  1. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Igumenova TI, Frederick KK, Wand AJ. Chem Rev 106 1672-1699 (2006)
  2. Automated structure determination from NMR spectra. Güntert P. Eur Biophys J 38 129-143 (2009)
  3. Cell-free expression systems for eukaryotic protein production. Endo Y, Sawasaki T. Curr Opin Biotechnol 17 373-380 (2006)
  4. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Rosenzweig R, Kay LE. Annu Rev Biochem 83 291-315 (2014)
  5. Methyl groups as probes of supra-molecular structure, dynamics and function. Ruschak AM, Kay LE. J Biomol NMR 46 75-87 (2010)
  6. Isotope labeling strategies for NMR studies of RNA. Lu K, Miyazaki Y, Summers MF. J Biomol NMR 46 113-125 (2010)
  7. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Göbl C, Madl T, Simon B, Sattler M. Prog Nucl Magn Reson Spectrosc 80 26-63 (2014)
  8. High-resolution proton-detected NMR of proteins at very fast MAS. Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G. J Magn Reson 253 36-49 (2015)
  9. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J. Curr Opin Struct Biol 32 113-122 (2015)
  10. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Poget SF, Girvin ME. Biochim Biophys Acta 1768 3098-3106 (2007)
  11. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FH. Prog Nucl Magn Reson Spectrosc 58 1-61 (2011)
  12. Sensitivity enhancement in solution NMR: emerging ideas and new frontiers. Lee JH, Okuno Y, Cavagnero S. J Magn Reson 241 18-31 (2014)
  13. Computational modeling of membrane proteins. Koehler Leman J, Ulmschneider MB, Gray JJ. Proteins 83 1-24 (2015)
  14. Advances in automated NMR protein structure determination. Guerry P, Herrmann T. Q Rev Biophys 44 257-309 (2011)
  15. Recent advances in magic angle spinning solid state NMR of membrane proteins. Wang S, Ladizhansky V. Prog Nucl Magn Reson Spectrosc 82 1-26 (2014)
  16. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. FEBS Lett 589 1703-1712 (2015)
  17. N-Labelled proteins by cell-free protein synthesis. Strategies for high-throughput NMR studies of proteins and protein-ligand complexes. Ozawa K, Wu PS, Dixon NE, Otting G. FEBS J 273 4154-4159 (2006)
  18. Wheat germ cell-free platform for eukaryotic protein production. Vinarov DA, Loushin Newman CL, Markley JL. FEBS J 273 4160-4169 (2006)
  19. SAIL--stereo-array isotope labeling. Kainosho M, Güntert P. Q Rev Biophys 42 247-300 (2009)
  20. Current strategies for protein production and purification enabling membrane protein structural biology. Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Biochem Cell Biol 94 507-527 (2016)
  21. Site-specific labeling of proteins with NMR-active unnatural amino acids. Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH. J Biomol NMR 46 89-100 (2010)
  22. Cell-free expression--making a mark. Bernhard F, Tozawa Y. Curr Opin Struct Biol 23 374-380 (2013)
  23. Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins. Sheppard D, Sprangers R, Tugarinov V. Prog Nucl Magn Reson Spectrosc 56 1-45 (2010)
  24. Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Manjasetty BA, Turnbull AP, Panjikar S, Büssow K, Chance MR. Proteomics 8 612-625 (2008)
  25. Cell-free expression and selective isotope labelling in protein NMR. Staunton D, Schlinkert R, Zanetti G, Colebrook SA, Campbell ID. Magn Reson Chem 44 Spec No S2-9 (2006)
  26. Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy. Becker W, Bhattiprolu KC, Gubensäk N, Zangger K. Chemphyschem 19 895-906 (2018)
  27. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Toukach FV, Ananikov VP. Chem Soc Rev 42 8376-8415 (2013)
  28. Advances in NMR structures of integral membrane proteins. Maslennikov I, Choe S. Curr Opin Struct Biol 23 555-562 (2013)
  29. Current NMR Techniques for Structure-Based Drug Discovery. Sugiki T, Furuita K, Fujiwara T, Kojima C. Molecules 23 (2018)
  30. Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Huang C, Kalodimos CG. Annu Rev Biophys 46 317-336 (2017)
  31. Structural answers and persistent questions about how nicotinic receptors work. Wells GB. Front Biosci 13 5479-5510 (2008)
  32. Wheat germ cell-free protein production system for post-genomic research. Madono M, Sawasaki T, Morishita R, Endo Y. N Biotechnol 28 211-217 (2011)
  33. NMR Studies of Large Proteins. Jiang Y, Kalodimos CG. J Mol Biol 429 2667-2676 (2017)
  34. The quiet renaissance of protein nuclear magnetic resonance. Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sönnichsen FD, Sanders CR. Biochemistry 52 1303-1320 (2013)
  35. An integrated transport mechanism of the maltose ABC importer. Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C. Res Microbiol 170 321-337 (2019)
  36. Solution NMR studies of peptide-lipid interactions in model membranes. Mäler L. Mol Membr Biol 29 155-176 (2012)
  37. Latest approaches for efficient protein production in drug discovery. Sugiki T, Fujiwara T, Kojima C. Expert Opin Drug Discov 9 1189-1204 (2014)
