1w3b Citations

The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.

Nat Struct Mol Biol 11 1001-7 (2004)
Cited: 214 times
EuropePMC logo PMID: 15361863

Abstract

Addition of N-acetylglucosamine (GlcNAc) is a ubiquitous form of intracellular glycosylation catalyzed by the conserved O-linked GlcNAc transferase (OGT). OGT contains an N-terminal domain of tetratricopeptide (TPR) repeats that mediates the recognition of a broad range of target proteins. Components of the nuclear pore complex are major OGT targets, as OGT depletion by RNA interference (RNAi) results in the loss of GlcNAc modification at the nuclear envelope. To gain insight into the mechanism of target recognition, we solved the crystal structure of the homodimeric TPR domain of human OGT, which contains 11.5 TPR repeats. The repeats form an elongated superhelix. The concave surface of the superhelix is lined by absolutely conserved asparagines, in a manner reminiscent of the peptide-binding site of importin alpha. Based on this structural similarity, we propose that OGT uses an analogous molecular mechanism to recognize its targets.

Reviews - 1w3b mentioned but not cited (16)

  1. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Hanover JA, Krause MW, Love DC. Biochim. Biophys. Acta 1800 80-95 (2010)
  2. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, Stulik J. Infect. Immun. 81 629-635 (2013)
  3. O-GlcNAc cycling: implications for neurodegenerative disorders. Lazarus BD, Love DC, Hanover JA. Int. J. Biochem. Cell Biol. 41 2134-2146 (2009)
  4. Threading the needle: getting selenocysteine into proteins. Donovan J, Copeland PR. Antioxid. Redox Signal. 12 881-892 (2010)
  5. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr. Pharm. Des. 19 578-613 (2013)
  6. Deciphering the Functions of Protein O-GlcNAcylation with Chemistry. Worth M, Li H, Jiang J. ACS Chem Biol 12 326-335 (2017)
  7. Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms. Joiner CM, Li H, Jiang J, Walker S. Curr Opin Struct Biol 56 97-106 (2019)
  8. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. J. Neurochem. 144 7-34 (2018)
  9. Regulating the Regulators: Mechanisms of Substrate Selection of the O-GlcNAc Cycling Enzymes OGT and OGA. Stephen HM, Adams TM, Wells L. Glycobiology 31 724-733 (2021)
  10. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, Gecz J, Gundogdu M, Õunap K, Joss S, Schwartz CE, Wells L, van Aalten DMF. Eur J Hum Genet 28 706-714 (2020)
  11. Molecular Interrogation to Crack the Case of O-GlcNAc. Estevez A, Zhu D, Blankenship C, Jiang J. Chemistry 26 12086-12100 (2020)
  12. Tools for functional dissection of site-specific O-GlcNAcylation. Gorelik A, van Aalten DMF. RSC Chem Biol 1 98-109 (2020)
  13. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes. Hu CW, Worth M, Li H, Jiang J. Chembiochem 20 312-318 (2019)
  14. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Graham JB, Canniff NP, Hebert DN. Crit. Rev. Biochem. Mol. Biol. 54 103-118 (2019)
  15. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer. Hu CW, Xie J, Jiang J. Cancers (Basel) 14 5135 (2022)
  16. Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Fehl C, Hanover JA. Nat Chem Biol 18 8-17 (2022)

Articles - 1w3b mentioned but not cited (31)

  1. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. Karpenahalli MR, Lupas AN, Söding J. BMC Bioinformatics 8 2 (2007)
  2. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, Gat Y, Moyal T, Brik A, Komeili A, Zarivach R. Proc. Natl. Acad. Sci. U.S.A. 108 E480-7 (2011)
  3. Structure of the Fanconi anaemia monoubiquitin ligase complex. Shakeel S, Rajendra E, Alcón P, O'Reilly F, Chorev DS, Maslen S, Degliesposti G, Russo CJ, He S, Hill CH, Skehel JM, Scheres SHW, Patel KJ, Rappsilber J, Robinson CV, Passmore LA. Nature 575 234-237 (2019)
  4. Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break. Anderson CM, Korkin D, Smith DL, Makovets S, Seidel JJ, Sali A, Blackburn EH. Genes Dev. 22 854-859 (2008)
  5. Insights into the domain and repeat architecture of target of rapamycin. Knutson BA. J. Struct. Biol. 170 354-363 (2010)
  6. Mechanism, Structure, and Inhibition of O-GlcNAc Processing Enzymes. Gloster TM, Vocadlo DJ. Curr Signal Transduct Ther 5 74-91 (2010)
  7. Crystal structure of the N-terminal domain of anaphase-promoting complex subunit 7. Han D, Kim K, Kim Y, Kang Y, Lee JY, Kim Y. J. Biol. Chem. 284 15137-15146 (2009)
