1uvq Citations

Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy.

Proc Natl Acad Sci U S A 101 1999-2004 (2004)
Cited: 110 times
EuropePMC logo PMID: 14769912

Abstract

The MHC class II molecule DQ0602 confers strong susceptibility to narcolepsy but dominant protection against type 1 diabetes. The crystal structure of DQ0602 reveals the molecular features underlying these contrasting genetic properties. Structural comparisons to homologous DQ molecules with differential disease associations highlight a previously unrecognized interplay between the volume of the P6 pocket and the specificity of the P9 pocket, which implies that presentation of an expanded peptide repertoire is critical for dominant protection against type 1 diabetes. In narcolepsy, the volume of the P4 pocket appears central to the susceptibility, suggesting that the presentation of a specific peptide population plays a major role.

Reviews - 1uvq mentioned but not cited (4)

  1. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Front Immunol 8 292 (2017)
  2. Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Painter CA, Stern LJ. Immunol. Rev. 250 144-157 (2012)
  3. The T cell antigen receptor: the Swiss army knife of the immune system. Attaf M, Legut M, Cole DK, Sewell AK. Clin. Exp. Immunol. 181 1-18 (2015)
  4. Structural Characteristics of HLA-DQ that May Impact DM Editing and Susceptibility to Type-1 Diabetes. Zhou Z, Jensen PE. Front Immunol 4 262 (2013)

Articles - 1uvq mentioned but not cited (38)