  38. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Sugiki T, Kobayashi N, Fujiwara T. Comput Struct Biotechnol J 15 328-339 (2017)
  39. Chemical shift-based methods in NMR structure determination. Nerli S, McShan AC, Sgourakis NG. Prog Nucl Magn Reson Spectrosc 106-107 1-25 (2018)
  40. NMR structures of polytopic integral membrane proteins. Patching SG. Mol Membr Biol 28 370-397 (2011)
  41. Recent applications of isotopic labeling for protein NMR in drug discovery. Hiroaki H. Expert Opin Drug Discov 8 523-536 (2013)
  42. Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Schrank E, Wagner GE, Zangger K. Molecules 18 7407-7435 (2013)
  43. Information-driven modeling of large macromolecular assemblies using NMR data. van Ingen H, Bonvin AM. J Magn Reson 241 103-114 (2014)
  44. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Quinn CM, Wang M, Polenova T. Methods Mol Biol 1688 1-35 (2018)
  45. Biomolecular NMR data analysis. Gryk MR, Vyas J, Maciejewski MW. Prog Nucl Magn Reson Spectrosc 56 329-345 (2010)
  46. Late metabolic precursors for selective aromatic residue labeling. Schörghuber J, Geist L, Platzer G, Feichtinger M, Bisaccia M, Scheibelberger L, Weber F, Konrat R, Lichtenecker RJ. J Biomol NMR 71 129-140 (2018)
  47. Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. Baldus M. Eur Biophys J 36 Suppl 1 S37-48 (2007)
  48. A Hybrid Approach for Protein Structure Determination Combining Sparse NMR with Evolutionary Coupling Sequence Data. Huang YJ, Brock KP, Sander C, Marks DS, Montelione GT. Adv Exp Med Biol 1105 153-169 (2018)
  49. Advances in protein NMR provided by the NIGMS Protein Structure Initiative: impact on drug discovery. Montelione GT, Szyperski T. Curr Opin Drug Discov Devel 13 335-349 (2010)
  50. Access to any site directed stable isotope ((2)H, (13)C, (15)N, (17)O and (18)O) in genetically encoded amino acids. Dawadi PB, Lugtenburg J. Molecules 18 482-519 (2013)
  51. Protein Structure Determination in Living Cells. Ikeya T, Güntert P, Ito Y. Int J Mol Sci 20 (2019)
  52. Specific isotopic labelling and reverse labelling for protein NMR spectroscopy: using metabolic precursors in sample preparation. Rowlinson B, Crublet E, Kerfah R, Plevin MJ. Biochem Soc Trans 50 1555-1567 (2022)
  53. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. Chem Rev 122 9943-10018 (2022)
  54. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Laurents DV. Front Mol Biosci 9 906437 (2022)
  55. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. Vogl DP, Conibear AC, Becker CFW. RSC Chem Biol 2 1441-1461 (2021)

Articles citing this publication (184)

  1. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Tugarinov V, Kanelis V, Kay LE. Nat Protoc 1 749-754 (2006)
  2. Protein structure determination in living cells by in-cell NMR spectroscopy. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y. Nature 458 102-105 (2009)
  3. The role of conformational entropy in molecular recognition by calmodulin. Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ. Nat Chem Biol 6 352-358 (2010)
  4. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Schwarz D, Junge F, Durst F, Frölich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F. Nat Protoc 2 2945-2957 (2007)
  5. Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR. PLoS Comput Biol 5 e1000307 (2009)
  6. Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Cammarata M, Levantino M, Schotte F, Anfinrud PA, Ewald F, Choi J, Cupane A, Wulff M, Ihee H. Nat Methods 5 881-886 (2008)
  7. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D. Proc Natl Acad Sci U S A 109 10873-10878 (2012)
  8. Combined automated NOE assignment and structure calculation with CYANA. Güntert P, Buchner L. J Biomol NMR 62 453-471 (2015)
  9. Practical cell-free protein synthesis system using purified wheat embryos. Takai K, Sawasaki T, Endo Y. Nat Protoc 5 227-238 (2010)
  10. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Gans P, Hamelin O, Sounier R, Ayala I, Durá MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J. Angew Chem Int Ed Engl 49 1958-1962 (2010)
  11. In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. Cellitti SE, Jones DH, Lagpacan L, Hao X, Zhang Q, Hu H, Brittain SM, Brinker A, Caldwell J, Bursulaya B, Spraggon G, Brock A, Ryu Y, Uno T, Schultz PG, Geierstanger BH. J Am Chem Soc 130 9268-9281 (2008)
  12. Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M. Angew Chem Int Ed Engl 46 459-462 (2007)
  13. Solution NMR structure of proteorhodopsin. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V. Angew Chem Int Ed Engl 50 11942-11946 (2011)
  14. Solution NMR of supramolecular complexes: providing new insights into function. Sprangers R, Velyvis A, Kay LE. Nat Methods 4 697-703 (2007)
  15. Insulin-like growth factor binding proteins: a structural perspective. Forbes BE, McCarthy P, Norton RS. Front Endocrinol (Lausanne) 3 38 (2012)
  16. Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M. J Mol Biol 371 639-648 (2007)