  8. Novel components of the flagellar system in epsilonproteobacteria. Gao B, Lara-Tejero M, Lefebre M, Goodman AL, Galán JE. MBio 5 e01349-14 (2014)
  9. Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. Vaidyanathan K, Niranjan T, Selvan N, Teo CF, May M, Patel S, Weatherly B, Skinner C, Opitz J, Carey J, Viskochil D, Gecz J, Shaw M, Peng Y, Alexov E, Wang T, Schwartz C, Wells L. J. Biol. Chem. 292 8948-8963 (2017)
  10. Crystal structure of the N-terminal domain of Nup358/RanBP2. Kassube SA, Stuwe T, Lin DH, Antonuk CD, Napetschnig J, Blobel G, Hoelz A. J. Mol. Biol. 423 752-765 (2012)
  11. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, Loza BF, Fuijkschot J, Ferenbach AT, van Gassen KLI, van Aalten DMF, Lefeber DJ. J. Biol. Chem. 292 12621-12631 (2017)
  12. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes. Kapuria V, Röhrig UF, Bhuiyan T, Borodkin VS, van Aalten DM, Zoete V, Herr W. Genes Dev. 30 960-972 (2016)
  13. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold. Urosev D, Ferrer-Navarro M, Pastorello I, Cartocci E, Costenaro L, Zhulenkovs D, Maréchal JD, Leonchiks A, Reverter D, Serino L, Soriani M, Daura X. BMC Struct. Biol. 13 19 (2013)
  14. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. Levine ZG, Fan C, Melicher MS, Orman M, Benjamin T, Walker S. J. Am. Chem. Soc. 140 3510-3513 (2018)
  15. Computational analysis suggests that virulence of Chromobacterium violaceum might be linked to biofilm formation and poly-NAG biosynthesis. Becker S, Soares C, Porto LM. Genet. Mol. Biol. 32 640-644 (2009)
  16. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane. De Gois S, Slama P, Pietrancosta N, Erdozain AM, Louis F, Bouvrais-Veret C, Daviet L, Giros B. J. Biol. Chem. 290 17848-17862 (2015)
  17. Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways. Joiner CM, Hammel FA, Janetzko J, Walker S. Biochemistry 60 847-853 (2021)
  18. Protein Tetratricopeptide Repeat and the Companion Non-tetratricopeptide Repeat Helices: Bioinformatic Analysis of Interhelical Interactions. Barik S. Bioinform Biol Insights 13 1177932219863363 (2019)
  19. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  20. Crystallization and preliminary crystallographic analysis of the Magnetospirillum magneticum AMB-1 and M. gryphiswaldense MSR-1 magnetosome-associated proteins MamA. Zeytuni N, Zarivach R. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 824-827 (2010)
  21. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination. Millán C, Sammito MD, McCoy AJ, Nascimento AFZ, Petrillo G, Oeffner RD, Domínguez-Gil T, Hermoso JA, Read RJ, Usón I. Acta Crystallogr D Struct Biol 74 290-304 (2018)
  22. O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Selvan N, George S, Serajee FJ, Shaw M, Hobson L, Kalscheuer V, Prasad N, Levy SE, Taylor J, Aftimos S, Schwartz CE, Huq AM, Gecz J, Wells L. J. Biol. Chem. 293 10810-10824 (2018)
  23. Removal of a consensus proline is not sufficient to allow tetratricopeptide repeat oligomerization. Bakkum AL, Hill RB. Protein Sci. 26 1974-1983 (2017)
  24. The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix. Gundogdu M, Llabrés S, Gorelik A, Ferenbach AT, Zachariae U, van Aalten DMF. Cell Chem Biol 25 513-518.e4 (2018)
  25. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. Dis Model Mech 16 dmm049132 (2023)
  26. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. Joiner CM, Levine ZG, Aonbangkhen C, Woo CM, Walker S. J. Am. Chem. Soc. 141 12974-12978 (2019)
  27. Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT. Meek RW, Blaza JN, Busmann JA, Alteen MG, Vocadlo DJ, Davies GJ. Nat Commun 12 6508 (2021)
  28. Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain. Llabrés S, Tsenkov MI, MacGowan SA, Barton GJ, Zachariae U. J. Struct. Biol. 209 107405 (2020)
  29. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. Kositzke A, Fan D, Wang A, Li H, Worth M, Jiang J. Int J Biol Macromol 169 51-59 (2021)
  30. The TPR domain of PgaA is a multifunctional scaffold that binds PNAG and modulates PgaB-dependent polymer processing. Pfoh R, Subramanian AS, Huang J, Little DJ, Forman A, DiFrancesco BR, Balouchestani-Asli N, Kitova EN, Klassen JS, Pomès R, Nitz M, Howell PL. PLoS Pathog 18 e1010750 (2022)
