1ut6 Citations

Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.

J Med Chem 49 5491-500 (2006)
Related entries: 1acj, 1acl, 1h22, 1h23, 1odc, 2ckm, 2cmf

Cited: 85 times
EuropePMC logo PMID: 16942022

Abstract

The X-ray crystal structures were solved for complexes with Torpedo californica acetylcholinesterase of two bivalent tacrine derivative compounds in which the two tacrine rings were separated by 5- and 7-carbon spacers. The derivative with the 7-carbon spacer spans the length of the active-site gorge, making sandwich interactions with aromatic residues both in the catalytic anionic site (Trp84 and Phe330) at the bottom of the gorge and at the peripheral anionic site near its mouth (Tyr70 and Trp279). The derivative with the 5-carbon spacer interacts in a similar manner at the bottom of the gorge, but the shorter tether precludes a sandwich interaction at the peripheral anionic site. Although the upper tacrine group does interact with Trp279, it displaces the phenyl residue of Phe331, thus causing a major rearrangement in the Trp279-Ser291 loop. The ability of this inhibitor to induce large-scale structural changes in the active-site gorge of acetylcholinesterase has significant implications for structure-based drug design because such conformational changes in the target enzyme are difficult to predict and to model.

Articles - 1ut6 mentioned but not cited (7)

  1. Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Xu Y, Colletier JP, Weik M, Jiang H, Moult J, Silman I, Sussman JL. Biophys J 95 2500-2511 (2008)
  2. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL. Acta Pharmacol Sin 30 1694-1708 (2009)
  3. Structure-Activity Analysis and Molecular Docking Studies of Coumarins from Toddalia asiatica as Multifunctional Agents for Alzheimer's Disease. Takomthong P, Waiwut P, Yenjai C, Sripanidkulchai B, Reubroycharoen P, Lai R, Kamau P, Boonyarat C. Biomedicines 8 E107 (2020)
  4. Bioactive Polyketide and Diketopiperazine Derivatives from the Mangrove-Sediment-Derived Fungus Aspergillus sp. SCSIO41407. Cai J, Chen C, Tan Y, Chen W, Luo X, Luo L, Yang B, Liu Y, Zhou X. Molecules 26 4851 (2021)
  5. Multi-Target Actions of Acridones from Atalantia monophylla towards Alzheimer's Pathogenesis and Their Pharmacokinetic Properties. Takomthong P, Waiwut P, Yenjai C, Sombatsri A, Reubroycharoen P, Lei L, Lai R, Chaiwiwatrakul S, Boonyarat C. Pharmaceuticals (Basel) 14 888 (2021)
  6. Probing gorge dimensions of cholinesterases by freeze-frame click chemistry. Radić Z, Manetsch R, Fournier D, Sharpless KB, Taylor P. Chem Biol Interact 175 161-165 (2008)
  7. Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf. Peng B, Cai J, Xiao Z, Liu M, Li X, Yang B, Fang W, Huang YY, Chen C, Zhou X, Tao H. Mar Drugs 21 327 (2023)


Reviews citing this publication (9)

  1. Gates of enzymes. Gora A, Brezovsky J, Damborsky J. Chem Rev 113 5871-5923 (2013)
  2. Targeting acetylcholinesterase to treat neurodegeneration. Holzgrabe U, Kapková P, Alptüzün V, Scheiber J, Kugelmann E. Expert Opin Ther Targets 11 161-179 (2007)
  3. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K. Arch Toxicol 90 2831-2859 (2016)
  4. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Med Res Rev 37 1095-1139 (2017)
  5. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects. Khan MT. N Biotechnol 25 331-346 (2009)
  6. Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015-Present: Synthesis and Biological Activity. Eckroat TJ, Manross DL, Cowan SC. Int J Mol Sci 21 E5965 (2020)
  7. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Finnegan TJ, Gunawardana VWL, Badjić JD. Chemistry 27 13280-13305 (2021)
  8. An overview on the synthesis of carbohydrate-based molecules with biological activity related to neurodegenerative diseases. Lopes JPB, Silva L, Lüdtke DS. RSC Med Chem 12 2001-2015 (2021)
  9. [In-silico approaches for fragment-based drug design]. Takahashi O, Masuda Y, Muroya A, Furuya T. Yakugaku Zasshi 130 349-354 (2010)