  17. A software framework for analysing solid-state MAS NMR data. Stevens TJ, Fogh RH, Boucher W, Higman VA, Eisenmenger F, Bardiaux B, van Rossum BJ, Oschkinat H, Laue ED. J Biomol NMR 51 437-447 (2011)
  18. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Prog Nucl Magn Reson Spectrosc 55 335-360 (2009)
  19. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. Takeda M, Chang CK, Ikeya T, Güntert P, Chang YH, Hsu YL, Huang TH, Kainosho M. J Mol Biol 380 608-622 (2008)
  20. Structural biology by NMR: structure, dynamics, and interactions. Markwick PR, Malliavin T, Nilges M. PLoS Comput Biol 4 e1000168 (2008)
  21. Functional Interactions between Distinct Sodium Channel Cytoplasmic Domains through the Action of Calmodulin. Potet F, Chagot B, Anghelescu M, Viswanathan PC, Stepanovic SZ, Kupershmidt S, Chazin WJ, Balser JR. J Biol Chem 284 8846-8854 (2009)
  22. Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu G, Maglaqui M, Ma L, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GV, Tang Y, Tong S, Wang D, Wang H, Zhao L, Montelione GT. Methods Enzymol 493 21-60 (2011)
  23. A new strategy for structure determination of large proteins in solution without deuteration. Xu Y, Zheng Y, Fan JS, Yang D. Nat Methods 3 931-937 (2006)
  24. Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dötsch V, Bernhard F. N Biotechnol 28 262-271 (2011)
  25. Cell-free expression and stable isotope labelling strategies for membrane proteins. Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V. J Biomol NMR 46 33-43 (2010)
  26. Cell-free transcription/translation from PCR-amplified DNA for high-throughput NMR studies. Wu PS, Ozawa K, Lim SP, Vasudevan SG, Dixon NE, Otting G. Angew Chem Int Ed Engl 46 3356-3358 (2007)
  27. Protein structure determination by combining sparse NMR data with evolutionary couplings. Tang Y, Huang YJ, Hopf TA, Sander C, Marks DS, Montelione GT. Nat Methods 12 751-754 (2015)
  28. A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. Tong KI, Yamamoto M, Tanaka T. J Biomol NMR 42 59-67 (2008)
  29. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. Velyvis A, Ruschak AM, Kay LE. PLoS One 7 e43725 (2012)
  30. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. Schuetz AK, Kay LE. Elife 5 (2016)
  31. A simple strategy for ¹³C, ¹H labeling at the Ile-γ2 methyl position in highly deuterated proteins. Ruschak AM, Velyvis A, Kay LE. J Biomol NMR 48 129-135 (2010)
  32. Amino acid selective unlabeling for sequence specific resonance assignments in proteins. Krishnarjuna B, Jaipuria G, Thakur A, D'Silva P, Atreya HS. J Biomol NMR 49 39-51 (2011)
  33. Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. Skrisovska L, Allain FH. J Mol Biol 375 151-164 (2008)
  34. Structure-based prediction of methyl chemical shifts in proteins. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M. J Biomol NMR 50 331-346 (2011)
  35. Use of relaxation enhancements in a paramagnetic environment for the structure determination of proteins using NMR spectroscopy. Madl T, Bermel W, Zangger K. Angew Chem Int Ed Engl 48 8259-8262 (2009)
  36. Hydromethylation of Unactivated Olefins. Dao HT, Li C, Michaudel Q, Maxwell BD, Baran PS. J Am Chem Soc 137 8046-8049 (2015)
  37. Cell-free complements in vivo expression of the E. coli membrane proteome. Savage DF, Anderson CL, Robles-Colmenares Y, Newby ZE, Stroud RM. Protein Sci 16 966-976 (2007)
  38. Measuring 13Cbeta chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. Lundström P, Lin H, Kay LE. J Biomol NMR 44 139-155 (2009)
  39. Automated structure determination of proteins with the SAIL-FLYA NMR method. Takeda M, Ikeya T, Güntert P, Kainosho M. Nat Protoc 2 2896-2902 (2007)
  40. Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. Minato Y, Ueda T, Machiyama A, Shimada I, Iwaï H. J Biomol NMR 53 191-207 (2012)
  41. A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Abramov G, Velyvis A, Rennella E, Wong LE, Kay LE. Proc Natl Acad Sci U S A 117 12836-12846 (2020)
  42. A rapid and robust method for selective isotope labeling of proteins. Lin MT, Sperling LJ, Frericks Schmidt HL, Tang M, Samoilova RI, Kumasaka T, Iwasaki T, Dikanov SA, Rienstra CM, Gennis RB. Methods 55 370-378 (2011)
  43. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. Takeda M, Ono AM, Terauchi T, Kainosho M. J Biomol NMR 46 45-49 (2010)
  44. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P, Wilson MD, Portella G, Yuwen T, Panier S, Duan S, Canny MD, van Ingen H, Arrowsmith CH, Rubinstein JL, Vendruscolo M, Durocher D, Kay LE. Elife 6 (2017)
  45. A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Yokoyama J, Matsuda T, Koshiba S, Tochio N, Kigawa T. Anal Biochem 411 223-229 (2011)
  46. Accurate protein structure modeling using sparse NMR data and homologous structure information. Thompson JM, Sgourakis NG, Liu G, Rossi P, Tang Y, Mills JL, Szyperski T, Montelione GT, Baker D. Proc Natl Acad Sci U S A 109 9875-9880 (2012)
  47. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P. J Biomol NMR 49 75-84 (2011)