  31. The conserved threonine-rich region of the HCF-1PRO repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities. Kapuria V, Röhrig UF, Waridel P, Lammers F, Borodkin VS, van Aalten DMF, Zoete V, Herr W. J. Biol. Chem. 293 17754-17768 (2018)


Reviews citing this publication (52)

  1. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Hart GW, Housley MP, Slawson C. Nature 446 1017-1022 (2007)
  2. The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Love DC, Hanover JA. Sci. STKE 2005 re13 (2005)
  3. Cell signaling, the essential role of O-GlcNAc! Zachara NE, Hart GW. Biochim. Biophys. Acta 1761 599-617 (2006)
  4. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Hanover JA, Krause MW, Love DC. Nat. Rev. Mol. Cell Biol. 13 312-321 (2012)
  5. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Butkinaree C, Park K, Hart GW. Biochim. Biophys. Acta 1800 96-106 (2010)
  6. A little sugar goes a long way: the cell biology of O-GlcNAc. Bond MR, Hanover JA. J. Cell Biol. 208 869-880 (2015)
  7. Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Copeland RJ, Bullen JW, Hart GW. Am. J. Physiol. Endocrinol. Metab. 295 E17-28 (2008)
  8. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Terry LJ, Wente SR. Eukaryotic Cell 8 1814-1827 (2009)
  9. O-GlcNAc modification in diabetes and Alzheimer's disease. Dias WB, Hart GW. Mol Biosyst 3 766-772 (2007)
  10. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. Hu P, Shimoji S, Hart GW. FEBS Lett. 584 2526-2538 (2010)
  11. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. Slawson C, Housley MP, Hart GW. J. Cell. Biochem. 97 71-83 (2006)
  12. Architecture and function of IFT complex proteins in ciliogenesis. Taschner M, Taschner M, Bhogaraju S, Lorentzen E. Differentiation 83 S12-22 (2012)
  13. Sel1-like repeat proteins in signal transduction. Mittl PR, Schneider-Brachert W. Cell. Signal. 19 20-31 (2007)
  14. O-GlcNAc signaling in the cardiovascular system. Ngoh GA, Facundo HT, Zafir A, Jones SP. Circ. Res. 107 171-185 (2010)
  15. Protein O-GlcNAcylation in diabetes and diabetic complications. Ma J, Hart GW. Expert Rev Proteomics 10 365-380 (2013)
  16. Protein O-GlcNAcylation: emerging mechanisms and functions. Yang X, Qian K. Nat. Rev. Mol. Cell Biol. 18 452-465 (2017)
  17. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Rexach JE, Clark PM, Hsieh-Wilson LC. Nat. Chem. Biol. 4 97-106 (2008)
  18. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Yuzwa SA, Vocadlo DJ. Chem Soc Rev 43 6839-6858 (2014)
  19. O-GlcNAc cycling: emerging roles in development and epigenetics. Love DC, Krause MW, Hanover JA. Semin. Cell Dev. Biol. 21 646-654 (2010)
  20. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Schornack S, Meyer A, Römer P, Jordan T, Lahaye T. J. Plant Physiol. 163 256-272 (2006)
  21. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Vocadlo DJ. Curr Opin Chem Biol 16 488-497 (2012)
  22. O-GlcNAc and the epigenetic regulation of gene expression. Lewis BA, Hanover JA. J. Biol. Chem. 289 34440-34448 (2014)
  23. O-GlcNAc and the cardiovascular system. Dassanayaka S, Jones SP. Pharmacol. Ther. 142 62-71 (2014)
  24. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Zachara NE. Am. J. Physiol. Heart Circ. Physiol. 302 H1905-18 (2012)
  25. Molecular mechanisms of O-GlcNAcylation. Hurtado-Guerrero R, Dorfmueller HC, van Aalten DM. Curr. Opin. Struct. Biol. 18 551-557 (2008)
  26. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Levine ZG, Walker S. Annu. Rev. Biochem. 85 631-657 (2016)
  27. The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. 'Protein modifications: beyond the usual suspects' review series. Golks A, Guerini D. EMBO Rep. 9 748-753 (2008)
  28. Advances in understanding glycosyltransferases from a structural perspective. Gloster TM. Curr. Opin. Struct. Biol. 28 131-141 (2014)
  29. O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Nagel AK, Ball LE. Amino Acids 46 2305-2316 (2014)
  30. The making of a sweet modification: structure and function of O-GlcNAc transferase. Janetzko J, Walker S. J. Biol. Chem. 289 34424-34432 (2014)
  31. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Chatham JC, Zhang J, Wende AR. Physiol Rev 101 427-493 (2021)
  32. Functional Analysis of O-GlcNAcylation in Cancer Metastasis. Wu D, Jin J, Qiu Z, Liu D, Luo H. Front Oncol 10 585288 (2020)
  33. Chemical tools to probe cellular O-GlcNAc signalling. Ostrowski A, van Aalten DM. Biochem. J. 456 1-12 (2013)
