1wma Citations

An unbiased cell morphology-based screen for new, biologically active small molecules.

Abstract

We have implemented an unbiased cell morphology-based screen to identify small-molecule modulators of cellular processes using the Cytometrix (TM) automated imaging and analysis system. This assay format provides unbiased analysis of morphological effects induced by small molecules by capturing phenotypic readouts of most known classes of pharmacological agents and has the potential to read out pathways for which little is known. Four human-cancer cell lines and one noncancerous primary cell type were treated with 107 small molecules comprising four different protein kinase-inhibitor scaffolds. Cellular phenotypes induced by each compound were quantified by multivariate statistical analysis of the morphology, staining intensity, and spatial attributes of the cellular nuclei, microtubules, and Golgi compartments. Principal component analysis was used to identify inhibitors of cellular components not targeted by known protein kinase inhibitors. Here we focus on a hydroxyl-substituted analog (hydroxy-PP) of the known Src-family kinase inhibitor PP2 because it induced cell-specific morphological features distinct from all known kinase inhibitors in the collection. We used affinity purification to identify a target of hydroxy-PP, carbonyl reductase 1 (CBR1), a short-chain dehydrogenase-reductase. We solved the X-ray crystal structure of the CBR1/hydroxy-PP complex to 1.24 A resolution. Structure-based design of more potent and selective CBR1 inhibitors provided probes for analyzing the biological function of CBR1 in A549 cells. These studies revealed a previously unknown function for CBR1 in serum-withdrawal-induced apoptosis. Further studies indicate CBR1 inhibitors may enhance the effectiveness of anticancer anthracyclines. Morphology-based screening of diverse cancer cell types has provided a method for discovering potent new small-molecule probes for cell biological studies and anticancer drug candidates.

Reviews - 1wma mentioned but not cited (1)

Articles - 1wma mentioned but not cited (14)

  1. An unbiased cell morphology-based screen for new, biologically active small molecules. Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, Hansen KC, Burlingame AL, Trautman JK, Shokat KM, Adams CL. PLoS Biol 3 e128 (2005)
  2. Human carbonyl reductase 1 is an S-nitrosoglutathione reductase. Bateman RL, Rauh D, Tavshanjian B, Shokat KM. J Biol Chem 283 35756-35762 (2008)
  3. Structural basis for substrate specificity in human monomeric carbonyl reductases. Pilka ES, Niesen FH, Lee WH, El-Hawari Y, Dunford JE, Kochan G, Wsol V, Martin HJ, Maser E, Oppermann U. PLoS One 4 e7113 (2009)
  4. RNA-Seq approach for genetic improvement of meat quality in pig and evolutionary insight into the substrate specificity of animal carbonyl reductases. Jung WY, Kwon SG, Son M, Cho ES, Lee Y, Kim JH, Kim BW, Park DH, Hwang JH, Kim TW, Park HC, Park BY, Choi JS, Cho KK, Chung KH, Song YM, Kim IS, Jin SK, Kim DH, Lee SW, Lee KW, Bang WY, Kim CW. PLoS One 7 e42198 (2012)
  5. Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression. Nakamae I, Morimoto T, Shima H, Shionyu M, Fujiki H, Yoneda-Kato N, Yokoyama T, Kanaya S, Kakiuchi K, Shirai T, Meiyanto E, Kato JY. Molecules 24 E4067 (2019)
  6. Glutathione traps formaldehyde by formation of a bicyclo[4.4.1]undecane adduct. Bateman R, Rauh D, Shokat KM. Org Biomol Chem 5 3363-3367 (2007)
  7. Dimerization and enzymatic activity of fungal 17beta-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily. Kristan K, Deluca D, Adamski J, Stojan J, Rizner TL. BMC Biochem 6 28 (2005)