  48. Cell-free protein synthesis of perdeuterated proteins for NMR studies. Etezady-Esfarjani T, Hiller S, Villalba C, Wüthrich K. J Biomol NMR 39 229-238 (2007)
  49. Nuclear magnetic resonance (NMR) applied to membrane-protein complexes. Kaplan M, Pinto C, Houben K, Baldus M. Q Rev Biophys 49 e15 (2016)
  50. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J. J Biomol NMR 57 251-262 (2013)
  51. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR. Gottstein D, Reckel S, Dötsch V, Güntert P. Structure 20 1019-1027 (2012)
  52. (13)CHD2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins. Rennella E, Huang R, Velyvis A, Kay LE. J Biomol NMR 63 187-199 (2015)
  53. Automated assignment in selectively methyl-labeled proteins. Xu Y, Liu M, Simpson PJ, Isaacson R, Cota E, Marchant J, Yang D, Zhang X, Freemont P, Matthews S. J Am Chem Soc 131 9480-9481 (2009)
  54. α-Ketoacids as precursors for phenylalanine and tyrosine labelling in cell-based protein overexpression. Lichtenecker RJ, Weinhäupl K, Schmid W, Konrat R. J Biomol NMR 57 327-331 (2013)
  55. Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA. Ikeya T, Terauchi T, Güntert P, Kainosho M. Magn Reson Chem 44 Spec No S152-7 (2006)
  56. Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition. Tonelli M, Singarapu KK, Makino S, Sahu SC, Matsubara Y, Endo Y, Kainosho M, Markley JL. J Biomol NMR 51 467-476 (2011)
  57. Radiation damping in modern NMR experiments: progress and challenges. Krishnan VV, Murali N. Prog Nucl Magn Reson Spectrosc 68 41-57 (2013)
  58. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles. Buchner L, Güntert P. Structure 23 425-434 (2015)
  59. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Evangelidis T, Nerli S, Nováček J, Brereton AE, Karplus PA, Dotas RR, Venditti V, Sgourakis NG, Tripsianes K. Nat Commun 9 384 (2018)
  60. Robotic large-scale application of wheat cell-free translation to structural studies including membrane proteins. Beebe ET, Makino S, Nozawa A, Matsubara Y, Frederick RO, Primm JG, Goren MA, Fox BG. N Biotechnol 28 239-249 (2011)
  61. Selective deuteration of tryptophan and methionine residues in maltose binding protein: a model system for neutron scattering. Laux V, Callow P, Svergun DI, Timmins PA, Forsyth VT, Haertlein M. Eur Biophys J 37 815-822 (2008)
  62. A Numb-Mdm2 fuzzy complex reveals an isoform-specific involvement of Numb in breast cancer. Colaluca IN, Basile A, Freiburger L, D'Uva V, Disalvatore D, Vecchi M, Confalonieri S, Tosoni D, Cecatiello V, Malabarba MG, Yang CJ, Kainosho M, Sattler M, Mapelli M, Pece S, Di Fiore PP. J Cell Biol 217 745-762 (2018)
  63. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs. Miyanoiri Y, Takeda M, Jee J, Ono AM, Okuma K, Terauchi T, Kainosho M. J Biomol NMR 51 425-435 (2011)
  64. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. Ikeya T, Takeda M, Yoshida H, Terauchi T, Jee JG, Kainosho M, Güntert P. J Biomol NMR 44 261-272 (2009)
  65. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. J Biomol NMR 57 237-249 (2013)
  66. High-resolution 3D structure determination of kaliotoxin by solid-state NMR spectroscopy. Korukottu J, Schneider R, Vijayan V, Lange A, Pongs O, Becker S, Baldus M, Zweckstetter M. PLoS One 3 e2359 (2008)
  67. Improved in-cell structure determination of proteins at near-physiological concentration. Ikeya T, Hanashima T, Hosoya S, Shimazaki M, Ikeda S, Mishima M, Güntert P, Ito Y. Sci Rep 6 38312 (2016)
  68. Is protein deuteration beneficial for proton detected solid-state NMR at and above 100 kHz magic-angle spinning? Cala-De Paepe D, Stanek J, Jaudzems K, Tars K, Andreas LB, Pintacuda G. Solid State Nucl Magn Reson 87 126-136 (2017)
  69. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R1rho methods. Auer R, Hansen DF, Neudecker P, Korzhnev DM, Muhandiram DR, Konrat R, Kay LE. J Biomol NMR 46 205-216 (2010)
  70. Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. Schmidt E, Güntert P. J Biomol NMR 57 193-204 (2013)
  71. Selective methyl labeling of eukaryotic membrane proteins using cell-free expression. Linser R, Gelev V, Hagn F, Arthanari H, Hyberts SG, Wagner G. J Am Chem Soc 136 11308-11310 (2014)
  72. Stable-isotope labeling using an inducible viral infection system in suspension-cultured plant cells. Ohki S, Dohi K, Tamai A, Takeuchi M, Mori M. J Biomol NMR 42 271-277 (2008)
  73. Amino acid-selective segmental isotope labeling of multidomain proteins for structural biology. Michel E, Skrisovska L, Wüthrich K, Allain FH. Chembiochem 14 457-466 (2013)
  74. CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample. Kerfah R, Hamelin O, Boisbouvier J, Marion D. J Biomol NMR 63 389-402 (2015)
  75. Cell-free expression of disulfide-containing eukaryotic proteins for structural biology. Michel E, Wüthrich K. FEBS J 279 3176-3184 (2012)
  76. Exclusively NOESY-based automated NMR assignment and structure determination of proteins. Ikeya T, Jee JG, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P. J Biomol NMR 50 137-146 (2011)