  34. O-GlcNAcylation: a novel pathway contributing to the effects of endothelin in the vasculature. Lima VV, Giachini FR, Hardy DM, Webb RC, Tostes RC. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300 R236-50 (2011)
  35. Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Martinez MR, Dias TB, Natov PS, Zachara NE. Biochem. Soc. Trans. 45 237-249 (2017)
  36. Protein translocation into peroxisomes by ring-shaped import receptors. Stanley WA, Fodor K, Marti-Renom MA, Schliebs W, Wilmanns M. FEBS Lett. 581 4795-4802 (2007)
  37. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. Front Genet 11 605263 (2020)
  38. Chemical arsenal for the study of O-GlcNAc. Kim EJ. Molecules 16 1987-2022 (2011)
  39. The emerging link between O-GlcNAcylation and neurological disorders. Ma X, Li H, He Y, Hao J. Cell. Mol. Life Sci. 74 3667-3686 (2017)
  40. O-GlcNAc cycling and the regulation of nucleocytoplasmic dynamics. Eustice M, Bond MR, Hanover JA. Biochem. Soc. Trans. 45 427-436 (2017)
  41. Chemical tools to explore nutrient-driven O-GlcNAc cycling. Kim EJ, Bond MR, Love DC, Hanover JA. Crit. Rev. Biochem. Mol. Biol. 49 327-342 (2014)
  42. Potential coordination role between O-GlcNAcylation and epigenetics. Wu D, Cai Y, Jin J. Protein Cell 8 713-723 (2017)
  43. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). Zachara NE. FEBS Lett. 592 3950-3975 (2018)
  44. Crystal structures of eukaryote glycosyltransferases reveal biologically relevant enzyme homooligomers. Harrus D, Kellokumpu S, Glumoff T. Cell. Mol. Life Sci. 75 833-848 (2018)
  45. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. Cell Stress Chaperones 26 297-309 (2021)
  46. Too sweet to resist: Control of immune cell function by O-GlcNAcylation. de Jesus T, Shukla S, Ramakrishnan P. Cell. Immunol. 333 85-92 (2018)
  47. O-GlcNAcylated peptides and proteins for structural and functional studies. Balana AT, Moon SP, Pratt MR. Curr Opin Struct Biol 68 84-93 (2021)
  48. O-GlcNAcylation and its role in the immune system. Chang YH, Weng CL, Lin KI. J Biomed Sci 27 57 (2020)
  49. The Beginner's Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Mannino MP, Hart GW. Front Immunol 13 828648 (2022)
  50. The O-GlcNAc cycling in neurodevelopment and associated diseases. Wenzel DM, Olivier-Van Stichelen S. Biochem Soc Trans 50 1693-1702 (2022)
  51. Demystifying O-GlcNAcylation: hints from peptide substrates. Shi J, Ruijtenbeek R, Pieters RJ. Glycobiology 28 814-824 (2018)
  52. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes. Kim EJ. Chembiochem 18 1462-1472 (2017)

Articles citing this publication (115)

  1. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV. Cell 141 1208-1219 (2010)
  2. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Pichlmair A, Lassnig C, Eberle CA, Górna MW, Baumann CL, Burkard TR, Bürckstümmer T, Stefanovic A, Krieger S, Bennett KL, Rülicke T, Weber F, Colinge J, Müller M, Superti-Furga G. Nat. Immunol. 12 624-630 (2011)
  3. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Nature 469 564-567 (2011)
  4. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Jékely G, Arendt D. Bioessays 28 191-198 (2006)
  5. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC, Ashwell G, Krause M. Proc. Natl. Acad. Sci. U.S.A. 102 11266-11271 (2005)
  6. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF, Romeo T. J. Bacteriol. 190 3670-3680 (2008)
  7. Structural basis for endosomal targeting by the Bro1 domain. Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G, Hurley JH. Dev. Cell 8 937-947 (2005)
  8. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Capotosti F, Guernier S, Lammers F, Waridel P, Cai Y, Jin J, Conaway JW, Conaway RC, Herr W. Cell 144 376-388 (2011)
  9. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT, Barford D. EMBO J. 24 1-10 (2005)
  10. Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. Abbas YM, Pichlmair A, Górna MW, Superti-Furga G, Nagar B. Nature 494 60-64 (2013)
  11. Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, Davies GJ. Nat. Struct. Mol. Biol. 13 365-371 (2006)
  12. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Slawson C, Lakshmanan T, Knapp S, Hart GW. Mol. Biol. Cell 19 4130-4140 (2008)
  13. O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. Cheung WD, Sakabe K, Housley MP, Dias WB, Hart GW. J. Biol. Chem. 283 33935-33941 (2008)