  1. Toward the estimation of the absolute quality of individual protein structure models. Benkert P, Biasini M, Schwede T. Bioinformatics 27 343-350 (2011)
  2. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. PLoS Comput Biol 4 e1000048 (2008)
  3. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. Immunogenetics 65 711-724 (2013)
  4. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Immunogenetics 67 641-650 (2015)
  5. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Siebold C, Hansen BE, Wyer JR, Harlos K, Esnouf RE, Svejgaard A, Bell JI, Strominger JL, Jones EY, Fugger L. Proc. Natl. Acad. Sci. U.S.A. 101 1999-2004 (2004)
  6. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. Sethi DK, Schubert DA, Anders AK, Heroux A, Bonsor DA, Thomas CP, Sundberg EJ, Pyrdol J, Wucherpfennig KW. J. Exp. Med. 208 91-102 (2011)
  7. Modeling the bound conformation of Pemphigus vulgaris-associated peptides to MHC Class II DR and DQ alleles. Tong JC, Bramson J, Kanduc D, Chow S, Sinha AA, Ranganathan S. Immunome Res 2 1 (2006)
  8. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. Miyadera H, Ohashi J, Lernmark Å, Kitamura T, Tokunaga K. J. Clin. Invest. 125 275-291 (2015)
  9. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. Oyarzún P, Ellis JJ, Bodén M, Kobe B. BMC Bioinformatics 14 52 (2013)
  10. Exploring functional roles of multibinding protein interfaces. Tyagi M, Shoemaker BA, Bryant SH, Panchenko AR. Protein Sci 18 1674-1683 (2009)
  11. Structural and functional studies of trans-encoded HLA-DQ2.3 (DQA1*03:01/DQB1*02:01) protein molecule. Tollefsen S, Hotta K, Chen X, Simonsen B, Swaminathan K, Mathews II, Sollid LM, Kim CY. J. Biol. Chem. 287 13611-13619 (2012)
  12. DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP). Kaushansky N, Altmann DM, David CS, Lassmann H, Ben-Nun A. J Neuroinflammation 9 29 (2012)
  13. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. Bordner AJ. PLoS One 5 e14383 (2010)
  14. pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes. Khan JM, Ranganathan S. Immunome Res 6 Suppl 1 S2 (2010)
  15. Combination of In Silico Methods in the Search for Potential CD4(+) and CD8(+) T Cell Epitopes in the Proteome of Leishmania braziliensis. E Silva Rde F, Ferreira LF, Hernandes MZ, de Brito ME, de Oliveira BC, da Silva AA, de-Melo-Neto OP, Rezende AM, Pereira VR. Front Immunol 7 327 (2016)
  16. Prediction of desmoglein-3 peptides reveals multiple shared T-cell epitopes in HLA DR4- and DR6-associated pemphigus vulgaris. Tong JC, Tan TW, Sinha AA, Ranganathan S. BMC Bioinformatics 7 Suppl 5 S7 (2006)
  17. Development of an immunogenicity score for HLA-DQ eplets: A conceptual study. Schawalder L, Hönger G, Kleiser M, van Heck MR, van de Pasch LAL, Vendelbosch S, Rozemuller EH, Schaub S. HLA 97 30-43 (2021)
  18. A Newly Recognized Pairing Mechanism of the α- and β-Chains of the Chicken Peptide-MHC Class II Complex. Zhang L, Li X, Ma L, Zhang B, Meng G, Xia C. J Immunol 204 1630-1640 (2020)
  19. Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection. Mentzer AJ, O'Connor D, Bibi S, Chelysheva I, Clutterbuck EA, Demissie T, Dinesh T, Edwards NJ, Felle S, Feng S, Flaxman AL, Karp-Tatham E, Li G, Liu X, Marchevsky N, Godfrey L, Makinson R, Bull MB, Fowler J, Alamad B, Malinauskas T, Chong AY, Sanders K, Shaw RH, Voysey M, Oxford COVID Vaccine Trial Genetics Study Team Group, Snape MD, Pollard AJ, Lambe T, Knight JC. Nat Med 29 147-157 (2023)
  20. Erosion of Conserved Binding Sites in Personal Genomes Points to Medical Histories. Guturu H, Chinchali S, Clarke SL, Bejerano G. PLoS Comput. Biol. 12 e1004711 (2016)