  77. Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups. Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M. J Am Chem Soc 133 17420-17427 (2011)
  78. Selective isotopic unlabeling of proteins using metabolic precursors: application to NMR assignment of intrinsically disordered proteins. Rasia RM, Brutscher B, Plevin MJ. Chembiochem 13 732-739 (2012)
  79. A simple biosynthetic method for stereospecific resonance assignment of prochiral methyl groups in proteins. Plevin MJ, Hamelin O, Boisbouvier J, Gans P. J Biomol NMR 49 61-67 (2011)
  80. Cell-free synthesis system suitable for disulfide-containing proteins. Matsuda T, Watanabe S, Kigawa T. Biochem Biophys Res Commun 431 296-301 (2013)
  81. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain. Miyanoiri Y, Ishida Y, Takeda M, Terauchi T, Inouye M, Kainosho M. J Biomol NMR 65 109-119 (2016)
  82. Novel approaches in selective tryptophan isotope labeling by using Escherichia coli overexpression media. Schörghuber J, Sára T, Bisaccia M, Schmid W, Konrat R, Lichtenecker RJ. Chembiochem 16 746-751 (2015)
  83. Selective backbone labeling of proteins using 1,2-13C2-pyruvate as carbon source. Guo C, Geng C, Tugarinov V. J Biomol NMR 44 167-173 (2009)
  84. Side Chain Conformational Distributions of a Small Protein Derived from Model-Free Analysis of a Large Set of Residual Dipolar Couplings. Li F, Grishaev A, Ying J, Bax A. J Am Chem Soc 137 14798-14811 (2015)
  85. Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space. Gottstein D, Kirchner DK, Güntert P. J Biomol NMR 52 351-364 (2012)
  86. Stereospecific assignments in proteins using exact NOEs. Orts J, Vögeli B, Riek R, Güntert P. J Biomol NMR 57 211-218 (2013)
  87. Systematic evaluation of combined automated NOE assignment and structure calculation with CYANA. Buchner L, Güntert P. J Biomol NMR 62 81-95 (2015)
  88. News 'Big science' protein project under fire. Cyranoski D. Nature 443 382 (2006)
  89. An economical method for producing stable-isotope labeled proteins by the E. coli cell-free system. Yokoyama J, Matsuda T, Koshiba S, Kigawa T. J Biomol NMR 48 193-201 (2010)
  90. SIMS: a hybrid method for rapid conformational analysis. Gipson B, Moll M, Kavraki LE. PLoS One 8 e68826 (2013)
  91. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility. Kobayashi H, Swapna GV, Wu KP, Afinogenova Y, Conover K, Mao B, Montelione GT, Inouye M. J Biomol NMR 52 303-313 (2012)
  92. Solid-state NMR spectroscopy. Reif B, Ashbrook SE, Emsley L, Hong M. Nat Rev Methods Primers 1 (2021)
  93. Stable isotope labeling of protein by Kluyveromyces lactis for NMR study. Sugiki T, Shimada I, Takahashi H. J Biomol NMR 42 159-162 (2008)
  94. Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H, Yamaguchi Y, Kato K, Ikeya T, Jee J, Güntert P, Aceti DJ, Markley JL, Kainosho M. FEBS J 275 5873-5884 (2008)
  95. Structure-Based Assignment of Ile, Leu, and Val Methyl Groups in the Active and Inactive Forms of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 2. Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A. Biochemistry 54 4307-4319 (2015)
  96. Use of protein trans-splicing to produce active and segmentally (2)H, (15)N labeled mannuronan C5-epimerase AlgE4. Buchinger E, Aachmann FL, Aranko AS, Valla S, Skjåk-Braek G, Iwaï H, Wimmer R. Protein Sci 19 1534-1543 (2010)
  97. A mild deuterium exchange reaction of free carboxylic acids by photochemical decarboxylation. Itou T, Yoshimi Y, Nishikawa K, Morita T, Okada Y, Ichinose N, Hatanaka M. Chem Commun (Camb) 46 6177-6179 (2010)
  98. Amino acid-selective isotope labeling of proteins for nuclear magnetic resonance study: proteins secreted by Brevibacillus choshinensis. Tanio M, Tanaka R, Tanaka T, Kohno T. Anal Biochem 386 156-160 (2009)
  99. Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus. Fogeron ML, Jirasko V, Penzel S, Paul D, Montserret R, Danis C, Lacabanne D, Badillo A, Gouttenoire J, Moradpour D, Bartenschlager R, Penin F, Meier BH, Böckmann A. J Biomol NMR 65 87-98 (2016)
  100. Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. Wickramasinghe A, Wang S, Matsuda I, Nishiyama Y, Nemoto T, Endo Y, Ishii Y. Solid State Nucl Magn Reson 72 9-16 (2015)
  101. Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling. Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T, Takeda M, Terauchi T, Kainosho M, Ishii Y. PLoS One 10 e0122714 (2015)
  102. Synthesis of aromatic (13)C/(2)H-α-ketoacid precursors to be used in selective phenylalanine and tyrosine protein labelling. Lichtenecker RJ. Org Biomol Chem 12 7551-7560 (2014)
  103. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJ, Patching SG. Mol Membr Biol 31 131-140 (2014)
  104. Using side-chain aromatic proton chemical shifts for a quantitative analysis of protein structures. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M. Angew Chem Int Ed Engl 50 9620-9623 (2011)
  105. Application of nuclear magnetic resonance spectroscopy in food adulteration determination: the example of Sudan dye I in paprika powder. Hu Y, Wang S, Wang S, Lu X. Sci Rep 7 2637 (2017)