  8. Removal of substrate inhibition and increase in maximal velocity in the short chain dehydrogenase/reductase salutaridine reductase involved in morphine biosynthesis. Ziegler J, Brandt W, Geissler R, Facchini PJ. J Biol Chem 284 26758-26767 (2009)
  9. Atomic structure of salutaridine reductase from the opium poppy (Papaver somniferum). Higashi Y, Kutchan TM, Smith TJ. J Biol Chem 286 6532-6541 (2011)
  10. Discovery of a Short-Chain Dehydrogenase from Catharanthus roseus that Produces a New Monoterpene Indole Alkaloid. Stavrinides AK, Tatsis EC, Dang TT, Caputi L, Stevenson CEM, Lawson DM, Schneider B, O'Connor SE. Chembiochem 19 940-948 (2018)
  11. Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Schneidewind J, Krause F, Bocola M, Stadler AM, Davari MD, Schwaneberg U, Jaeger KE, Krauss U. Commun Biol 2 351 (2019)
  12. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  13. In Silico and In Vitro Assessment of Carbonyl Reductase 1 Inhibition Using ASP9521-A Potent Aldo-Keto Reductase 1C3 Inhibitor with the Potential to Support Anticancer Therapy Using Anthracycline Antibiotics. Jamrozik M, Piska K, Bucki A, Koczurkiewicz-Adamczyk P, Sapa M, Władyka B, Pękala E, Kołaczkowski M. Molecules 28 3767 (2023)
  14. Expression, purification, crystallization and preliminary X-ray analysis of NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver. Yoneda K, Fukuda Y, Shibata T, Araki T, Nikki T, Sakuraba H, Ohshima T. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 1568-1570 (2012)


Reviews citing this publication (39)

  1. Data-driven modelling of signal-transduction networks. Janes KA, Yaffe MB. Nat Rev Mol Cell Biol 7 820-828 (2006)
  2. High content screening: seeing is believing. Zanella F, Lorens JB, Link W. Trends Biotechnol 28 237-245 (2010)
  3. Cellular imaging in drug discovery. Lang P, Yeow K, Nichols A, Scheer A. Nat Rev Drug Discov 5 343-356 (2006)
  4. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA. Nat Rev Drug Discov 8 567-578 (2009)
  5. Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Oppermann U. Annu Rev Pharmacol Toxicol 47 293-322 (2007)
  6. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Hoffmann F, Maser E. Drug Metab Rev 39 87-144 (2007)
  7. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Matsunaga T, Shintani S, Hara A. Drug Metab Pharmacokinet 21 1-18 (2006)
  8. Image-based chemical screening. Carpenter AE. Nat Chem Biol 3 461-465 (2007)
  9. Image-based profiling for drug discovery: due for a machine-learning upgrade? Chandrasekaran SN, Ceulemans H, Boyd JD, Carpenter AE. Nat Rev Drug Discov 20 145-159 (2021)
  10. Mass Cytometry Imaging for the Study of Human Diseases-Applications and Data Analysis Strategies. Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Front Immunol 10 2657 (2019)
  11. Cell-based high-content screening of small-molecule libraries. Korn K, Krausz E. Curr Opin Chem Biol 11 503-510 (2007)
  12. The potential of high-content high-throughput microscopy in drug discovery. Starkuviene V, Pepperkok R. Br J Pharmacol 152 62-71 (2007)
  13. Automated image analysis for high-content screening and analysis. Shariff A, Kangas J, Coelho LP, Quinn S, Murphy RF. J Biomol Screen 15 726-734 (2010)
  14. High-content screening moves to the front of the line. Haney SA, LaPan P, Pan J, Zhang J. Drug Discov Today 11 889-894 (2006)
  15. Plant cell shape: modulators and measurements. Ivakov A, Persson S. Front Plant Sci 4 439 (2013)
  16. Evolution of morphine biosynthesis in opium poppy. Ziegler J, Facchini PJ, Geissler R, Schmidt J, Ammer C, Kramell R, Voigtländer S, Gesell A, Pienkny S, Brandt W. Phytochemistry 70 1696-1707 (2009)
  17. Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Hanušová V, Boušová I, Skálová L. Drug Metab Rev 43 540-557 (2011)