  21. Immunogenicity and antigenicity based T-cell and B-cell epitopes identification from conserved regions of 10664 SARS-CoV-2 genomes. Ghosh N, Sharma N, Saha I. Infect Genet Evol 92 104823 (2021)
  22. Consensus classification of human leukocyte antigen class II proteins. Saha I, Mazzocco G, Plewczynski D. Immunogenetics 65 97-105 (2013)
  23. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  24. Deciphering the Structural Enigma of HLA Class-II Binding Peptides for Enhanced Immunoinformatics-based Prediction of Vaccine Epitopes. Chatterjee D, Priyadarshini P, Das DK, Mushtaq K, Singh B, Agrewala JN. J Proteome Res 19 4655-4669 (2020)
  25. HLA-DQ-Specific Recombinant Human Monoclonal Antibodies Allow for In-Depth Analysis of HLA-DQ Epitopes. Bezstarosti S, Kramer CSM, Franke-van Dijk MEI, Vergunst M, Bakker KH, Uyar-Mercankaya M, Buchli R, Roelen DL, de Fijter JW, Claas FHJ, Heidt S. Front Immunol 12 761893 (2021)
  26. HLA-DQβ1 amino acid position 87 and DQB1*0301 are associated with Chinese Han SLE. Sun J, Yang C, Fei W, Zhang X, Sheng Y, Zheng X, Tang H, Yang W, Yang S, Fan X, Zhang X. Mol Genet Genomic Med (2018)
  27. Role of a Novel Human Leukocyte Antigen-DQA1*01:02;DRB1*15:01 Mixed Isotype Heterodimer in the Pathogenesis of "Humanized" Multiple Sclerosis-like Disease. Kaushansky N, Eisenstein M, Boura-Halfon S, Hansen BE, Nielsen CH, Milo R, Zeilig G, Lassmann H, Altmann DM, Ben-Nun A. J. Biol. Chem. 290 15260-15278 (2015)
  28. Structural Insights Into HLA-DM Mediated MHC II Peptide Exchange. Painter CA, Stern LJ. Curr Top Biochem Res 13 39-55 (2011)
  29. A Comprehensive Evaluation of the Antibody-Verified Status of Eplets Listed in the HLA Epitope Registry. Bezstarosti S, Bakker KH, Kramer CSM, de Fijter JW, Reinders MEJ, Mulder A, Claas FHJ, Heidt S. Front Immunol 12 800946 (2021)
  30. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)
  31. Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. Lohia N, Baranwal M. 3 Biotech 8 492 (2018)
  32. Identification of CD4+ T cell epitopes from Staphylococcus aureus secretome using immunoinformatic prediction and molecular docking. Francis D, Kumar A, Chittalakkottu S. BioTechnologia (Pozn) 102 43-54 (2021)
  33. In vivo clonal expansion and phenotypes of hypocretin-specific CD4+ T cells in narcolepsy patients and controls. Jiang W, Birtley JR, Hung SC, Wang W, Chiou SH, Macaubas C, Kornum B, Tian L, Huang H, Adler L, Weaver G, Lu L, Ilstad-Minnihan A, Somasundaram S, Ayyangar S, Davis MM, Stern LJ, Mellins ED. Nat Commun 10 5247 (2019)
  34. NIPS, a 3D network-integrated predictor of deleterious protein SAPs, and its application in cancer prognosis. Wang B, Li J, Cheng X, Zhou Q, Yang J, Zhang M, Chen H, Li J. Sci Rep 8 6021 (2018)
  35. Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes. Zhao LP, Papadopoulos GK, Kwok WW, Moustakas AK, Bondinas GP, Carlsson A, Elding Larsson H, Ludvigsson J, Marcus C, Samuelsson U, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Diabetes 69 2523-2535 (2020)
  36. Nine residues in HLA-DQ molecules determine with susceptibility and resistance to type 1 diabetes among young children in Sweden. Zhao LP, Papadopoulos GK, Moustakas AK, Bondinas GP, Carlsson A, Larsson HE, Ludvigsson J, Marcus C, Persson M, Samuelsson U, Wang R, Pyo CW, Geraghty DE, Lernmark Å. Sci Rep 11 8821 (2021)
  37. Peptide-Based Subunit Vaccine Design of T- and B-Cells Multi-Epitopes against Zika Virus Using Immunoinformatics Approaches. Prasasty VD, Grazzolie K, Rosmalena R, Yazid F, Ivan FX, Sinaga E. Microorganisms 7 (2019)
  38. Predicting Humoral Alloimmunity from Differences in Donor and Recipient HLA Surface Electrostatic Potential. Mallon DH, Kling C, Robb M, Ellinghaus E, Bradley JA, Taylor CJ, Kabelitz D, Kosmoliaptsis V. J. Immunol. 201 3780-3792 (2018)