Articles citing this publication (69)

  1. Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetylcholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site. Harel M, Sonoda LK, Silman I, Sussman JL, Rosenberry TL. J Am Chem Soc 130 7856-7861 (2008)
  2. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. Cheung J, Gary EN, Shiomi K, Rosenberry TL. ACS Med Chem Lett 4 1091-1096 (2013)
  3. Acetylcholinesterase inhibitors with photoswitchable inhibition of β-amyloid aggregation. Chen X, Wehle S, Kuzmanovic N, Merget B, Holzgrabe U, König B, Sotriffer CA, Decker M. ACS Chem Neurosci 5 377-389 (2014)
  4. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Huang L, Shi A, He F, Li X. Bioorg Med Chem 18 1244-1251 (2010)
  5. Design, synthesis and neuroprotective evaluation of novel tacrine-benzothiazole hybrids as multi-targeted compounds against Alzheimer's disease. Keri RS, Quintanova C, Marques SM, Esteves AR, Cardoso SM, Santos MA. Bioorg Med Chem 21 4559-4569 (2013)
  6. Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer's disease. Li RS, Wang XB, Hu XJ, Kong LY. Bioorg Med Chem Lett 23 2636-2641 (2013)
  7. Homo- and hetero-bivalent edrophonium-like ammonium salts as highly potent, dual binding site AChE inhibitors. Leonetti F, Catto M, Nicolotti O, Pisani L, Cappa A, Stefanachi A, Carotti A. Bioorg Med Chem 16 7450-7456 (2008)
  8. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine- aldoxime and -amidoxime hybrids as efficient uncharged reactivators of nerve agent-inhibited human acetylcholinesterase. Kliachyna M, Santoni G, Nussbaum V, Renou J, Sanson B, Colletier JP, Arboléas M, Loiodice M, Weik M, Jean L, Renard PY, Nachon F, Baati R. Eur J Med Chem 78 455-467 (2014)
  9. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Franklin MC, Rudolph MJ, Ginter C, Cassidy MS, Cheung J. Proteins 84 1246-1256 (2016)
  10. Induced-fit or preexisting equilibrium dynamics? Lessons from protein crystallography and MD simulations on acetylcholinesterase and implications for structure-based drug design. Xu Y, Colletier JP, Jiang H, Silman I, Sussman JL, Weik M. Protein Sci 17 601-605 (2008)
  11. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer's disease treatment--synthesis, biological evaluation and molecular modeling studies. Spilovska K, Korabecny J, Kral J, Horova A, Musilek K, Soukup O, Drtinova L, Gazova Z, Siposova K, Kuca K. Molecules 18 2397-2418 (2013)
  12. New Tacrine Hybrids with Natural-Based Cysteine Derivatives as Multitargeted Drugs for Potential Treatment of Alzheimer's Disease. Keri RS, Quintanova C, Chaves S, Silva DF, Cardoso SM, Santos MA. Chem Biol Drug Des 87 101-111 (2016)
  13. Towards a species-selective acetylcholinesterase inhibitor to control the mosquito vector of malaria, Anopheles gambiae. Carlier PR, Anderson TD, Wong DM, Hsu DC, Hartsel J, Ma M, Wong EA, Choudhury R, Lam PC, Totrov MM, Bloomquist JR. Chem Biol Interact 175 368-375 (2008)
  14. Structure of the G119S Mutant Acetylcholinesterase of the Malaria Vector Anopheles gambiae Reveals Basis of Insecticide Resistance. Cheung J, Mahmood A, Kalathur R, Liu L, Carlier PR. Structure 26 130-136.e2 (2018)