  106. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins. Takeda M, Terauchi T, Kainosho M. J Biomol NMR 52 127-139 (2012)
  107. Identification of individual protein-ligand NOEs in the limit of intermediate exchange. Reibarkh M, Malia TJ, Hopkins BT, Wagner G. J Biomol NMR 36 1-11 (2006)
  108. Protein labeling for FRET with methoxycoumarin and acridonylalanine. Jones CM, Venkatesh Y, Petersson EJ. Methods Enzymol 639 37-69 (2020)
  109. 1H-detected 1H-1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning. Takahashi H, Kainosho M, Akutsu H, Fujiwara T. J Magn Reson 203 253-256 (2010)
  110. Alpha protons as NMR probes in deuterated proteins. Movellan KT, Najbauer EE, Pratihar S, Salvi M, Giller K, Becker S, Andreas LB. J Biomol NMR 73 81-91 (2019)
  111. Aromatic Ring Dynamics, Thermal Activation, and Transient Conformations of a 468 kDa Enzyme by Specific 1H-13C Labeling and Fast Magic-Angle Spinning NMR. Gauto DF, Macek P, Barducci A, Fraga H, Hessel A, Terauchi T, Gajan D, Miyanoiri Y, Boisbouvier J, Lichtenecker R, Kainosho M, Schanda P. J Am Chem Soc 141 11183-11195 (2019)
  112. Effects of NMR spectral resolution on protein structure calculation. Tikole S, Jaravine V, Orekhov VY, Güntert P. PLoS One 8 e68567 (2013)
  113. Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies. Aceti DJ, Bingman CA, Wrobel RL, Frederick RO, Makino S, Nichols KW, Sahu SC, Bergeman LF, Blommel PG, Cornilescu CC, Gromek KA, Seder KD, Hwang S, Primm JG, Sabat G, Vojtik FC, Volkman BF, Zolnai Z, Phillips GN, Markley JL, Fox BG. J Struct Funct Genomics 16 67-80 (2015)
  114. Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment. Robson SA, Takeuchi K, Boeszoermenyi A, Coote PW, Dubey A, Hyberts S, Wagner G, Arthanari H. Nat Commun 9 356 (2018)
  115. NMR assignments of sparsely labeled proteins using a genetic algorithm. Gao Q, Chalmers GR, Moremen KW, Prestegard JH. J Biomol NMR 67 283-294 (2017)
  116. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme. Lv G, Faßhuber HK, Loquet A, Demers JP, Vijayan V, Giller K, Becker S, Lange A. J Magn Reson 228 45-49 (2013)
  117. Active-site structure of the thermophilic Foc-subunit ring in membranes elucidated by solid-state NMR. Kang SJ, Todokoro Y, Yumen I, Shen B, Iwasaki I, Suzuki T, Miyagi A, Yoshida M, Fujiwara T, Akutsu H. Biophys J 106 390-398 (2014)
  118. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R. J Biomol NMR 57 141-154 (2013)
  119. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates. Augustyniak R, Kay LE. Proc Natl Acad Sci U S A 115 E4786-E4795 (2018)
  120. Fully automated structure determinations of the Fes SH2 domain using different sets of NMR spectra. Scott A, López-Méndez B, Güntert P. Magn Reson Chem 44 Spec No S83-8 (2006)
  121. Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion. Hellstrand E, Kukora S, Shuman CF, Steenbergen S, Thulin E, Kohli A, Krouse B, Linse S, Åkerfeldt KS. FEBS J 280 2675-2687 (2013)
  122. Geometric isotope effect of deuteration in a hydrogen-bonded host-guest crystal. Shi C, Zhang X, Yu CH, Yao YF, Zhang W. Nat Commun 9 481 (2018)
  123. High-pressure SANS and fluorescence unfolding study of calmodulin. Gibrat G, Hoa GH, Craescu CT, Assairi L, Blouquit Y, Annighöfer B, May RP, Bellissent-Funel MC. Biochim Biophys Acta 1844 1560-1568 (2014)
  124. Highly Selective Stable Isotope Labeling of Histidine Residues by Using a Novel Precursor in E. coli-Based Overexpression Systems. Schörghuber J, Geist L, Platzer G, Konrat R, Lichtenecker RJ. Chembiochem 18 1487-1491 (2017)
  125. Recombinant preparation and characterization of interactions for a calmodulin-binding chromogranin A peptide and calmodulin. Kang S, Kang J, Yoo SH, Park S. J Pept Sci 13 237-244 (2007)
  126. Spectral fitting for signal assignment and structural analysis of uniformly 13C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics. Matsuki Y, Akutsu H, Fujiwara T. J Biomol NMR 38 325-339 (2007)
  127. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. Takeda M, Miyanoiri Y, Terauchi T, Yang CJ, Kainosho M. J Magn Reson 241 148-154 (2014)
  128. Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds. Schörghuber J, Geist L, Bisaccia M, Weber F, Konrat R, Lichtenecker RJ. J Biomol NMR 69 13-22 (2017)
  129. First solution structures of seven-transmembrane helical proteins. Zerbe O. Angew Chem Int Ed Engl 51 860-861 (2012)
  130. Global dynamic conformational changes in the suppressor domain of IP3 receptor by stepwise binding of the two lobes of calmodulin. Kang S, Kwon H, Wen H, Song Y, Frueh D, Ahn HC, Yoo SH, Wagner G, Park S. FASEB J 25 840-850 (2011)
  131. NMR analysis of free and lipid nanodisc anchored CEACAM1 membrane proximal peptides with Ca2+/CaM. Ghazarian H, Hu W, Mao A, Nguyen T, Vaidehi N, Sligar S, Shively JE. Biochim Biophys Acta Biomembr 1861 787-797 (2019)
  132. Peakmatch: a simple and robust method for peak list matching. Buchner L, Schmidt E, Güntert P. J Biomol NMR 55 267-277 (2013)