Reviews citing this publication (21)

  1. Gene map of the extended human MHC. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S. Nat. Rev. Genet. 5 889-899 (2004)
  2. Narcolepsy with cataplexy. Dauvilliers Y, Arnulf I, Mignot E. Lancet 369 499-511 (2007)
  3. MHC class II proteins and disease: a structural perspective. Jones EY, Fugger L, Strominger JL, Siebold C. Nat. Rev. Immunol. 6 271-282 (2006)
  4. Neurodegenerative disorders associated with diabetes mellitus. Ristow M. J. Mol. Med. 82 510-529 (2004)
  5. Linkers in the structural biology of protein-protein interactions. Reddy Chichili VP, Kumar V, Sivaraman J. Protein Sci. 22 153-167 (2013)
  6. Does intra-individual major histocompatibility complex diversity keep a golden mean? Woelfing B, Traulsen A, Milinski M, Boehm T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364 117-128 (2009)
  7. Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss? Fontana A, Gast H, Reith W, Recher M, Birchler T, Bassetti CL. Brain 133 1300-1311 (2010)
  8. Narcolepsy: immunological aspects. Overeem S, Black JL, Lammers GJ. Sleep Med Rev 12 95-107 (2008)
  9. Molecular mechanisms of HLA association with autoimmune diseases. Caillat-Zucman S. Tissue Antigens 73 1-8 (2009)
  10. Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism. Miyadera H, Tokunaga K. J. Hum. Genet. 60 697-702 (2015)
  11. Dissection of the multiple sclerosis associated DR2 haplotype. Etzensperger R, McMahon RM, Jones EY, Fugger L. J. Autoimmun. 31 201-207 (2008)
  12. History of narcolepsy at Stanford University. Mignot EJ. Immunol. Res. 58 315-339 (2014)
  13. Etiopathogenesis and neurobiology of narcolepsy: a review. Kumar S, Sagili H. J Clin Diagn Res 8 190-195 (2014)
  14. Genetic Epidemiology of Type 1 Diabetes in the 22 Arab Countries. Zayed H. Curr. Diab. Rep. 16 37 (2016)
  15. MHC-bound antigens and proteomics for novel target discovery. Shoshan SH, Admon A. Pharmacogenomics 5 845-859 (2004)
  16. Update on narcolepsy. Reading PJ. J Neurol 266 1809-1815 (2019)
  17. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Front Cell Dev Biol 7 362 (2019)
  18. [Narcolepsy with cataplexy]. Dauvilliers Y, Arnulf I. Rev. Neurol. (Paris) 164 634-645 (2008)
  19. Fundamental mechanistic insights from rare but paradigmatic neuroimmunological diseases. Wiendl H, Gross CC, Bauer J, Merkler D, Prat A, Liblau R. Nat Rev Neurol 17 433-447 (2021)
  20. The Immune Basis of Narcolepsy: What Is the Evidence? Taheri S. Sleep Med Clin 12 279-287 (2017)
  21. The immunopathogenesis of narcolepsy type 1. Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. Nat Rev Immunol (2023)