  15. Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease. Rossi M, Freschi M, de Camargo Nascente L, Salerno A, de Melo Viana Teixeira S, Nachon F, Chantegreil F, Soukup O, Prchal L, Malaguti M, Bergamini C, Bartolini M, Angeloni C, Hrelia S, Soares Romeiro LA, Bolognesi ML. J Med Chem 64 4972-4990 (2021)
  16. Discovery of New Classes of Compounds that Reactivate Acetylcholinesterase Inhibited by Organophosphates. Katz FS, Pecic S, Tran TH, Trakht I, Schneider L, Zhu Z, Ton-That L, Luzac M, Zlatanic V, Damera S, Macdonald J, Landry DW, Tong L, Stojanovic MN. Chembiochem 16 2205-2215 (2015)
  17. New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity. Sokolova AS, Yarovaya CO, Shernyukov CA, Pokrovsky CE, Pokrovsky CA, Lavrinenko VA, Zarubaev VV, Tretiak TS, Anfimov PM, Kiselev OI, Beklemishev AB, Salakhutdinov NF. Bioorg Med Chem 21 6690-6698 (2013)
  18. Molecular docking and receptor-specific 3D-QSAR studies of acetylcholinesterase inhibitors. Deb PK, Sharma A, Piplani P, Akkinepally RR. Mol Divers 16 803-823 (2012)
  19. Bis(7)-tacrine derivatives as multitarget-directed ligands: Focus on anticholinesterase and antiamyloid activities. Bolognesi ML, Bartolini M, Mancini F, Chiriano G, Ceccarini L, Rosini M, Milelli A, Tumiatti V, Andrisano V, Melchiorre C. ChemMedChem 5 1215-1220 (2010)
  20. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration. Zorbaz T, Braïki A, Maraković N, Renou J, de la Mora E, Maček Hrvat N, Katalinić M, Silman I, Sussman JL, Mercey G, Gomez C, Mougeot R, Pérez B, Baati R, Nachon F, Weik M, Jean L, Kovarik Z, Renard PY. Chemistry 24 9675-9691 (2018)
  21. Crystal structures of oxime-bound fenamiphos-acetylcholinesterases: reactivation involving flipping of the His447 ring to form a reactive Glu334-His447-oxime triad. Hörnberg A, Artursson E, Wärme R, Pang YP, Ekström F. Biochem Pharmacol 79 507-515 (2010)
  22. Protein recognition by bivalent, 'turn-on' fluorescent molecular probes. Unger-Angel L, Rout B, Ilani T, Eisenstein M, Motiei L, Margulies D. Chem Sci 6 5419-5425 (2015)
  23. 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution. Szymański P, Lázničková A, Lázniček M, Bajda M, Malawska B, Markowicz M, Mikiciuk-Olasik E. Int J Mol Sci 13 10067-10090 (2012)
  24. Discovery of a novel acetylcholinesterase inhibitor by structure-based virtual screening techniques. Chen Y, Fang L, Peng S, Liao H, Lehmann J, Zhang Y. Bioorg Med Chem Lett 22 3181-3187 (2012)
  25. Synthesis and structure-activity relationship of Huprine derivatives as human acetylcholinesterase inhibitors. Ronco C, Ronco C, Sorin G, Nachon F, Foucault R, Jean L, Romieu A, Renard PY. Bioorg Med Chem 17 4523-4536 (2009)
  26. The bivalent ligand approach as a tool for improving the in vitro anti-Alzheimer multitarget profile of dimebon. Rosini M, Simoni E, Bartolini M, Soriano E, Marco-Contelles J, Andrisano V, Monti B, Windisch M, Hutter-Paier B, McClymont DW, Mellor IR, Bolognesi ML. ChemMedChem 8 1276-1281 (2013)
  27. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs. Lee S, Barron MG. J Comput Aided Mol Des 30 347-363 (2016)
  28. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches. Lee S, Barron MG. Toxicol Sci 148 60-70 (2015)