  18. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment. Yeung TL, Leung CS, Li F, Wong SS, Mok SC. Biomolecules 6 3 (2016)
  19. High content cellular screening. Rausch O. Curr Opin Chem Biol 10 316-320 (2006)
  20. Large-scale image-based screening and profiling of cellular phenotypes. Bougen-Zhukov N, Loh SY, Lee HK, Loo LH. Cytometry A 91 115-125 (2017)
  21. Cell-Based Assay Design for High-Content Screening of Drug Candidates. Nierode G, Kwon PS, Dordick JS, Kwon SJ. J Microbiol Biotechnol 26 213-225 (2016)
  22. Multiparametric Analysis of Screening Data: Growing Beyond the Single Dimension to Infinity and Beyond. Abraham Y, Zhang X, Parker CN. J Biomol Screen 19 628-639 (2014)
  23. Small molecule probes of cellular pathways and networks. Castoreno AB, Eggert US. ACS Chem Biol 6 86-94 (2011)
  24. Connecting phenotype and chemotype: high-content discovery strategies for natural products research. Kurita KL, Linington RG. J Nat Prod 78 587-596 (2015)
  25. A picture is worth a thousand words: genomics to phenomics in the yeast Saccharomyces cerevisiae. Vizeacoumar FJ, Chong Y, Boone C, Andrews BJ. FEBS Lett 583 1656-1661 (2009)
  26. Engineered systems for the physical manipulation of single cells. Voldman J. Curr Opin Biotechnol 17 532-537 (2006)
  27. The emerging field of chemical genetics: potential applications for pesticide discovery. Walsh TA. Pest Manag Sci 63 1165-1171 (2007)
  28. Quantitative phenotypic and pathway profiling guides rational drug combination strategies. Dawson JC, Carragher NO. Front Pharmacol 5 118 (2014)
  29. Fibrates in the chemical action of daunorubicin. Balendiran GK. Curr Cancer Drug Targets 9 366-369 (2009)
  30. Profiling distinct mechanisms of tumour invasion for drug discovery: imaging adhesion, signalling and matrix turnover. Carragher NO. Clin Exp Metastasis 26 381-397 (2009)
  31. Target identification by image analysis. Fetz V, Prochnow H, Brönstrup M, Sasse F. Nat Prod Rep 33 655-667 (2016)
  32. The modulation of carbonyl reductase 1 by polyphenols. Boušová I, Skálová L, Souček P, Matoušková P. Drug Metab Rev 47 520-533 (2015)
  33. Challenges in discovering bioactives for the food industry. Schwager J, Mohajeri MH, Fowler A, Weber P. Curr Opin Biotechnol 19 66-72 (2008)
  34. Systematizing serendipity for cardiovascular drug discovery. Schlueter PJ, Peterson RT. Circulation 120 255-263 (2009)
  35. The role of carbonyl reductase 1 in drug discovery and development. Shi SM, Di L. Expert Opin Drug Metab Toxicol 13 859-870 (2017)
  36. Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening. O'Duibhir E, Carragher NO, Pollard SM. Mol Cell Neurosci 80 198-207 (2017)
  37. Generating 'omic knowledge': the role of informatics in high content screening. Collins MA. Comb Chem High Throughput Screen 12 917-925 (2009)
  38. Cytological profiling: providing more haystacks for chemists' needles. Lorang J, King RW. Genome Biol 6 228 (2005)
  39. ImmunoCell-Array: a novel technology for pathway discovery and cell profiling. Giorgetti L, Zanardi A, Venturini S, Carbone R. Expert Rev Proteomics 4 609-616 (2007)

Articles citing this publication (79)

  1. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P, Sabatini DM. Proc Natl Acad Sci U S A 106 1826-1831 (2009)
  2. Image-based multivariate profiling of drug responses from single cells. Loo LH, Wu LF, Altschuler SJ. Nat Methods 4 445-453 (2007)
  3. Multiplex cytological profiling assay to measure diverse cellular states. Gustafsdottir SM, Ljosa V, Sokolnicki KL, Anthony Wilson J, Walpita D, Kemp MM, Petri Seiler K, Carrel HA, Golub TR, Schreiber SL, Clemons PA, Carpenter AE, Shamji AF. PLoS One 8 e80999 (2013)