Articles citing this publication (47)

  1. The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Bondinas GP, Moustakas AK, Papadopoulos GK. Immunogenetics 59 539-553 (2007)
  2. HLAMatchmaker: a molecularly based algorithm for histocompatibility determination. V. Eplet matching for HLA-DR, HLA-DQ, and HLA-DP. Duquesnoy RJ, Askar M. Hum. Immunol. 68 12-25 (2007)
  3. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. Donaldson PT, Daly AK, Henderson J, Graham J, Pirmohamed M, Bernal W, Day CP, Aithal GP. J. Hepatol. 53 1049-1053 (2010)
  4. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Fallang LE, Bergseng E, Hotta K, Berg-Larsen A, Kim CY, Sollid LM. Nat. Immunol. 10 1096-1101 (2009)
  5. Branch site haplotypes that control alternative splicing. Královicová J, Houngninou-Molango S, Krämer A, Vorechovsky I. Hum. Mol. Genet. 13 3189-3202 (2004)
  6. CD4+ T cell autoimmunity to hypocretin/orexin and cross-reactivity to a 2009 H1N1 influenza A epitope in narcolepsy. De la Herrán-Arita AK, Kornum BR, Mahlios J, Jiang W, Lin L, Hou T, Macaubas C, Einen M, Plazzi G, Crowe C, Newell EW, Davis MM, Mellins ED, Mignot E. Sci Transl Med 5 216ra176 (2013)
  7. Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population. Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. J. Immunol. 185 4189-4198 (2010)
  8. A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition. Zavala-Ruiz Z, Strug I, Walker BD, Norris PJ, Stern LJ. Proc. Natl. Acad. Sci. U.S.A. 101 13279-13284 (2004)
  9. Allelic variation in key peptide-binding pockets discriminates between closely related diabetes-protective and diabetes-susceptible HLA-DQB1*06 alleles. Ettinger RA, Papadopoulos GK, Moustakas AK, Nepom GT, Kwok WW. J Immunol 176 1988-1998 (2006)
  10. Human leukocyte antigen-DQ alleles and haplotypes and their associations with resistance and susceptibility to HIV-1 infection. Hardie RA, Luo M, Bruneau B, Knight E, Nagelkerke NJ, Kimani J, Wachihi C, Ngugi EN, Plummer FA. AIDS 22 807-816 (2008)
  11. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. Sospedra M, Muraro PA, Stefanová I, Zhao Y, Chung K, Li Y, Giulianotti M, Simon R, Mariuzza R, Pinilla C, Martin R. J. Immunol. 176 1951-1961 (2006)
  12. Degenerate self-reactive human T-cell receptor causes spontaneous autoimmune disease in mice. Quaratino S, Badami E, Pang YY, Bartok I, Dyson J, Kioussis D, Londei M, Maiuri L. Nat. Med. 10 920-926 (2004)
  13. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Justesen S, Harndahl M, Lamberth K, Nielsen LL, Buus S. Immunome Res 5 2 (2009)
  14. Functional consequences of HLA-DQ8 homozygosity versus heterozygosity for islet autoimmunity in type 1 diabetes. Eerligh P, van Lummel M, Zaldumbide A, Moustakas AK, Duinkerken G, Bondinas G, Koeleman BP, Papadopoulos GK, Roep BO. Genes Immun. 12 415-427 (2011)
  15. MHC loci affecting cervical cancer risk: distinguishing the effects of HLA-DQB1 and non-HLA genes TNF, LTA, TAP1 and TAP2. Ivansson EL, Magnusson JJ, Magnusson PK, Erlich HA, Gyllensten UB. Genes Immun. 9 613-623 (2008)
  16. HLA-DRB1-DQB1 haplotypes confer susceptibility and resistance to multiple sclerosis in Sardinia. Cocco E, Sardu C, Pieroni E, Valentini M, Murru R, Costa G, Tranquilli S, Frau J, Coghe G, Carboni N, Floris M, Contu P, Marrosu MG. PLoS ONE 7 e33972 (2012)
  17. Identification and diversity of bovine major histocompatibility complex class II haplotypes in Japanese Black and Holstein cattle in Japan. Miyasaka T, Takeshima SN, Sentsui H, Aida Y. J Dairy Sci 95 420-431 (2012)
  18. Restricted MHC-peptide repertoire predisposes to autoimmunity. Logunova NN, Viret C, Pobezinsky LA, Miller SA, Kazansky DB, Sundberg JP, Chervonsky AV. J. Exp. Med. 202 73-84 (2005)
  19. Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Ling F, Wei LQ, Wang T, Wang HB, Zhuo M, Du HL, Wang JF, Wang XN. Immunogenetics 63 155-166 (2011)
  20. Studies of humoral immunity to preprohypocretin in human leukocyte antigen DQB1*0602-positive narcoleptic subjects with cataplexy. Black JL, Silber MH, Krahn LE, Avula RK, Walker DL, Pankratz VS, Fredrickson PA, Slocumb NL. Biol. Psychiatry 58 504-509 (2005)
  21. The type 1 diabetes - HLA susceptibility interactome--identification of HLA genotype-specific disease genes for type 1 diabetes. Brorsson C, Tue Hansen N, Bergholdt R, Brunak S, Pociot F. PLoS ONE 5 e9576 (2010)
  22. HLA-DQB1*03 confers susceptibility to chronic hepatitis C in Japanese: a genome-wide association study. Miki D, Ochi H, Takahashi A, Hayes CN, Urabe Y, Abe H, Kawaoka T, Tsuge M, Hiraga N, Imamura M, Kawakami Y, Aikata H, Takahashi S, Akuta N, Suzuki F, Ikeda K, Kumada H, Karino Y, Toyota J, Tsunoda T, Kubo M, Kamatani N, Nakamura Y, Chayama K. PLoS ONE 8 e84226 (2013)
  23. Characterization of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles in a cohort of Chinese rhesus macaques (Macaca mulatta). Qiu CL, Yang GB, Yu K, Li Y, Li XL, Liu Q, Zhao H, Xing H, Shao Y. Hum. Immunol. 69 513-521 (2008)
  24. Characterizing the binding motifs of 11 common human HLA-DP and HLA-DQ molecules using NNAlign. Andreatta M, Nielsen M. Immunology 136 306-311 (2012)