  29. Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Svobodova B, Mezeiova E, Hepnarova V, Hrabinova M, Muckova L, Kobrlova T, Jun D, Soukup O, Jimeno ML, Marco-Contelles J, Korabecny J. Biomolecules 9 E379 (2019)
  30. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Lv W, Xue Y. Eur J Med Chem 45 1167-1172 (2010)
  31. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer's disease. Scipioni M, Kay G, Megson IL, Kong Thoo Lin P. Medchemcomm 10 764-777 (2019)
  32. Anti-Cholinesterase Combination Drug Therapy as a Potential Treatment for Alzheimer's Disease. Amat-Ur-Rasool H, Ahmed M, Hasnain S, Carter WG. Brain Sci 11 184 (2021)
  33. Flexibility versus "rigidity" of the functional architecture of AChE active center. Shafferman A, Barak D, Stein D, Kronman C, Velan B, Greig NH, Ordentlich A. Chem Biol Interact 175 166-172 (2008)
  34. Synthesis and characterization of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for treatment of Alzheimer's disease. Liu J, Qiu J, Wang M, Wang L, Su L, Gao J, Gu Q, Xu J, Huang SL, Gu LQ, Huang ZS, Li D. Biochim Biophys Acta 1840 2886-2903 (2014)
  35. Tacrine-deferiprone hybrids as multi-target-directed metal chelators against Alzheimer's disease: a two-in-one drug. Chand K, Rajeshwari, Candeias E, Cardoso SM, Chaves S, Santos MA. Metallomics 10 1460-1475 (2018)
  36. Bis(9)-(-)-nor-meptazinol as a novel dual-binding AChEI potently ameliorates scopolamine-induced cognitive deficits in mice. Liu T, Xia Z, Zhang WW, Xu JR, Ge XX, Li J, Cui Y, Qiu ZB, Xu J, Xie Q, Wang H, Chen HZ. Pharmacol Biochem Behav 104 138-143 (2013)
  37. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease. Zhou A, Hu J, Wang L, Zhong G, Pan J, Wu Z, Hui A. J Mol Model 21 277 (2015)
  38. Electronic structure and PCA analysis of covalent and non-covalent acetylcholinesterase inhibitors. Nascimento EC, Martins JB. J Mol Model 17 1371-1379 (2011)
  39. Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. Codony S, Pont C, Griñán-Ferré C, Di Pede-Mattatelli A, Calvó-Tusell C, Feixas F, Osuna S, Jarné-Ferrer J, Naldi M, Bartolini M, Loza MI, Brea J, Pérez B, Bartra C, Sanfeliu C, Juárez-Jiménez J, Morisseau C, Hammock BD, Pallàs M, Vázquez S, Muñoz-Torrero D. J Med Chem 65 4909-4925 (2022)
  40. Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer's disease. Eslami M, Hashemianzadeh SM, Bagherzadeh K, Seyed Sajadi SA. J Biomol Struct Dyn 34 855-869 (2016)
  41. Synthesis, biological evaluation and molecular modeling of aloe-emodin derivatives as new acetylcholinesterase inhibitors. Shi DH, Huang W, Li C, Wang LT, Wang SF. Bioorg Med Chem 21 1064-1073 (2013)
  42. Applications of integrated data mining methods to exploring natural product space for acetylcholinesterase inhibitors. Schuster D, Kern L, Hristozov DP, Terfloth L, Bienfait B, Laggner C, Kirchmair J, Grienke U, Wolber G, Langer T, Stuppner H, Gasteiger J, Rollinger JM. Comb Chem High Throughput Screen 13 54-66 (2010)
  43. Development of coumarin-benzofuran hybrids as versatile multitargeted compounds for the treatment of Alzheimer's Disease. Hiremathad A, Chand K, Keri RS. Chem Biol Drug Des 92 1497-1503 (2018)
