1wer Citations

Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.

Nature 384 591-6 (1996)
Cited: 111 times
EuropePMC logo PMID: 8955277

Abstract

Ras-related GTP-binding proteins function as molecular switches which cycle between GTP-bound 'on'- and GDP-bound 'off'-states. GTP hydrolysis is the common timing mechanism that mediates the return from the 'on' to the 'off'-state. It is usually slow but can be accelerated by orders of magnitude upon interaction with GTPase-activating proteins (GAPs). In the case of Ras, a major regulator of cellular growth, point mutations are found in approximately 30% of human tumours which render the protein unable to hydrolyse GTP, even in the presence of Ras-GAPs. The first structure determination of a GTPase-activating protein reveals the catalytically active fragment of the Ras-specific p120GAP (ref. 2), GAP-334, as an elongated, exclusively helical protein which appears to represent a novel protein fold. The molecule consists of two domains, one of which contains all the residues conserved among different GAPs for Ras. From the location of conserved residues around a shallow groove in the central domain we can identify the site of interaction with Ras x GTP. This leads to a model for the interaction between Ras and GAP that satisfies numerous biochemical and genetic data on this important regulatory process.

Reviews - 1wer mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1wer mentioned but not cited (17)

  1. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Xiang Z, Soto CS, Honig B. Proc Natl Acad Sci U S A 99 7432-7437 (2002)
  2. Protein binding site prediction using an empirical scoring function. Liang S, Zhang C, Liu S, Zhou Y. Nucleic Acids Res 34 3698-3707 (2006)
  3. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. Chaudhury S, Gray JJ. J Mol Biol 381 1068-1087 (2008)
  4. LearnCoil-VMF: computational evidence for coiled-coil-like motifs in many viral membrane-fusion proteins. Singh M, Berger B, Kim PS. J Mol Biol 290 1031-1041 (1999)
  5. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  6. ProtSA: a web application for calculating sequence specific protein solvent accessibilities in the unfolded ensemble. Estrada J, Bernadó P, Blackledge M, Sancho J. BMC Bioinformatics 10 104 (2009)
  7. Prediction of Protein Loop Conformations using the AGBNP Implicit Solvent Model and Torsion Angle Sampling. Felts AK, Gallicchio E, Chekmarev D, Paris KA, Friesner RA, Levy RM. J Chem Theory Comput 4 855-868 (2008)
  8. Crystal structure of the GTPase-activating protein-related domain from IQGAP1. Kurella VB, Richard JM, Parke CL, Lecour LF, Bellamy HD, Worthylake DK. J Biol Chem 284 14857-14865 (2009)
  9. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  10. Crystal structure of a truncated urease accessory protein UreF from Helicobacter pylori. Lam R, Romanov V, Johns K, Battaile KP, Wu-Brown J, Guthrie JL, Hausinger RP, Pai EF, Chirgadze NY. Proteins 78 2839-2848 (2010)
  11. Design of an optimal Chebyshev-expanded discrimination function for globular proteins. Fain B, Xia Y, Levitt M. Protein Sci 11 2010-2021 (2002)
  12. Full cyclic coordinate descent: solving the protein loop closure problem in Calpha space. Boomsma W, Hamelryck T. BMC Bioinformatics 6 159 (2005)
  13. Modeling of RAS complexes supports roles in cancer for less studied partners. Engin HB, Carlin D, Pratt D, Carter H. BMC Biophys 10 5 (2017)
  14. Sampling multiple scoring functions can improve protein loop structure prediction accuracy. Li Y, Rata I, Jakobsson E. J Chem Inf Model 51 1656-1666 (2011)
  15. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  16. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)
  17. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (23)