  4. Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. Ljosa V, Caie PD, Ter Horst R, Sokolnicki KL, Jenkins EL, Daya S, Roberts ME, Jones TR, Singh S, Genovesio A, Clemons PA, Carragher NO, Carpenter AE. J Biomol Screen 18 1321-1329 (2013)
  5. Probing cell-division phenotype space and Polo-like kinase function using small molecules. Peters U, Cherian J, Kim JH, Kwok BH, Kapoor TM. Nat Chem Biol 2 618-626 (2006)
  6. Small-molecule synergist of the Wnt/beta-catenin signaling pathway. Zhang Q, Major MB, Takanashi S, Camp ND, Nishiya N, Peters EC, Ginsberg MH, Jian X, Randazzo PA, Schultz PG, Moon RT, Ding S. Proc Natl Acad Sci U S A 104 7444-7448 (2007)
  7. Small molecule screen for compounds that affect vascular development in the zebrafish retina. Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ. Mech Dev 126 464-477 (2009)
  8. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. Vandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, Tseng BS. FASEB J 23 3325-3334 (2009)
  9. Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. Sos ML, Levin RS, Gordan JD, Oses-Prieto JA, Webber JT, Salt M, Hann B, Burlingame AL, McCormick F, Bandyopadhyay S, Shokat KM. Cell Rep 8 1037-1048 (2014)
  10. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Rana S, Le ND, Mout R, Saha K, Tonga GY, Bain RE, Miranda OR, Rotello CM, Rotello VM. Nat Nanotechnol 10 65-69 (2015)
  11. Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Donnella HJ, Webber JT, Levin RS, Camarda R, Momcilovic O, Bayani N, Shah KN, Korkola JE, Shokat KM, Goga A, Gordan JD, Bandyopadhyay S. Nat Chem Biol 14 768-777 (2018)
  12. A functional genetic polymorphism on human carbonyl reductase 1 (CBR1 V88I) impacts on catalytic activity and NADPH binding affinity. Gonzalez-Covarrubias V, Ghosh D, Lakhman SS, Pendyala L, Blanco JG. Drug Metab Dispos 35 973-980 (2007)
  13. Different functions between human monomeric carbonyl reductase 3 and carbonyl reductase 1. Miura T, Nishinaka T, Terada T. Mol Cell Biochem 315 113-121 (2008)
  14. Carbonyl reductase 1 as a novel target of (-)-epigallocatechin gallate against hepatocellular carcinoma. Huang W, Ding L, Huang Q, Hu H, Liu S, Yang X, Hu X, Dang Y, Shen S, Li J, Ji X, Jiang S, Liu JO, Yu L. Hepatology 52 703-714 (2010)
  15. High content cell screening in a microfluidic device. Cheong R, Wang CJ, Levchenko A. Mol Cell Proteomics 8 433-442 (2009)
  16. Cancer biomarker AKR1B10 and carbonyl metabolism. Balendiran GK, Martin HJ, El-Hawari Y, Maser E. Chem Biol Interact 178 134-137 (2009)
  17. Laser autofocusing system for high-resolution cell biological imaging. Liron Y, Paran Y, Zatorsky NG, Geiger B, Kam Z. J Microsc 221 145-151 (2006)
  18. CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. Lal S, Sandanaraj E, Wong ZW, Ang PC, Wong NS, Lee EJ, Chowbay B. Cancer Sci 99 2045-2054 (2008)
  19. Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Isherwood B, Timpson P, McGhee EJ, Anderson KI, Canel M, Serrels A, Brunton VG, Carragher NO. Pharmaceutics 3 141-170 (2011)
  20. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor. Rana S, Elci SG, Mout R, Singla AK, Yazdani M, Bender M, Bajaj A, Saha K, Bunz UH, Jirik FR, Rotello VM. J Am Chem Soc 138 4522-4529 (2016)
  21. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. Gordonov S, Hwang MK, Wells A, Gertler FB, Lauffenburger DA, Bathe M. Integr Biol (Camb) 8 73-90 (2016)
  22. Large-scale cytological profiling for functional analysis of bioactive compounds. Woehrmann MH, Bray WM, Durbin JK, Nisam SC, Michael AK, Glassey E, Stuart JM, Lokey RS. Mol Biosyst 9 2604-2617 (2013)
  23. Molecular basis for peroxisomal localization of tetrameric carbonyl reductase. Tanaka N, Aoki K, Ishikura S, Nagano M, Imamura Y, Hara A, Nakamura KT. Structure 16 388-397 (2008)
