1uzv Citations

High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches.

Abstract

PA-IIL is a fucose-binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate-binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA-IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918-921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA-IIL in complex with fucose and calcium was refined to 1.0 A resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen-bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein-binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition.

Reviews - 1uzv mentioned but not cited (1)

Articles - 1uzv mentioned but not cited (7)

  1. Some remarks on protein attribute prediction and pseudo amino acid composition. Chou KC. J Theor Biol 273 236-247 (2011)
  2. Engineering of PA-IIL lectin from Pseudomonas aeruginosa - Unravelling the role of the specificity loop for sugar preference. Adam J, Pokorná M, Sabin C, Mitchell EP, Imberty A, Wimmerová M. BMC Struct. Biol. 7 36 (2007)
  3. Predicting binding sites from unbound versus bound protein structures. Clark JJ, Orban ZJ, Carlson HA. Sci Rep 10 15856 (2020)
  4. The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Sommer R, Wagner S, Varrot A, Nycholat CM, Khaledi A, Häussler S, Paulson JC, Imberty A, Titz A. Chem Sci 7 4990-5001 (2016)
  5. Investigation of the Binding Affinity of a Broad Array of l-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin. Thai Le S, Malinovska L, Vašková M, Mező E, Kelemen V, Borbás A, Hodek P, Wimmerová M, Csávás M. Molecules 24 (2019)
  6. Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Gajdos L, Blakeley MP, Haertlein M, Forsyth VT, Devos JM, Imberty A. Nat Commun 13 194 (2022)
  7. Screening of a Library of Oligosaccharides Targeting Lectin LecB of Pseudomonas Aeruginosa and Synthesis of High Affinity Oligoglycoclusters. Dupin L, Noël M, Bonnet S, Meyer A, Géhin T, Bastide L, Randriantsoa M, Souteyrand E, Cottin C, Vergoten G, Vasseur JJ, Morvan F, Chevolot Y, Darblade B. Molecules 23 (2018)


Reviews citing this publication (4)

  1. Prospects for glycoinformatics. Pérez S, Mulloy B. Curr. Opin. Struct. Biol. 15 517-524 (2005)
  2. Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Front Microbiol 12 686793 (2021)
  3. Application of Lectin Microarrays for Biomarker Discovery. Dang K, Zhang W, Jiang S, Lin X, Qian A. ChemistryOpen 9 285-300 (2020)
  4. Glycomimetics for the inhibition and modulation of lectins. Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Chem Soc Rev 52 3663-3740 (2023)

Articles citing this publication (43)