  1. G protein mechanisms: insights from structural analysis. Sprang SR. Annu Rev Biochem 66 639-678 (1997)
  2. GTPase-activating proteins: helping hands to complement an active site. Scheffzek K, Ahmadian MR, Wittinghofer A. Trends Biochem Sci 23 257-262 (1998)
  3. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Bernards A. Biochim Biophys Acta 1603 47-82 (2003)
  4. Signal transduction molecules at the glutamatergic postsynaptic membrane. Kennedy MB. Brain Res Brain Res Rev 26 243-257 (1998)
  5. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Lu S, Jang H, Gu S, Zhang J, Nussinov R. Chem Soc Rev 45 4929-4952 (2016)
  6. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Geyer M, Wittinghofer A. Curr Opin Struct Biol 7 786-792 (1997)
  7. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Mosaddeghzadeh N, Ahmadian MR. Cells 10 1831 (2021)
  8. The interaction of Ras with GTPase-activating proteins. Wittinghofer A, Scheffzek K, Ahmadian MR. FEBS Lett 410 63-67 (1997)
  9. GTPase-activating proteins and their complexes. Gamblin SJ, Smerdon SJ. Curr Opin Struct Biol 8 195-201 (1998)
  10. Ras-A Molecular Switch Involved in Tumor Formation. Wittinghofer A, Waldmann H. Angew Chem Int Ed Engl 39 4192-4214 (2000)
  11. The advantage of channeling nucleotides for very processive functions. Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. F1000Res 6 724 (2017)
  12. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Scheffzek K, Shivalingaiah G. Cold Spring Harb Perspect Med 9 a031500 (2019)
  13. Structural features of heterotrimeric G-protein-coupled receptors and their modulatory proteins. LeVine H. Mol Neurobiol 19 111-149 (1999)
  14. Human genetics and molecular mechanisms of vein of Galen malformation. Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, Matouk CC, Aagaard-Kienitz B, Smith ER, Orbach DB, Rodesch G, Berenstein A, Gunel M, Kahle KT. J Neurosurg Pediatr 21 367-374 (2018)
  15. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cazzanelli G, Pereira F, Alves S, Francisco R, Azevedo L, Dias Carvalho P, Almeida A, Côrte-Real M, Oliveira MJ, Lucas C, Sousa MJ, Preto A. Cells 7 E14 (2018)
  16. Mechanisms of hexameric helicases. Fernandez AJ, Berger JM. Crit Rev Biochem Mol Biol 56 621-639 (2021)
  17. Rationale for RAS mutation-tailored therapies. Montalvo SK, Li L, Westover KD. Future Oncol 13 263-271 (2017)
  18. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Cells 11 2183 (2022)
  19. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Kattan WE, Hancock JF. Biochem J 477 2893-2919 (2020)
  20. New trends in macromolecular X-ray crystallography. Wery JP, Schevitz RW. Curr Opin Chem Biol 1 365-369 (1997)
  21. New weapons to penetrate the armor: Novel reagents and assays developed at the NCI RAS Initiative to enable discovery of RAS therapeutics. Esposito D, Stephen AG, Turbyville TJ, Holderfield M. Semin Cancer Biol 54 174-182 (2019)
  22. Targeting the "undruggable" RAS - new strategies - new hope? Mörchen B, Shkura O, Stoll R, Helfrich I. Cancer Drug Resist 2 813-826 (2019)
  23. Longin domain GAP complexes in nutrient signalling, membrane traffic and neurodegeneration. Jansen RM, Hurley JH. FEBS Lett 597 750-761 (2023)

Articles citing this publication (70)