  24. High-throughput screening of cellular features using high-resolution light-microscopy; application for profiling drug effects on cell adhesion. Paran Y, Ilan M, Kashman Y, Goldstein S, Liron Y, Geiger B, Kam Z. J Struct Biol 158 233-243 (2007)
  25. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis. Lee H, Moody-Davis A, Saha U, Suzuki BM, Asarnow D, Chen S, Arkin M, Caffrey CR, Singh R. BMC Genomics 13 Suppl 1 S4 (2012)
  26. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query. Nassiri I, McCall MN. Nucleic Acids Res 46 e116 (2018)
  27. Flavonoids as inhibitors of human carbonyl reductase 1. Carlquist M, Frejd T, Gorwa-Grauslund MF. Chem Biol Interact 174 98-108 (2008)
  28. Image-based chemical screening identifies drug efflux inhibitors in lung cancer cells. Xia X, Yang J, Li F, Li Y, Zhou X, Dai Y, Wong ST. Cancer Res 70 7723-7733 (2010)
  29. Structure-activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Arai Y, Endo S, Miyagi N, Abe N, Miura T, Nishinaka T, Terada T, Oyama M, Goda H, El-Kabbani O, Hara A, Matsunaga T, Ikari A. Fitoterapia 101 51-56 (2015)
  30. Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery. Reisen F, Zhang X, Gabriel D, Selzer P. J Biomol Screen 18 1284-1297 (2013)
  31. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen. Nir O, Bakal C, Perrimon N, Berger B. Genome Res 20 372-380 (2010)
  32. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis. El-Hawari Y, Favia AD, Pilka ES, Kisiela M, Oppermann U, Martin HJ, Maser E. Chem Biol Interact 178 234-241 (2009)
  33. Molecular modeling and site-directed mutagenesis reveal the benzylisoquinoline binding site of the short-chain dehydrogenase/reductase salutaridine reductase. Geissler R, Brandt W, Ziegler J. Plant Physiol 143 1493-1503 (2007)
  34. Multiplexed high content screening assays create a systems cell biology approach to drug discovery. Taylor DL, Giuliano KA. Drug Discov Today Technol 2 149-154 (2005)
  35. Carbonyl reductase 1 is a new target to improve the effect of radiotherapy on head and neck squamous cell carcinoma. Yun M, Choi AJ, Lee YC, Kong M, Sung JY, Kim SS, Eun YG. J Exp Clin Cancer Res 37 264 (2018)
  36. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. Berenstein AJ, Magariños MP, Chernomoretz A, Agüero F. PLoS Negl Trop Dis 10 e0004300 (2016)
  37. Discovery of a potent and selective inhibitor for human carbonyl reductase 1 from propionate scanning applied to the macrolide zearalenone. Zimmermann TJ, Niesen FH, Pilka ES, Knapp S, Oppermann U, Maier ME. Bioorg Med Chem 17 530-536 (2009)
  38. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery. Cervantes S, Prudhomme J, Carter D, Gopi KG, Li Q, Chang YT, Le Roch KG. BMC Cell Biol 10 45 (2009)
  39. An overview of cell phenotypes in HCS: limitations and advantages. Gasparri F. Expert Opin Drug Discov 4 643-657 (2009)
  40. Impact of image segmentation on high-content screening data quality for SK-BR-3 cells. Hill AA, LaPan P, Li Y, Haney S. BMC Bioinformatics 8 340 (2007)
  41. A cell profiling framework for modeling drug responses from HCS imaging. Ng AY, Rajapakse JC, Welsch RE, Matsudaira PT, Horodincu V, Evans JG. J Biomol Screen 15 858-868 (2010)
  42. Carbonyl reductase 1 catalyzes 20β-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Morgan RA, Beck KR, Nixon M, Homer NZM, Crawford AA, Melchers D, Houtman R, Meijer OC, Stomby A, Anderson AJ, Upreti R, Stimson RH, Olsson T, Michoel T, Cohain A, Ruusalepp A, Schadt EE, Björkegren JLM, Andrew R, Kenyon CJ, Hadoke PWF, Odermatt A, Keen JA, Walker BR. Sci Rep 7 10633 (2017)
  43. Development of the Theta Comparative Cell Scoring Method to Quantify Diverse Phenotypic Responses Between Distinct Cell Types. Warchal SJ, Dawson JC, Carragher NO. Assay Drug Dev Technol 14 395-406 (2016)