  133. Perspective: next generation isotope-aided methods for protein NMR spectroscopy. Kainosho M, Miyanoiri Y, Terauchi T, Takeda M. J Biomol NMR 71 119-127 (2018)
  134. Structure determination of a protein assembly by amino acid selective cross-saturation. Kanamori E, Igarashi S, Osawa M, Fukunishi Y, Shimada I, Nakamura H. Proteins 79 179-190 (2011)
  135. VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra. Nielsen JT, Nielsen NC. J Biomol NMR 60 51-66 (2014)
  136. Wheat-germ cell-free production of prion proteins for solid-state NMR structural studies. Noirot C, Habenstein B, Bousset L, Melki R, Meier BH, Endo Y, Penin F, Böckmann A. N Biotechnol 28 232-238 (2011)
  137. (13)C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI). Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. J Biomol NMR 66 37-53 (2016)
  138. A cost-effective amino-acid-type selective isotope labeling of proteins expressed in Leishmania tarentolae. Foldynová-Trantirková S, Matulová J, Dötsch V, Löhr F, Cirstea I, Alexandov K, Breitling R, Lukes J, Trantírek L. J Biomol Struct Dyn 26 755-761 (2009)
  139. A robust method for quantitative identification of ordered cores in an ensemble of biomolecular structures by non-linear multi-dimensional scaling using inter-atomic distance variance matrix. Kobayashi N. J Biomol NMR 58 61-67 (2014)
  140. Biomolecular solid-state NMR spectroscopy at 1200 MHz: the gain in resolution. Callon M, Malär AA, Pfister S, Římal V, Weber ME, Wiegand T, Zehnder J, Chávez M, Cadalbert R, Deb R, Däpp A, Fogeron ML, Hunkeler A, Lecoq L, Torosyan A, Zyla D, Glockshuber R, Jonas S, Nassal M, Ernst M, Böckmann A, Meier BH. J Biomol NMR 75 255-272 (2021)
  141. Biosynthetically directed ²H labelling for stereospecific resonance assignments of glycine methylene groups. Loscha KV, Otting G. J Biomol NMR 55 97-104 (2013)
  142. Engineering of a wheat germ expression system to provide compatibility with a high throughput pET-based cloning platform. Zhao L, Zhao KQ, Hurst R, Slater MR, Acton TB, Swapna GV, Shastry R, Kornhaber GJ, Montelione GT. J Struct Funct Genomics 11 201-209 (2010)
  143. High-resolution methyl edited GFT NMR experiments for protein resonance assignments and structure determination. Jaipuria G, Thakur A, D'Silva P, Atreya HS. J Biomol NMR 48 137-145 (2010)
  144. NMR characterization of a 72 kDa transcription factor using differential isotopic labeling. Mukherjee SP, Borin B, Quintas PO, Dyson HJ. Protein Sci 25 597-604 (2016)
  145. Secondary structural analysis of proteins based on (13)C chemical shift assignments in unresolved solid-state NMR spectra enhanced by fragmented structure database. Ikeda K, Egawa A, Fujiwara T. J Biomol NMR 55 189-200 (2013)
  146. A magic-angle-spinning NMR method for 1H-1H distance measurement using coherent polarization transfer in 13C-labeled organic solids. Takahashi H, Akutsu H, Fujiwara T. J Chem Phys 129 154504 (2008)
  147. A new model for mapping the peptide backbone: predicting proton chemical shifts in proteins. Barneto JL, Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC. Org Biomol Chem 8 857-863 (2010)
  148. Automated resonance assignment of the 21kDa stereo-array isotope labeled thioldisulfide oxidoreductase DsbA. Schmidt E, Ikeya T, Takeda M, Löhr F, Buchner L, Ito Y, Kainosho M, Güntert P. J Magn Reson 249 88-93 (2014)
  149. Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel. Myshkin MY, Männikkö R, Krumkacheva OA, Kulbatskii DS, Chugunov AO, Berkut AA, Paramonov AS, Shulepko MA, Fedin MV, Hanna MG, Kullmann DM, Bagryanskaya EG, Arseniev AS, Kirpichnikov MP, Lyukmanova EN, Vassilevski AA, Shenkarev ZO. Front Pharmacol 10 953 (2019)
  150. Chemoselective Alpha-Deuteration of Amides via Retro-ene Reaction. Porte V, Di Mauro G, Schupp M, Kaiser D, Maulide N. Chemistry 26 15509-15512 (2020)
  151. Combining Evolutionary Covariance and NMR Data for Protein Structure Determination. Huang YJ, Brock KP, Ishida Y, Swapna GVT, Inouye M, Marks DS, Sander C, Montelione GT. Methods Enzymol 614 363-392 (2019)
  152. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2. Beck Erlach M, Koehler J, Crusca E, Munte CE, Kainosho M, Kremer W, Kalbitzer HR. J Biomol NMR 69 53-67 (2017)
  153. Synthesis of 4-thia-[6-(13)C]lysine from [2- (13)C]glycine: access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Maity AN, Shaikh AC, Srimurugan S, Wu CJ, Chen C, Ke SC. Amino Acids 42 309-315 (2012)
  154. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins. Kim J, Wang Y, Li G, Veglia G. Methods Enzymol 566 35-57 (2016)
  155. A convenient method for palladium-catalyzed reductive deuteration of organic substrates using deuterated hypophosphite in D2O. Oba M. J Labelled Comp Radiopharm 58 215-219 (2015)
  156. Editorial Advanced isotopic labeling for the NMR investigation of challenging proteins and nucleic acids. Boisbouvier J, Kay LE. J Biomol NMR 71 115-117 (2018)
  157. Approaching the megadalton: NMR spectroscopy of protein complexes. Luy B. Angew Chem Int Ed Engl 46 4214-4216 (2007)