  1. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Perret S, Sabin C, Dumon C, Pokorná M, Gautier C, Galanina O, Ilia S, Bovin N, Nicaise M, Desmadril M, Gilboa-Garber N, Wimmerová M, Mitchell EP, Imberty A. Biochem. J. 389 325-332 (2005)
  2. A simple strategy for the creation of a recombinant lectin microarray. Hsu KL, Gildersleeve JC, Mahal LK. Mol Biosyst 4 654-662 (2008)
  3. Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Imberty A, Mitchell EP, Wimmerová M. Curr. Opin. Struct. Biol. 15 525-534 (2005)
  4. Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: thermodynamics data correlated with X-ray structures. Sabin C, Mitchell EP, Pokorná M, Gautier C, Utille JP, Wimmerová M, Imberty A. FEBS Lett. 580 982-987 (2006)
  5. Structural basis for norovirus inhibition and fucose mimicry by citrate. Hansman GS, Shahzad-Ul-Hussan S, McLellan JS, Chuang GY, Georgiev I, Shimoike T, Katayama K, Bewley CA, Kwong PD. J. Virol. 86 284-292 (2012)
  6. Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes. Chen Y, Vedala H, Kotchey GP, Audfray A, Cecioni S, Imberty A, Vidal S, Star A. ACS Nano 6 760-770 (2012)
  7. A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. Sulák O, Cioci G, Delia M, Lahmann M, Varrot A, Imberty A, Wimmerová M. Structure 18 59-72 (2010)
  8. Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Schneider D, Dühren-von Minden M, Alkhatib A, Setz C, van Bergen CA, Benkißer-Petersen M, Wilhelm I, Villringer S, Krysov S, Packham G, Zirlik K, Römer W, Buske C, Stevenson FK, Veelken H, Jumaa H. Blood 125 3287-3296 (2015)
  9. Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Marotte K, Préville C, Sabin C, Moumé-Pymbock M, Imberty A, Roy R. Org. Biomol. Chem. 5 2953-2961 (2007)
  10. X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives. Marotte K, Sabin C, Préville C, Moumé-Pymbock M, Wimmerová M, Mitchell EP, Imberty A, Roy R. ChemMedChem 2 1328-1338 (2007)
  11. Structural basis of the affinity for oligomannosides and analogs displayed by BC2L-A, a Burkholderia cenocepacia soluble lectin. Lameignere E, Shiao TC, Roy R, Wimmerova M, Dubreuil F, Varrot A, Imberty A. Glycobiology 20 87-98 (2010)
  12. Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. Mo KF, Li X, Li H, Low LY, Quinn CP, Boons GJ. J. Am. Chem. Soc. 134 15556-15562 (2012)
  13. Molecular dynamics study of Pseudomonas aeruginosa lectin-II complexed with monosaccharides. Mishra NK, Kulhánek P, Snajdrová L, Petrek M, Imberty A, Koca J. Proteins 72 382-392 (2008)
  14. Specific association of lectin LecB with the surface of Pseudomonas aeruginosa: role of outer membrane protein OprF. Funken H, Bartels KM, Wilhelm S, Brocker M, Bott M, Bains M, Hancock RE, Rosenau F, Jaeger KE. PLoS ONE 7 e46857 (2012)
  15. Glycosylation is required for outer membrane localization of the lectin LecB in Pseudomonas aeruginosa. Bartels KM, Funken H, Knapp A, Brocker M, Bott M, Wilhelm S, Jaeger KE, Rosenau F. J. Bacteriol. 193 1107-1113 (2011)
  16. A Gibbs free energy correlation for automated docking of carbohydrates. Hill AD, Reilly PJ. J Comput Chem 29 1131-1141 (2008)
  17. Lectin-based affinity tag for one-step protein purification. Tielker D, Rosenau F, Bartels KM, Rosenbaum T, Jaeger KE. BioTechniques 41 327-332 (2006)
  18. Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa. Boukerb AM, Decor A, Ribun S, Tabaroni R, Rousset A, Commin L, Buff S, Doléans-Jordheim A, Vidal S, Varrot A, Imberty A, Cournoyer B. Front Microbiol 7 811 (2016)
  19. A biophysical study with carbohydrate derivatives explains the molecular basis of monosaccharide selectivity of the Pseudomonas aeruginosa lectin LecB. Sommer R, Exner TE, Titz A. PLoS ONE 9 e112822 (2014)
  20. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria. Richichi B, Imberty A, Gillon E, Bosco R, Sutkeviciute I, Fieschi F, Nativi C. Org. Biomol. Chem. 11 4086-4094 (2013)
  21. Computational prediction of monosaccharide binding free energies to lectins with linear interaction energy models. Mishra SK, Sund J, Åqvist J, Koča J. J Comput Chem 33 2340-2350 (2012)
  22. Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa. Joachim I, Rikker S, Hauck D, Ponader D, Boden S, Sommer R, Hartmann L, Titz A. Org. Biomol. Chem. 14 7933-7948 (2016)
  23. Importance of oligomerisation on Pseudomonas aeruginosaLectin-II binding affinity. In silico and in vitro mutagenesis. Wimmerová M, Mishra NK, Pokorná M, Koca J. J Mol Model 15 673-679 (2009)