  14. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP. Plant Physiol. 143 987-1000 (2007)
  15. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Myers SA, Panning B, Burlingame AL. Proc. Natl. Acad. Sci. U.S.A. 108 9490-9495 (2011)
  16. Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Declerck N, Bouillaut L, Chaix D, Rugani N, Slamti L, Hoh F, Lereclus D, Arold ST. Proc. Natl. Acad. Sci. U.S.A. 104 18490-18495 (2007)
  17. Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M. Mol. Cell 24 653-663 (2006)
  18. Convergent evolution of receptors for protein import into mitochondria. Perry AJ, Hulett JM, Likić VA, Lithgow T, Gooley PR. Curr. Biol. 16 221-229 (2006)
  19. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. Whelan SA, Whelan SA, Lane MD, Hart GW. J. Biol. Chem. 283 21411-21417 (2008)
  20. Structural insights into mechanism and specificity of O-GlcNAc transferase. Clarke AJ, Hurtado-Guerrero R, Pathak S, Schüttelkopf AW, Borodkin V, Shepherd SM, Ibrahim AF, van Aalten DM. EMBO J. 27 2780-2788 (2008)
  21. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Wu Y, Sha B. Nat. Struct. Mol. Biol. 13 589-593 (2006)
  22. Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Lazarus BD, Love DC, Hanover JA. Glycobiology 16 415-421 (2006)
  23. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Martinez-Fleites C, Macauley MS, He Y, Shen DL, Vocadlo DJ, Davies GJ. Nat. Struct. Mol. Biol. 15 764-765 (2008)
  24. PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. Koo J, Tammam S, Ku SY, Sampaleanu LM, Burrows LL, Howell PL. J. Bacteriol. 190 6961-6969 (2008)
  25. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, Vocadlo DJ, Herr W, Walker S. Science 342 1235-1239 (2013)
  26. Structural studies on the co-chaperone Hop and its complexes with Hsp90. Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE. J. Mol. Biol. 379 732-744 (2008)
  27. LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gαi/LGN/NuMA pathways. Zhu J, Wen W, Zheng Z, Shang Y, Wei Z, Xiao Z, Pan Z, Du Q, Wang W, Zhang M. Mol. Cell 43 418-431 (2011)
  28. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Passmore LA, Booth CR, Vénien-Bryan C, Ludtke SJ, Fioretto C, Johnson LN, Chiu W, Barford D. Mol. Cell 20 855-866 (2005)
  29. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L. Mol. Cell 25 863-875 (2007)
  30. The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T. J. Mol. Biol. 358 1010-1022 (2006)
  31. The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. Zhang Z, Kulkarni K, Hanrahan SJ, Thompson AJ, Barford D. EMBO J. 29 3733-3744 (2010)
  32. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Smet-Nocca C, Broncel M, Wieruszeski JM, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CP. Mol Biosyst 7 1420-1429 (2011)
  33. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, Vogel JL, Kristie TM, Affar el B. Proc. Natl. Acad. Sci. U.S.A. 108 2747-2752 (2011)
  34. Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes. Krupa A, Srinivasan N. BMC Genomics 6 129 (2005)
  35. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Keiski CL, Harwich M, Jain S, Neculai AM, Yip P, Robinson H, Whitney JC, Riley L, Burrows LL, Ohman DE, Howell PL. Structure 18 265-273 (2010)
  36. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Groves JA, Lee A, Yildirir G, Zachara NE. Cell Stress Chaperones 18 535-558 (2013)
  37. Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate. Kim EJ, Kang DO, Love DC, Hanover JA. Carbohydr. Res. 341 971-982 (2006)
  38. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Pathak S, Alonso J, Schimpl M, Rafie K, Blair DE, Borodkin VS, Albarbarawi O, van Aalten DMF. Nat. Struct. Mol. Biol. 22 744-750 (2015)
  39. Co-operative versus independent transport of different cargoes by Kinesin-1. Hammond JW, Griffin K, Jih GT, Stuckey J, Verhey KJ. Traffic 9 725-741 (2008)
  40. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ. J. Biol. Chem. 287 15395-15408 (2012)
  41. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. Büttner CR, Sorg I, Cornelis GR, Heinz DW, Niemann HH. J. Mol. Biol. 375 997-1012 (2008)
  42. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. Taschner M, Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E. J. Cell Biol. 207 269-282 (2014)
  43. Post-translational modification by O-GlcNAc: another way to change protein function. Kudlow JE. J. Cell. Biochem. 98 1062-1075 (2006)