  158. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Álvarez Z, Kolberg-Edelbrock AN, Sasselli IR, Ortega JA, Qiu R, Syrgiannis Z, Mirau PA, Chen F, Chin SM, Weigand S, Kiskinis E, Stupp SI. Science 374 848-856 (2021)
  159. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. J Cell Sci 135 jcs258796 (2022)
  160. Chemical shift assignments of calmodulin under standard conditions at neutral pH. Bej A, Ames JB. Biomol NMR Assign 16 213-218 (2022)
  161. Local Deuteration Enables NMR Observation of Methyl Groups in Proteins from Eukaryotic and Cell-Free Expression Systems. Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Angew Chem Int Ed Engl 60 13783-13787 (2021)
  162. Monitoring alkaline transitions of yeast iso-1 cytochrome c at natural isotopic abundance using trimethyllysine as a native NMR probe. Sun P, Wang Q, Yuan B, Zhu Q, Jiang B, Li C, Lan W, Cao C, Zhang X, Liu M. Chem Commun (Camb) 54 12630-12633 (2018)
  163. Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki E, Shimada I, Takahashi H. J Struct Biol 174 434-442 (2011)
  164. Robust Cell-Free Expression of Sub-Pathological and Pathological Huntingtin Exon-1 for NMR Studies. General Approaches for the Isotopic Labeling of Low-Complexity Proteins. Morató A, Elena-Real CA, Popovic M, Fournet A, Zhang K, Allemand F, Sibille N, Urbanek A, Bernadó P. Biomolecules 10 (2020)
  165. Solid state NMR of isotope labelled murine fur: a powerful tool to study atomic level keratin structure and treatment effects. Wong WC, Narkevicius A, Chow WY, Reid DG, Rajan R, Brooks RA, Green M, Duer MJ. J Biomol NMR 66 93-98 (2016)
  166. Comment Structural biology: designer labels. Opella SJ. Nature 440 40 (2006)
  167. A redesigned genetic code for selective labeling in protein NMR. Gáspári Z, Pál G, Perczel A. Bioessays 30 772-780 (2008)
  168. Assignment of aromatic side-chain spins and characterization of their distance restraints at fast MAS. Ahlawat S, Mopidevi SMV, Taware PP, Raran-Kurussi S, Mote KR, Agarwal V. J Struct Biol X 7 100082 (2023)
  169. Biocatalytic reductive amination as a route to isotopically labelled amino acids suitable for analysis of large proteins by NMR. Rowbotham JS, Nicholson JH, Ramirez MA, Urata K, Todd PMT, Karunanithy G, Lauterbach L, Reeve HA, Baldwin AJ, Vincent KA. Chem Sci 14 12160-12165 (2023)
  170. Cell-Free Protein Synthesis of Small Intrinsically Disordered Proteins for NMR Spectroscopy. Isaksson L, Pedersen A. Methods Mol Biol 2141 233-245 (2020)
  171. Cell-free expression and labeling strategies for a new decade in solid-state NMR. Abdine A, Verhoeven MA, Warschawski DE. N Biotechnol 28 272-276 (2011)
  172. Changes in the hydrophobic network of the FliGMC domain induce rotational switching of the flagellar motor. Nishikino T, Hijikata A, Kojima S, Shirai T, Kainosho M, Homma M, Miyanoiri Y. iScience 26 107320 (2023)
  173. Chemical shift assignments of calmodulin bound to a C-terminal site (residues 1120-1147) in the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). Bej A, Ames JB. Biomol NMR Assign 16 337-341 (2022)
  174. Chemical shift assignments of calmodulin bound to the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). Bej A, Ames JB. Biomol NMR Assign 16 147-151 (2022)
  175. Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method. Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. Magn Reson (Gott) 2 223-237 (2021)
  176. E. coli "Stablelabel" S30 lysate for optimized cell-free NMR sample preparation. Levin R, Löhr F, Karakoc B, Lichtenecker R, Dötsch V, Bernhard F. J Biomol NMR 77 131-147 (2023)
  177. Nuclear overhauser spectroscopy of chiral CHD methylene groups. Augustyniak R, Stanek J, Colaux H, Bodenhausen G, Koźmiński W, Herrmann T, Ferrage F. J Biomol NMR 64 27-37 (2016)
  178. Prediction of peak overlap in NMR spectra. Hefke F, Schmucki R, Güntert P. J Biomol NMR 56 113-123 (2013)
  179. Pressure dependence of side chain 1H and 15N-chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2. Beck Erlach M, Koehler J, Munte CE, Kremer W, Crusca E, Kainosho M, Kalbitzer HR. J Biomol NMR 74 381-399 (2020)
  180. SAILing toward larger protein structures. Doerr A. Nat Methods 3 340 (2006)
  181. Site-Specific Isotope Labeling of FliG for Studying Structural Dynamics Using Nuclear Magnetic Resonance Spectroscopy. Nishikino T, Miyanoiri Y. Methods Mol Biol 2646 57-70 (2023)
  182. Sparse isotope labeling for nuclear magnetic resonance (NMR) of glycoproteins using 13C-glucose. Rogals MJ, Yang JY, Williams RV, Moremen KW, Amster IJ, Prestegard JH. Glycobiology 31 425-435 (2021)
  183. Unambiguous assignment of the H3S and H3R deuterations of cerebral (2-13C) glutamate by 13C NMR at 18.8 Tesla. Rodrigues TB, Violante IR, Cerdán S. Magn Reson Med 63 1088-1091 (2010)
  184. Visualizing Heterogeneous Protein Conformations with Multi-Tilt Nanoparticle-Aided Cryo-Electron Microscopy Sampling. Kim C, Kim Y, Lee SJ, Yun SR, Choi J, Kim SO, Yang Y, Ihee H. Nano Lett 23 3334-3343 (2023)