  25. Association of HLA-DQB1 alleles with risk of follicular lymphoma. Akers NK, Curry JD, Conde L, Bracci PM, Smith MT, Skibola CF. Leuk. Lymphoma 52 53-58 (2011)
  26. A new model defines the minimal set of polymorphism in HLA-DQ and -DR that determines susceptibility and resistance to autoimmune diabetes. Parry CS, Brooks BR. Biol. Direct 3 42 (2008)
  27. Introductory Journal Article Excessive daytime sleepiness: population and etiology versus nosology. Mignot E. Sleep Med Rev 12 87-94 (2008)
  28. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. Kornum BR, Burgdorf KS, Holm A, Ullum H, Jennum P, Knudsen S. J. Neuroimmunol. 309 7-11 (2017)
  29. Mortality in COVID-19 disease patients: Correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants. de Sousa E, Ligeiro D, Lérias JR, Zhang C, Agrati C, Osman M, El-Kafrawy SA, Azhar EI, Ippolito G, Wang FS, Zumla A, Maeurer M. Int J Infect Dis 98 454-459 (2020)
  30. The Contribution of Major Histocompatibility Complex Class II Genes to an Association with Autoimmune Diseases. Zakharova MY, Belyanina TA, Sokolov AV, Kiselev IS, Mamedov AE. Acta Naturae 11 4-12 (2019)
  31. Letter A case of insulin autoimmune syndrome with HLA DRB1*0404: impact on the hypothesis for the molecular pathogenesis involving DRB1 molecules. Miyamura N, Murata Y, Taketa K, Ichihara Y, Matsumura T, Tokunaga H, Matsumoto K, Sakakida M, Araki E. Diabet. Med. 23 104-105 (2006)
  32. BOLA-DRB3 gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle. Carignano HA, Beribe MJ, Caffaro ME, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Miretti MM, Poli MA. Anim. Genet. 48 420-430 (2017)
  33. Major histocompatibility complex class II molecule-human immunodeficiency virus peptide analysis using a microarray chip. Gaseitsiwe S, Valentini D, Ahmed R, Mahdavifar S, Magalhaes I, Zerweck J, Schutkowski M, Gautherot E, Montero F, Ehrnst A, Reilly M, Maeurer M. Clin. Vaccine Immunol. 16 567-573 (2009)
  34. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1. Ramberger M, Högl B, Stefani A, Mitterling T, Reindl M, Lutterotti A. Sleep 40 (2017)
  35. HLA-DQ allele competition in narcolepsy: a comment on Tafti et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Ollila HM, Fernandez-Vina M, Mignot E. Sleep 38 147-151 (2015)
  36. HLA-DQ heterodimers in hematopoietic cell transplantation. Petersdorf EW, Bengtsson M, Horowitz M, McKallor C, Spellman SR, Spierings E, Gooley TA, Stevenson P, International Histocompatibility Working Group in Hematopoietic Cell Transplantation. Blood 139 3009-3017 (2022)
  37. The HLA-DP2 protein binds the immunodominant epitope from myelin basic protein, MBP85-99, with high affinity. Hansen BE, Nielsen CH, Madsen HO, Ryder LP, Jakobsen BK, Svejgaard A. Tissue Antigens 77 229-234 (2011)
  38. Trans heterodimer between two non-arthritis-associated HLA alleles can predispose to arthritis in humanized mice. Behrens M, Papadopoulos GK, Moustakas A, Smart M, Luthra H, David CS, Taneja V. Arthritis Rheum. 63 1552-1561 (2011)
  39. HLA-DQB1*05:06, a novel HLA-DQB1*05 allele identified by sequence-based typing. Cho MC, Ko SY, Oh HB, Heo YS, Kwon OJ. Tissue Antigens 77 344-346 (2011)
  40. Questionable expression of unstable DQ heterodimer containing HLA-DQA1*01:07. Miyadera H, Bungener LB, Kusano S, Yokoyama S, Tokunaga K, Hepkema BG. Tissue Antigens 86 413-418 (2015)
  41. Antibodies against HLA-DP recognize broadly expressed epitopes. Simmons DP, Kafetzi ML, Wood I, Macaskill PC, Milford EL, Guleria I. Hum. Immunol. 77 1128-1139 (2016)
  42. Association of HLA-DQ Heterodimer Residues -18β and β57 With Progression From Islet Autoimmunity to Diabetes in the Diabetes Prevention Trial-Type 1. Zhao LP, Skyler J, Papadopoulos GK, Pugliese A, Najera JA, Bondinas GP, Moustakas AK, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Diabetes Care 45 1610-1620 (2022)
  43. HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery. Stražar M, Park J, Abelin JG, Taylor HB, Pedersen TK, Plichta DR, Brown EM, Eraslan B, Hung YM, Ortiz K, Clauser KR, Carr SA, Xavier RJ, Graham DB. Immunity 56 1681-1698.e13 (2023)
  44. Case Reports Onset of narcolepsy type 1 in a paraneoplastic encephalitis associated with a thymic seminoma. Rossi S, Asioli GM, Rizzo G, Sallemi G, Moresco M, Franceschini C, Pizza F, Plazzi G. J Clin Sleep Med 17 2557-2560 (2021)
  45. Peptide Binding Prediction to Five Most Frequent HLA-DQ Proteins - a Proteochemometric Approach. Dimitrov I, Doytchinova I. Mol Inform 34 467-476 (2015)
  46. Spectrum of Clinical Presentations, Imaging Findings, and HLA Types in Immune Checkpoint Inhibitor-Induced Hypophysitis. Quandt Z, Kim S, Villanueva-Meyer J, Coupe C, Young A, Kang JH, Yazdany J, Schmajuk G, Rush S, Ziv E, Perdigoto AL, Herold K, Lechner MG, Su MA, Tyrrell JB, Bluestone J, Anderson M, Masharani U. J Endocr Soc 7 bvad012 (2023)
  47. Yeast display of MHC-II enables rapid identification of peptide ligands from protein antigens (RIPPA). Liu R, Jiang W, Mellins ED. Cell Mol Immunol 18 1847-1860 (2021)