  44. The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-β-1,6-N-acetyl-D-glucosamine. Little DJ, Poloczek J, Whitney JC, Robinson H, Nitz M, Howell PL. J. Biol. Chem. 287 31126-31137 (2012)
  45. Blocking O-linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. Sekine O, Love DC, Rubenstein DS, Hanover JA. J. Biol. Chem. 285 38684-38691 (2010)
  46. Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Kim K, Oh J, Han D, Kim EE, Lee B, Kim Y. Biochem. Biophys. Res. Commun. 340 1028-1038 (2006)
  47. Inscuteable and NuMA proteins bind competitively to Leu-Gly-Asn repeat-enriched protein (LGN) during asymmetric cell divisions. Culurgioni S, Alfieri A, Pendolino V, Laddomada F, Mapelli M. Proc. Natl. Acad. Sci. U.S.A. 108 20998-21003 (2011)
  48. Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). Bauer C, Göbel K, Nagaraj N, Colantuoni C, Wang M, Müller U, Kremmer E, Rottach A, Leonhardt H. J. Biol. Chem. 290 4801-4812 (2015)
  49. The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin. Choi KJ, Grass S, Paek S, St Geme JW, Yeo HJ. PLoS ONE 5 e15888 (2010)
  50. Nutrient-driven O-GlcNAc cycling - think globally but act locally. Harwood KR, Hanover JA. J. Cell. Sci. 127 1857-1867 (2014)
  51. O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension. Lima VV, Rigsby CS, Hardy DM, Webb RC, Tostes RC. J Am Soc Hypertens 3 374-387 (2009)
  52. Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A. J. Mol. Biol. 425 1318-1329 (2013)
  53. Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein. Kawai F, Grass S, Kim Y, Choi KJ, St Geme JW, Yeo HJ. J. Biol. Chem. 286 38546-38557 (2011)
  54. Structure of a novel O-linked N-acetyl-D-glucosamine (O-GlcNAc) transferase, GtfA, reveals insights into the glycosylation of pneumococcal serine-rich repeat adhesins. Shi WW, Jiang YL, Zhu F, Yang YH, Shao QY, Yang HB, Ren YM, Wu H, Chen Y, Zhou CZ. J. Biol. Chem. 289 20898-20907 (2014)
  55. Crystal structure of a designed tetratricopeptide repeat module in complex with its peptide ligand. Cortajarena AL, Wang J, Regan L. FEBS J. 277 1058-1066 (2010)
  56. Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase. Lazarus BD, Roos MD, Hanover JA. J Biol Chem 280 35537-35544 (2005)
  57. Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response. Ryu IH, Do SI. Biochem. Biophys. Res. Commun. 408 52-57 (2011)
  58. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. Jinek M, Eulalio A, Lingel A, Helms S, Conti E, Izaurralde E. RNA 14 1991-1998 (2008)
  59. Microarray discovery of new OGT substrates: the medulloblastoma oncogene OTX2 is O-GlcNAcylated. Ortiz-Meoz RF, Merbl Y, Kirschner MW, Walker S. J. Am. Chem. Soc. 136 4845-4848 (2014)
  60. Domain organization of the monomeric form of the Tom70 mitochondrial import receptor. Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD. J. Mol. Biol. 388 1043-1058 (2009)
  61. Crystal structure of P58(IPK) TPR fragment reveals the mechanism for its molecular chaperone activity in UPR. Tao J, Petrova K, Ron D, Sha B. J. Mol. Biol. 397 1307-1315 (2010)
  62. SECRET AGENT, an Arabidopsis thaliana O-GlcNAc transferase, modifies the Plum pox virus capsid protein. Scott CL, Hartweck LM, de Jesús Pérez J, Chen D, García JA, Olszewski NE. FEBS Lett. 580 5829-5835 (2006)
  63. Structural and functional insight into human O-GlcNAcase. Roth C, Chan S, Offen WA, Hemsworth GR, Willems LI, King DT, Varghese V, Britton R, Vocadlo DJ, Davies GJ. Nat. Chem. Biol. 13 610-612 (2017)
  64. TPR domain of NrfG mediates complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia coli O157:H7. Han D, Kim K, Oh J, Park J, Kim Y. Proteins 70 900-914 (2008)
  65. All repeats are not equal: a module-based approach to guide repeat protein design. Sawyer N, Chen J, Regan L. J. Mol. Biol. 425 1826-1838 (2013)
  66. Quantitative regulation of nuclear pore complex proteins by O-GlcNAcylation. Mizuguchi-Hata C, Ogawa Y, Oka M, Yoneda Y. Biochim. Biophys. Acta 1833 2682-2689 (2013)
  67. Substrate specificity provides insights into the sugar donor recognition mechanism of O-GlcNAc transferase (OGT). Ma X, Liu P, Yan H, Sun H, Liu X, Zhou F, Li L, Chen Y, Muthana MM, Chen X, Wang PG, Zhang L. PLoS ONE 8 e63452 (2013)
  68. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Mariappa D, Zheng X, Schimpl M, Raimi O, Ferenbach AT, Müller HA, van Aalten DM. Open Biol 5 150234 (2015)