  44. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3. Staab CA, Hartmanová T, El-Hawari Y, Ebert B, Kisiela M, Wsol V, Martin HJ, Maser E. Chem Biol Interact 191 95-103 (2011)
  45. A high-content imaging assay for the quantification of the Burkholderia pseudomallei induced multinucleated giant cell (MNGC) phenotype in murine macrophages. Pegoraro G, Eaton BP, Ulrich RL, Lane DJ, Ojeda JF, Bavari S, DeShazer D, Panchal RG. BMC Microbiol 14 98 (2014)
  46. Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Hu D, Miyagi N, Arai Y, Oguri H, Miura T, Nishinaka T, Terada T, Gouda H, El-Kabbani O, Xia S, Toyooka N, Hara A, Matsunaga T, Ikari A, Endo S. Org Biomol Chem 13 7487-7499 (2015)
  47. Carbonyl reductase 1 is an essential regulator of skeletal muscle differentiation and regeneration. Lim S, Shin JY, Jo A, Jyothi KR, Nguyen MN, Choi TG, Kim J, Park JH, Eun YG, Yoon KS, Ha J, Kim SS. Int J Biochem Cell Biol 45 1784-1793 (2013)
  48. Robust Classification of Small-Molecule Mechanism of Action Using a Minimalist High-Content Microscopy Screen and Multidimensional Phenotypic Trajectory Analysis. Twarog NR, Low JA, Currier DG, Miller G, Chen T, Shelat AA. PLoS One 11 e0149439 (2016)
  49. Sex differences in improved efficacy of doxorubicin chemotherapy in Cbr1+/- mice. Freeland MM, Angulo J, Davis AL, Flook AM, Garcia BL, King NA, Mangibin SK, Paul KM, Prosser ME, Sata N, Bentley JL, Olson LE. Anticancer Drugs 23 584-589 (2012)
  50. The effectiveness of oracin in enhancing the cytotoxicity of doxorubicin through the inhibition of doxorubicin deactivation in breast cancer MCF7 cells. Hanusová V, Králová V, Schröterová L, Trilecová L, Pakostová A, Skálová L. Xenobiotica 40 681-690 (2010)
  51. A novel phenotypic dissimilarity method for image-based high-throughput screens. Zhang X, Boutros M. BMC Bioinformatics 14 336 (2013)
  52. Algorithmic Mapping and Characterization of the Drug-Induced Phenotypic-Response Space of Parasites Causing Schistosomiasis. Singh R, Beasley R, Long T, Caffrey CR. IEEE/ACM Trans Comput Biol Bioinform 15 469-481 (2018)
  53. Detection of cell aggregation and altered cell viability by automated label-free video microscopy: a promising alternative to endpoint viability assays in high-throughput screening. Aftab O, Fryknäs M, Hammerling U, Larsson R, Gustafsson MG. J Biomol Screen 20 372-381 (2015)
  54. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Hara A, Endo S, Matsunaga T, El-Kabbani O, Miura T, Nishinaka T, Terada T. Biochem Pharmacol 138 185-192 (2017)
  55. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection. Kota KP, Eaton B, Lane D, Ulrich M, Ulrich R, Peyser BD, Robinson CG, Jaissle JG, Pegoraro G, Bavari S, Panchal RG. PLoS One 8 e55167 (2013)
  56. Structural insights on the catalytic site protection of human carbonyl reductase 1 by glutathione. Liang Q, Liu R, Du S, Ding Y. J Struct Biol 192 138-144 (2015)
  57. A systems approach for analysis of high content screening assay data with topic modeling. Bisgin H, Chen M, Wang Y, Kelly R, Fang H, Xu X, Tong W. BMC Bioinformatics 14 Suppl 14 S11 (2013)
  58. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization. Tanabe K. Sci Rep 6 25095 (2016)
  59. Reducing the multidimensionality of high-content screening into versatile powerful descriptors. Gorenstein J, Zack B, Marszalek JR, Bagchi A, Subramaniam S, Carroll P, Elbi C. Biotechniques 49 663-665 (2010)
  60. A novel NAD(P)H-dependent carbonyl reductase specifically expressed in the thyroidectomized chicken fatty liver: catalytic properties and crystal structure. Fukuda Y, Sone T, Sakuraba H, Araki T, Ohshima T, Shibata T, Yoneda K. FEBS J 282 3918-3928 (2015)