  24. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Michaud G, Visini R, Bergmann M, Salerno G, Bosco R, Gillon E, Richichi B, Nativi C, Imberty A, Stocker A, Darbre T, Reymond JL. Chem Sci 7 166-182 (2016)
  25. The mink as an animal model for Pseudomonas aeruginosa adhesion: binding of the bacterial lectins (PA-IL and PA-IIL) to neoglycoproteins and to sections of pancreas and lung tissues from healthy mink. Kirkeby S, Wimmerová M, Moe D, Hansen AK. Microbes Infect. 9 566-573 (2007)
  26. Cinnamide Derivatives of d-Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa. Sommer R, Hauck D, Varrot A, Wagner S, Audfray A, Prestel A, Möller HM, Imberty A, Titz A. ChemistryOpen 4 756-767 (2015)
  27. Crystallization and preliminary X-ray diffraction analysis of an anti-H(O) lectin from Lotus tetragonolobus seeds. Moreno FB, Martil DE, Cavada BS, de Azevedo WF. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 680-683 (2006)
  28. Developing an asymmetric, stereodivergent route to selected 6-deoxy-6-fluoro-hexoses. Caravano A, Field RA, Percy JM, Rinaudo G, Roig R, Singh K. Org. Biomol. Chem. 7 996-1008 (2009)
  29. Discovery of N-β-l-Fucosyl Amides as High-Affinity Ligands for the Pseudomonas aeruginosa Lectin LecB. Mała P, Siebs E, Meiers J, Rox K, Varrot A, Imberty A, Titz A. J Med Chem 65 14180-14200 (2022)
  30. Fluorescent cellular assay for screening agents inhibiting Pseudomonas aeruginosa adherence. Nosková L, Kubíčková B, Vašková L, Bláhová B, Wimmerová M, Stiborová M, Hodek P. Sensors (Basel) 15 1945-1953 (2015)
  31. Multivalent thioglycopeptoids via photoclick chemistry: potent affinities towards LecA and BC2L-A lectins. Caumes C, Gillon E, Legeret B, Taillefumier C, Imberty A, Faure S. Chem. Commun. (Camb.) 51 12301-12304 (2015)
  32. Prediction and Validation of a Druggable Site on Virulence Factor of Drug Resistant Burkholderia cenocepacia*. Lal K, Bermeo R, Cramer J, Vasile F, Ernst B, Imberty A, Bernardi A, Varrot A, Belvisi L. Chemistry 27 10341-10348 (2021)
  33. Pseudomonas aeruginosa LecB suppresses immune responses by inhibiting transendothelial migration. Sponsel J, Guo Y, Hamzam L, Lavanant AC, Pérez-Riverón A, Partiot E, Muller Q, Rottura J, Gaudin R, Hauck D, Titz A, Flacher V, Römer W, Mueller CG. EMBO Rep 24 e55971 (2023)
  34. A Fucosylated Lactose-Presenting Tetravalent Glycocluster Acting as a Mutual Ligand of Pseudomonas aeruginosa Lectins A (PA-IL) and B (PA-IIL)-Synthesis and Interaction Studies. Csávás M, Kalmár L, Szőke P, Farkas LB, Bécsi B, Kónya Z, Kerékgyártó J, Borbás A, Erdődi F, Kövér KE. Int J Mol Sci 23 16194 (2022)
  35. Chemical features and machine learning assisted predictions of protein-ligand short hydrogen bonds. Zhou S, Liu Y, Wang S, Wang L. Sci Rep 13 13741 (2023)
  36. Engineering the Pseudomonas aeruginosa II lectin: designing mutants with changed affinity and specificity. Kříž Z, Adam J, Mrázková J, Zotos P, Chatzipavlou T, Wimmerová M, Koča J. J. Comput. Aided Mol. Des. 28 951-960 (2014)
  37. Fucosylated inhibitors of recently identified bangle lectin from Photorhabdus asymbiotica. Paulíková G, Houser J, Kašáková M, Oroszová B, Bertolotti B, Parkan K, Moravcová J, Wimmerová M. Sci Rep 9 14904 (2019)
  38. Heteroglycoclusters With Dual Nanomolar Affinities for the Lectins LecA and LecB From Pseudomonas aeruginosa. Goyard D, Thomas B, Gillon E, Imberty A, Renaudet O. Front Chem 7 666 (2019)
  39. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. Meiers J, Rox K, Titz A. J Med Chem 65 13988-14014 (2022)
  40. Mannose Conjugated Polymer Targeting P. aeruginosa Biofilms. Limqueco E, Passos Da Silva D, Reichhardt C, Su FY, Das D, Chen J, Srinivasan S, Convertine A, Skerrett SJ, Parsek MR, Stayton PS, Ratner DM. ACS Infect Dis 6 2866-2871 (2020)
  41. The Pseudomonas aeruginosa Lectin LecB Causes Integrin Internalization and Inhibits Epithelial Wound Healing. Thuenauer R, Landi A, Trefzer A, Altmann S, Wehrum S, Eierhoff T, Diedrich B, Dengjel J, Nyström A, Imberty A, Römer W. mBio 11 (2020)
  42. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. Nat Commun 10 2183 (2019)
  43. To Fold or Not to Fold: Diastereomeric Optimization of an α-Helical Antimicrobial Peptide. Personne H, Paschoud T, Fulgencio S, Baeriswyl S, Köhler T, van Delden C, Stocker A, Javor S, Reymond JL. J Med Chem 66 7570-7583 (2023)


Related citations provided by authors (1)

  1. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients.. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Pérez S, Wu AM, Gilboa-Garber N, Imberty A Nat Struct Biol 9 918-21 (2002)