  69. Architecture of the Cellulose Synthase Outer Membrane Channel and Its Association with the Periplasmic TPR Domain. Acheson JF, Derewenda ZS, Zimmer J. Structure 27 1855-1861.e3 (2019)
  70. Distinct OGT-Binding Sites Promote HCF-1 Cleavage. Bhuiyan T, Waridel P, Kapuria V, Zoete V, Herr W. PLoS ONE 10 e0136636 (2015)
  71. Mutagenesis and Functional Analysis of the Bacterial Arginine Glycosyltransferase Effector NleB1 from Enteropathogenic Escherichia coli. Wong Fok Lung T, Giogha C, Creuzburg K, Ong SY, Pollock GL, Zhang Y, Fung KY, Pearson JS, Hartland EL. Infect. Immun. 84 1346-1360 (2016)
  72. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Rafie K, Raimi O, Ferenbach AT, Borodkin VS, Kapuria V, van Aalten DMF. Open Biol 7 (2017)
  73. Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Riu IH, Shin IS, Do SI. Biochem. Biophys. Res. Commun. 372 203-209 (2008)
  74. Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II. Lu L, Fan D, Hu CW, Worth M, Ma ZX, Jiang J. Biochemistry 55 1149-1158 (2016)
  75. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. Stephen HM, Praissman JL, Wells L. J Proteome Res 20 1229-1242 (2021)
  76. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex. Palaiomylitou M, Tartas A, Vlachakis D, Tzamarias D, Vlassi M. Proteins 70 72-82 (2008)
  77. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction. Becker MM, Lapouge K, Segnitz B, Wild K, Sinning I. Nucleic Acids Res. 45 470-481 (2017)
  78. Crystal structure of the N-terminal domain of EccA₁ ATPase from the ESX-1 secretion system of Mycobacterium tuberculosis. Wagner JM, Evans TJ, Korotkov KV. Proteins 82 159-163 (2014)
  79. O-GlcNAc transferase regulates transcriptional activity of human Oct4. Constable S, Lim JM, Vaidyanathan K, Wells L. Glycobiology 27 927-937 (2017)
  80. Crystal structure of YrrB: a TPR protein with an unusual peptide-binding site. Han D, Oh J, Kim K, Lim H, Kim Y. Biochem. Biophys. Res. Commun. 360 784-790 (2007)
  81. Identification of the nuclear localisation signal of O-GlcNAc transferase and its nuclear import regulation. Seo HG, Kim HB, Kang MJ, Ryum JH, Yi EC, Cho JW. Sci Rep 6 34614 (2016)
  82. Versatile O-GlcNAc transferase assay for high-throughput identification of enzyme variants, substrates, and inhibitors. Kim EJ, Abramowitz LK, Bond MR, Love DC, Kang DW, Leucke HF, Kang DW, Ahn JS, Hanover JA. Bioconjug. Chem. 25 1025-1030 (2014)
  83. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission. Lees JP, Manlandro CM, Picton LK, Tan AZ, Casares S, Flanagan JM, Fleming KG, Hill RB. J. Mol. Biol. 423 143-158 (2012)
  84. O-GlcNAc-ylation in the Nuclear Pore Complex. Ruba A, Yang W. Cell Mol Bioeng 9 227-233 (2016)
  85. O-Linked N-acetylglucosamine transferase 1 regulates global histone H4 acetylation via stabilization of the nonspecific lethal protein NSL3. Wu D, Zhao L, Feng Z, Yu C, Ding J, Wang L, Wang F, Liu D, Zhu H, Xing F, Conaway JW, Conaway RC, Cai Y, Jin J. J. Biol. Chem. 292 10014-10025 (2017)
  86. Regulation of nuclear localization signal-importin α interaction by Ca2+/S100A6. Takata M, Shimamoto S, Yamaguchi F, Tokuda M, Tokumitsu H, Kobayashi R. FEBS Lett. 584 4517-4523 (2010)
  87. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution. Du J, Vepachedu V, Cho SH, Kumar M, Nixon BT. PLoS ONE 11 e0155886 (2016)
  88. E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins. Goodwin OY, Thomasson MS, Lin AJ, Sweeney MM, Macnaughtan MA. J. Biotechnol. 168 315-323 (2013)
  89. Endoplasmic reticulum transmembrane protein TMTC3 contributes to O-mannosylation of E-cadherin, cellular adherence, and embryonic gastrulation. Graham JB, Sunryd JC, Mathavan K, Weir E, Larsen ISB, Halim A, Clausen H, Cousin H, Alfandari D, Hebert DN. Mol Biol Cell 31 167-183 (2020)
  90. OGT Protein Interaction Network (OGT-PIN): A Curated Database of Experimentally Identified Interaction Proteins of OGT. Ma J, Hou C, Li Y, Chen S, Wu C. Int J Mol Sci 22 9620 (2021)
  91. Crystal structure of the flexible tandem repeat domain of bacterial cellulose synthesis subunit C. Nojima S, Fujishima A, Kato K, Ohuchi K, Shimizu N, Yonezawa K, Tajima K, Yao M. Sci Rep 7 13018 (2017)
  92. Enzymatic characterization of recombinant enzymes of O-GlcNAc cycling. Kim EJ, Hanover JA. Methods Mol Biol 1022 129-145 (2013)