  61. An Image Informatics Method for Automated Quantitative Analysis of Phenotype Visual Similarities. Shamir L, Eckley DM, Delaney J, Orlov N, Goldberg IG. IEEE NIH Life Sci Syst Appl Workshop 2009 96-99 (2009)
  62. Carbonyl Reductase 1 Plays a Significant Role in Converting Doxorubicin to Cardiotoxic Doxorubicinol in Mouse Liver, but the Majority of the Doxorubicinol-Forming Activity Remains Unidentified. Breysse DH, Boone RM, Long CM, Merrill ME, Schaupp CM, White CC, Kavanagh TJ, Schmidt EE, Merrill GF. Drug Metab Dispos 48 187-197 (2020)
  63. Importance of the substrate-binding loop region of human monomeric carbonyl reductases in catalysis and coenzyme binding. Miura T, Nishinaka T, Terada T. Life Sci 85 303-308 (2009)
  64. Inhibition of Anthracycline Alcohol Metabolite Formation in Human Heart Cytosol: A Potential Role for Several Promising Drugs. Mordente A, Silvestrini A, Martorana GE, Tavian D, Meucci E. Drug Metab Dispos 43 1691-1701 (2015)
  65. Sub-population analysis based on temporal features of high content images. Veronika M, Evans J, Matsudaira P, Welsch R, Rajapakse J. BMC Bioinformatics 10 Suppl 15 S4 (2009)
  66. iScreen: Image-Based High-Content RNAi Screening Analysis Tools. Zhong R, Dong X, Levine B, Xie Y, Xiao G. J Biomol Screen 20 998-1002 (2015)
  67. Crystallization and preliminary X-ray crystallographic studies of pig heart carbonyl reductase. Aoki K, Tanaka N, Ishikura S, Araki N, Imamura Y, Hara A, Nakamura KT. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 1037-1040 (2006)
  68. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. F1000Res 4 14 (2015)
  69. Imaging the boundaries-innovative tools for microscopy of living cells and real-time imaging. Rosivatz E. J Chem Biol 1 3-15 (2008)
  70. Mutations that affect coenzyme binding and dimer formation of fungal 17beta-hydroxysteroid dehydrogenase. Brunskole M, Kristan K, Stojan J, Rizner TL. Mol Cell Endocrinol 301 47-50 (2009)
  71. Anticancer drug development incorporating high-content screening and RNAi: synergistic approaches to improve target identification and validation. Haney SA. Expert Opin Drug Discov 1 19-29 (2006)
  72. Multi-parametric characterization of drug effects on cells. Paran Y, Liron Y, Batsir S, Mabjeesh N, Geiger B, Kam Z. F1000Res 9 ISF-1199 (2020)
  73. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Dahlin JL, Hua BK, Zucconi BE, Nelson SD, Singh S, Carpenter AE, Shrimp JH, Lima-Fernandes E, Wawer MJ, Chung LPW, Agrawal A, O'Reilly M, Barsyte-Lovejoy D, Szewczyk M, Li F, Lak P, Cuellar M, Cole PA, Meier JL, Thomas T, Baell JB, Brown PJ, Walters MA, Clemons PA, Schreiber SL, Wagner BK. Nat Commun 14 1364 (2023)
  74. Structure and characterization of a NAD(P)H-dependent carbonyl reductase from Pseudomonas aeruginosa PAO1. Li S, Teng X, Su L, Mao G, Xu Y, Li T, Liu R, Zhang Q, Wang Y, Bartlam M. FEBS Lett 591 1785-1797 (2017)
  75. Association between CBR1 polymorphisms and NSCLC in the Chinese population. Guo Y, Shen Y, Xia Y, Gu J. Oncol Lett 14 6291-6297 (2017)
  76. Computational methods to support high-content screening: from compound selection and data analysis to postulating target hypotheses. Kümmel A, Gabriel D, Parker CN, Bender A. Expert Opin Drug Discov 4 5-13 (2009)
  77. High Content Analysis Across Signaling Modulation Treatments for Subcellular Target Identification Reveals Heterogeneity in Cellular Response. Biswas S. Front Cell Dev Biol 8 594750 (2020)
  78. Making Models Work: Library Annotation through Phenoclustering. Williams C, Hong C. Drug Discov Today Dis Models 10 (2013)
  79. Single object profiles regression analysis (SOPRA): a novel method for analyzing high-content cell-based screens. Gurumurthy RK, Pleissner KP, Chumduri C, Meyer TF, Mäurer AP. BMC Bioinformatics 23 440 (2022)