  1. Structure of RGS4 bound to AlF4--activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Cell 89 251-261 (1997)
  2. Ras history: The saga continues. Cox AD, Der CJ. Small GTPases 1 2-27 (2010)
  3. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB. Neuron 20 895-904 (1998)
  4. Letter Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A. Nat Struct Biol 4 686-689 (1997)
  5. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Upadhyaya M, Huson SM, Davies M, Thomas N, Chuzhanova N, Giovannini S, Evans DG, Howard E, Kerr B, Griffiths S, Consoli C, Side L, Adams D, Pierpont M, Hachen R, Barnicoat A, Li H, Wallace P, Van Biervliet JP, Stevenson D, Viskochil D, Baralle D, Haan E, Riccardi V, Turnpenny P, Lazaro C, Messiaen L. Am J Hum Genet 80 140-151 (2007)
  6. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Rittinger K, Walker PA, Eccleston JF, Nurmahomed K, Owen D, Laue E, Gamblin SJ, Smerdon SJ. Nature 388 693-697 (1997)
  7. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Basile JR, Afkhami T, Gutkind JS. Mol Cell Biol 25 6889-6898 (2005)
  8. Next-generation sequencing identifies rare variants associated with Noonan syndrome. Chen PC, Yin J, Yu HW, Yuan T, Fernandez M, Yung CK, Trinh QM, Peltekova VD, Reid JG, Tworog-Dube E, Morgan MB, Muzny DM, Stein L, McPherson JD, Roberts AE, Gibbs RA, Neel BG, Kucherlapati R. Proc Natl Acad Sci U S A 111 11473-11478 (2014)
  9. Structural analysis of the GAP-related domain from neurofibromin and its implications. Scheffzek K, Ahmadian MR, Wiesmüller L, Kabsch W, Stege P, Schmitz F, Wittinghofer A. EMBO J 17 4313-4327 (1998)
  10. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. Gotthardt K, Weyand M, Kortholt A, Van Haastert PJ, Wittinghofer A. EMBO J 27 2239-2249 (2008)
  11. Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH. Cell 119 407-418 (2004)
  12. Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis. Ma J, Karplus M. J Mol Biol 274 114-131 (1997)
  13. The crystal structure of rna1p: a new fold for a GTPase-activating protein. Hillig RC, Renault L, Vetter IR, Drell T, Wittinghofer A, Becker J. Mol Cell 3 781-791 (1999)
  14. Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. Rak A, Fedorov R, Alexandrov K, Albert S, Goody RS, Gallwitz D, Scheidig AJ. EMBO J 19 5105-5113 (2000)
  15. Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. Hajnal A, Whitfield CW, Kim SK. Genes Dev 11 2715-2728 (1997)
  16. The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction. Pena V, Hothorn M, Eberth A, Kaschau N, Parret A, Gremer L, Bonneau F, Ahmadian MR, Scheffzek K. EMBO Rep 9 350-355 (2008)
  17. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Müller RT, Honnert U, Reinhard J, Bähler M. Mol Biol Cell 8 2039-2053 (1997)
  18. Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. Tong Y, Hota PK, Penachioni JY, Hamaneh MB, Kim S, Alviani RS, Shen L, He H, Tempel W, Tamagnone L, Park HW, Buck M. J Biol Chem 284 35962-35972 (2009)
  19. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration. He H, Yang T, Terman JR, Zhang X. Proc Natl Acad Sci U S A 106 15610-15615 (2009)
  20. Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer. Liu D, Yang C, Bojdani E, Murugan AK, Xing M. J Natl Cancer Inst 105 1617-1627 (2013)
  21. GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins. Kupzig S, Deaconescu D, Bouyoucef D, Walker SA, Liu Q, Polte CL, Daumke O, Ishizaki T, Lockyer PJ, Wittinghofer A, Cullen PJ. J Biol Chem 281 9891-9900 (2006)
  22. Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. Huber M, Watson KA, Selinka HC, Carthy CM, Klingel K, McManus BM, Kandolf R. J Virol 73 3587-3594 (1999)
  23. Hydrophobic complementarity in protein-protein docking. Berchanski A, Shapira B, Eisenstein M. Proteins 56 130-142 (2004)
  24. Mechanism of free radical nitric oxide-mediated Ras guanine nucleotide dissociation. Heo J, Prutzman KC, Mocanu V, Campbell SL. J Mol Biol 346 1423-1440 (2005)
  25. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. Walkup WG, Washburn L, Sweredoski MJ, Carlisle HJ, Graham RL, Hess S, Kennedy MB. J Biol Chem 290 4908-4927 (2015)