  93. research-article Molecular recognition: O-GlcNAc transfer: size matters. Gay LM, Zheng X, van Aalten DM. Nat. Chem. Biol. 7 134-135 (2011)
  94. Structural insights into the substrate binding adaptability and specificity of human O-GlcNAcase. Li B, Li H, Hu CW, Jiang J. Nat Commun 8 666 (2017)
  95. C-Terminal Tag Location Hampers in Vitro Profiling of OGT Peptide Substrates by mRNA Display. Shi J, Sharif S, Balsollier C, Ruijtenbeek R, Pieters RJ, Jongkees SAK. Chembiochem 22 666-671 (2021)
  96. Motif-dependent binding on the intervening domain regulates O-GlcNAc transferase. Blankenship CM, Xie J, Benz C, Wang A, Ivarsson Y, Jiang J. Nat Chem Biol 19 1423-1431 (2023)
  97. Letter O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis. Yu F, Li T, Sui Y, Chen Q, Yang S, Yang J, Hong R, Li D, Yan X, Zhao W, Zhu X, Zhou J. Protein Cell 11 852-857 (2020)
  98. Proteomic analysis of the OGT interactome: novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Gao J, Yang Y, Qiu R, Zhang K, Teng X, Liu R, Wang Y. Carcinogenesis 39 1222-1234 (2018)
  99. Structural insights into mechanism and specificity of the plant protein O-fucosyltransferase SPINDLY. Zhu L, Wei X, Cong J, Zou J, Wan L, Xu S. Nat Commun 13 7424 (2022)
  100. Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors. Martin SES, Tan ZW, Itkonen HM, Duveau DY, Paulo JA, Janetzko J, Boutz PL, Törk L, Moss FA, Thomas CJ, Gygi SP, Lazarus MB, Walker S. J. Am. Chem. Soc. 140 13542-13545 (2018)
  101. TET2 missense variants in human neoplasia. A proposal of structural and functional classification. Bussaglia E, Antón R, Nomdedéu JF, Fuentes-Prior P. Mol Genet Genomic Med 7 e00772 (2019)
  102. Brain O-GlcNAcylation: From Molecular Mechanisms to Clinical Phenotype. Uygar B, Lagerlöf O. Adv Neurobiol 29 255-280 (2023)
  103. Characterization of two novel FANCG mutations in Indian Fanconi anemia patients. Solanki A, Kumar Selvaa C, Sheth F, Radhakrishnan N, Kalra M, Vundinti BR. Leuk. Res. 53 50-56 (2017)
  104. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex. Lu P, Liu Y, He M, Cao T, Yang M, Qi S, Yu H, Gao H. Nat Commun 14 6952 (2023)
  105. Evolutionary divergence of the nuclear pore complex from fungi to metazoans. Chopra K, Bawaria S, Chauhan R. Protein Sci. 28 571-586 (2019)
  106. Exploration of O-GlcNAc transferase glycosylation sites reveals a target sequence compositional bias. Chong PA, Nosella ML, Vanama M, Ruiz-Arduengo R, Forman-Kay JD. J Biol Chem 299 104629 (2023)
  107. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. Xu B, Zhang C, Jiang A, Zhang X, Liang F, Wang X, Li D, Liu C, Liu X, Xia J, Li Y, Wang Y, Yang Z, Chen J, Zhou Y, Chen L, Sun H. J Biol Chem 298 102115 (2022)
  108. Identification and Functional Assessment of the First Placental Adhesin of Treponema pallidum That May Play Critical Role in Congenital Syphilis. Primus S, Rocha SC, Giacani L, Parveen N. Front Microbiol 11 621654 (2020)
  109. Investigation of the Catalytic Mechanism of a Soluble N-glycosyltransferase Allows Synthesis of N-glycans at Noncanonical Sequons. Hao Z, Guo Q, Feng Y, Zhang Z, Li T, Tian Z, Zheng J, Da LT, Peng W. JACS Au 3 2144-2155 (2023)
  110. O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. Konzman D, Fukushige T, Dagnachew M, Krause M, Hanover JA. PLoS Genet 18 e1010273 (2022)
  111. Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Xie Y, Zheng M, Chu X, Chen Y, Xu H, Wang J, Zhou H, Long J. Nat Commun 9 3795 (2018)
  112. Phage display uncovers a sequence motif that drives polypeptide binding to a conserved regulatory exosite of O-GlcNAc transferase. Alteen MG, Meek RW, Kolappan S, Busmann JA, Cao J, O'Gara Z, Chou Y, Derda R, Davies GJ, Vocadlo DJ. Proc Natl Acad Sci U S A 120 e2303690120 (2023)
  113. Production of Glycopeptide Derivatives for Exploring Substrate Specificity of Human OGA Toward Sugar Moiety. Li S, Wang J, Zang L, Zhu H, Guo J, Zhang J, Wen L, Chen Y, Li Y, Chen X, Wang PG, Li J. Front Chem 6 646 (2018)
  114. Structure and dynamics of the Arabidopsis O-fucosyltransferase SPINDLY. Kumar S, Wang Y, Zhou Y, Dillard L, Li FW, Sciandra CA, Sui N, Zentella R, Zahn E, Shabanowitz J, Hunt DF, Borgnia MJ, Bartesaghi A, Sun TP, Zhou P. Nat Commun 14 1538 (2023)
  115. Structure of a Novel Dimeric SET Domain Methyltransferase that Regulates Cell Motility. Pivovarova Y, Liu J, Lesigang J, Koldyka O, Rauschmeier R, Hu K, Dong G. J Mol Biol 430 4209-4229 (2018)