  26. Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel. Mathews CJ, Tabcharani JA, Chang XB, Jensen TJ, Riordan JR, Hanrahan JW. J Physiol 508 ( Pt 2) 365-377 (1998)
  27. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A. J Mol Biol 358 289-309 (2006)
  28. Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. Ahmadian MR, Kiel C, Stege P, Scheffzek K. J Mol Biol 329 699-710 (2003)
  29. A dual binding mode for RhoGTPases in plexin signalling. Bell CH, Aricescu AR, Jones EY, Siebold C. PLoS Biol 9 e1001134 (2011)
  30. Aluminum fluoride associates with the small guanine nucleotide binding proteins. Ahmadian MR, Mittal R, Hall A, Wittinghofer A. FEBS Lett 408 315-318 (1997)
  31. Structural analysis of Escherichia coli ThiF. Duda DM, Walden H, Sfondouris J, Schulman BA. J Mol Biol 349 774-786 (2005)
  32. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Wang JF, Chou KC. Biochem Biophys Res Commun 390 608-612 (2009)
  33. Letter Domains of rasGAP and rhoGAP are related. Bax B. Nature 392 447-448 (1998)
  34. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation. Dunzendorfer-Matt T, Mercado EL, Maly K, McCormick F, Scheffzek K. Proc Natl Acad Sci U S A 113 7497-7502 (2016)
  35. The Structural Basis for Cdc42-Induced Dimerization of IQGAPs. LeCour L, Boyapati VK, Liu J, Li Z, Sacks DB, Worthylake DK. Structure 24 1499-1508 (2016)
  36. Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Becker CF, Hunter CL, Seidel R, Kent SB, Goody RS, Engelhard M. Proc Natl Acad Sci U S A 100 5075-5080 (2003)
  37. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts. Marshall CB, Meiri D, Smith MJ, Mazhab-Jafari MT, Gasmi-Seabrook GM, Rottapel R, Stambolic V, Ikura M. Methods 57 473-485 (2012)
  38. Structure of the ExoS GTPase activating domain. Würtele M, Renault L, Barbieri JT, Wittinghofer A, Wolf E. FEBS Lett 491 26-29 (2001)
  39. Restricted tissue expression pattern of a novel human rasGAP-related gene and its murine ortholog. Allen M, Chu S, Brill S, Stotler C, Buckler A. Gene 218 17-25 (1998)
  40. Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways. Xin L, Ma X, Xiao Z, Yao H, Liu Z. Infect Genet Evol 36 46-54 (2015)
  41. The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb. Kupzig S, Bouyoucef-Cherchalli D, Yarwood S, Sessions R, Cullen PJ. Mol Cell Biol 29 3929-3940 (2009)
  42. Letter Support for shared ancestry of GAPs. Rittinger K, Taylor WR, Smerdon SJ, Gamblin SJ. Nature 392 448-449 (1998)
  43. Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. Dai Y, Walker SA, de Vet E, Cook S, Welch HC, Lockyer PJ. J Biol Chem 286 19905-19916 (2011)
  44. Structural basis of the atypical activation mechanism of KRASV14I. Bera AK, Lu J, Wales TE, Gondi S, Gurbani D, Nelson A, Engen JR, Westover KD. J Biol Chem 294 13964-13972 (2019)
  45. Defective dissociation of a "slow" RecA mutant protein imparts an Escherichia coli growth defect. Cox JM, Li H, Wood EA, Chitteni-Pattu S, Inman RB, Cox MM. J Biol Chem 283 24909-24921 (2008)
  46. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Thomas L, Richards M, Mort M, Dunlop E, Cooper DN, Upadhyaya M. Hum Mutat 33 1687-1696 (2012)
  47. Analysis of protein structures reveals regions of rare backbone conformation at functional sites. Petock JM, Torshin IY, Weber IT, Harrison RW. Proteins 53 872-879 (2003)
  48. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Umstead M, Xiong J, Qi Q, Du Y, Fu H. Oncotarget 8 28359-28372 (2017)
  49. G-protein betagamma-binding domains regulate insulin exocytosis in clonal pancreatic beta-cells. Zhang H, Yasrebi-Nejad H, Lang J. FEBS Lett 424 202-206 (1998)
  50. IQGAP-related protein IqgC suppresses Ras signaling during large-scale endocytosis. Marinović M, Mijanović L, Šoštar M, Vizovišek M, Junemann A, Fonović M, Turk B, Weber I, Faix J, Filić V. Proc Natl Acad Sci U S A 116 1289-1298 (2019)
  51. News Turning off the Ras switch with the flick of a finger. Noel JP. Nat Struct Biol 4 677-680 (1997)
  52. Sequence and 3D structural relationships between mammalian Ras- and Rho-specific GTPase-activating proteins (GAPs): the cradle fold. Calmels TP, Callebaut I, Léger I, Durand P, Bril A, Mornon JP, Souchet M. FEBS Lett 426 205-211 (1998)
  53. 12-O-tetradecanoyl-phorbol-13-acetate-dependent up-regulation of dopaminergic gene expression requires Ras and neurofibromin in human IMR-32 neuroblastoma. Mangoura D, Theofilopoulos S, Karouzaki S, Tsirimonaki E. J Neurochem 97 Suppl 1 97-103 (2006)
  54. Inter-subunit interactions that coordinate Rad51's activities. Grigorescu AA, Vissers JH, Ristic D, Pigli YZ, Lynch TW, Wyman C, Rice PA. Nucleic Acids Res 37 557-567 (2009)
  55. The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5p-dependent role in recovery from pheromone arrest. Xu BE, Skowronek KR, Kurjan J. Genetics 159 1559-1571 (2001)
  56. The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis. Weston C, Bond M, Croft W, Ladds G. PLoS One 8 e77487 (2013)
  57. A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers. Cheng R, Li F, Zhang M, Xia X, Wu J, Gao X, Zhou H, Zhang Z, Huang N, Yang X, Zhang Y, Shen S, Kang T, Liu Z, Xiao F, Yao H, Xu J, Yan C, Zhang N. Cell Res 33 30-45 (2023)
  58. Computational insights of K1444N substitution in GAP-related domain of NF1 gene associated with neurofibromatosis type 1 disease: a molecular modeling and dynamics approach. Agrahari AK, Muskan M, George Priya Doss C, Siva R, Zayed H. Metab Brain Dis 33 1443-1457 (2018)
  59. Solution structure of the C-terminal NP-repeat domain of Tic40, a co-chaperone during protein import into chloroplasts. Kao YF, Lou YC, Yeh YH, Hsiao CD, Chen C. J Biochem 152 443-451 (2012)
  60. Prognostic values, ceRNA network, and immune regulation function of SDPR in KRAS-mutant lung cancer. Luo X, Peng S, Ding S, Zeng Q, Wang R, Ma Y, Chen S, Wang Y, Wang W. Cancer Cell Int 21 49 (2021)
  61. A gain-of-function germline mutation in Drosophila ras1 affects apoptosis and cell fate during development. Gafuik C, Steller H. PLoS One 6 e23535 (2011)
  62. Inhibition of RAS-driven signaling and tumorigenesis with a pan-RAS monobody targeting the Switch I/II pocket. Wallon L, Khan I, Teng KW, Koide A, Zuberi M, Li J, Ketavarapu G, Traaseth NJ, O'Bryan JP, Koide S. Proc Natl Acad Sci U S A 119 e2204481119 (2022)
  63. The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking. Segal D, Eisenstein M. Proteins 59 580-591 (2005)
  64. Functional specificity conferred by the unique plasticity of fully alpha-helical Ras and Rho GAPs. Souchet M, Poupon A, Callebaut I, Léger I, Mornon J, Bril A, Calmels TP. FEBS Lett 477 99-105 (2000)
  65. GTP hydrolysis is modulated by Arg34 in the RASopathy-associated KRASP34R. Bera AK, Lu J, Lu C, Li L, Gondi S, Yan W, Nelson A, Zhang G, Westover KD. Birth Defects Res 112 708-717 (2020)
  66. Identification of an individual with a SYGNAP1 pathogenic mutation in India. Verma V, Mandora A, Botre A, Clement JP. Mol Biol Rep 47 9225-9234 (2020)
  67. Ras inhibitor CAPRI enables neutrophil-like cells to chemotax through a higher-concentration range of gradients. Xu X, Wen X, Moosa A, Bhimani S, Jin T. Proc Natl Acad Sci U S A 118 e2002162118 (2021)
  68. Teaching resources. Ras-MAPK pathways. Chan A. Sci STKE 2005 tr5 (2005)
  69. Comparative Study The alpha and beta of turning on a molecular switch. Pai EF. Nat Struct Biol 5 259-263 (1998)
  70. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. Vish KJ, Stiegler AL, Boggon TJ. J Biol Chem 299 105098 (2023)


Related citations provided by authors (3)

  1. Crystallization and Preliminary X-Ray Crystallographic Study of the Ras-Gtpase-Activating Domain of Human P120Gap. Scheffzek K, Lautwein A, Scherer A, Franken S, Wittinghofer A Proteins 27 315- (1997)
  2. Molecular Cloning of Two Types of Gap Complementary DNA from Human Placenta. Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, Mccormick F Science 242 1697- (1988)
  3. A Cytoplasmic Protein Stimulates Normal N-Ras P21 Gtpase, But Does not Affect Oncogenic Mutants. Trahey M, Mccormick F Science 238 542- (1987)