  44. Investigation of the role of linker moieties in bifunctional tacrine hybrids. Eckroat TJ, Green KD, Reed RA, Bornstein JJ, Garneau-Tsodikova S. Bioorg Med Chem 21 3614-3623 (2013)
  45. New tacrine-acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer's disease. Chufarova N, Czarnecka K, Skibiński R, Cuchra M, Majsterek I, Szymański P. Arch Pharm (Weinheim) 351 e1800050 (2018)
  46. Total Synthesis of Pulmonarin B and Design of Brominated Phenylacetic Acid/Tacrine Hybrids: Marine Pharmacophore Inspired Discovery of New ChE and Aβ Aggregation Inhibitors. Cheng ZQ, Song JL, Zhu K, Zhang J, Jiang CS, Zhang H. Mar Drugs 16 E293 (2018)
  47. Exploring different virtual screening strategies for acetylcholinesterase inhibitors. Mishra N, Basu A. Biomed Res Int 2013 236850 (2013)
  48. 2-(2-indolyl-)-4(3H)-quinazolines derivates as new inhibitors of AChE: design, synthesis, biological evaluation and molecular modelling. Li Z, Wang B, Hou JQ, Huang SL, Ou TM, Tan JH, An LK, Li D, Gu LQ, Huang ZS. J Enzyme Inhib Med Chem 28 583-592 (2013)
  49. Identification of potential bivalent inhibitors from natural compounds for acetylcholinesterase through in silico screening using multiple pharmacophores. Lakshmi V, Kannan VS, Boopathy R. J Mol Graph Model 40 72-79 (2013)
  50. In Silico Design of Dual-Binding Site Anti-Cholinesterase Phytochemical Heterodimers as Treatment Options for Alzheimer's Disease. Amat-Ur-Rasool H, Ahmed M, Hasnain S, Ahmed A, Carter WG. Curr Issues Mol Biol 44 152-175 (2021)
  51. Novel bipharmacophoric inhibitors of the cholinesterases with affinity to the muscarinic receptors M1 and M2. Messerer R, Dallanoce C, Matera C, Wehle S, Flammini L, Chirinda B, Bock A, Irmen M, Tränkle C, Barocelli E, Decker M, Sotriffer C, De Amici M, Holzgrabe U. Medchemcomm 8 1346-1359 (2017)
  52. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Skibiński R, Czarnecka K, Girek M, Bilichowski I, Chufarova N, Mikiciuk-Olasik E, Szymański P. Chem Biol Drug Des 91 505-518 (2018)
  53. Synthesis of new lophine-carbohydrate hybrids as cholinesterase inhibitors: cytotoxicity evaluation and molecular modeling. Lopes JPB, Silva L, Ceschi MA, Lüdtke DS, Zimmer AR, Ruaro TC, Dantas RF, de Salles CMC, Silva-Jr FP, Senger MR, Barbosa G, Lima LM, Guedes IA, Dardenne LE. Medchemcomm 10 2089-2101 (2019)
  54. Cyclic Peptides from the Soft Coral-Derived Fungus Aspergillus sclerotiorum SCSIO 41031. Long J, Chen Y, Chen W, Wang J, Zhou X, Yang B, Liu Y. Mar Drugs 19 701 (2021)
  55. Synthesis and Evaluation of Novel Ligustrazine Derivatives as Multi-Targeted Inhibitors for the Treatment of Alzheimer's Disease. Wu W, Liang X, Xie G, Chen L, Liu W, Luo G, Zhang P, Yu L, Zheng X, Ji H, Zhang C, Yi W. Molecules 23 E2540 (2018)
  56. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. de Aquino RA, Modolo LV, Alves RB, de Fátima Â. Org Biomol Chem 11 8395-8409 (2013)
  57. A conformational change in the peripheral anionic site of Torpedo californica acetylcholinesterase induced by a bis-imidazolium oxime. Legler PM, Soojhawon I, Millard CB. Acta Crystallogr D Biol Crystallogr 71 1788-1798 (2015)
  58. Clicked tacrine conjugates as acetylcholinesterase and β-amyloid directed compounds. Ouberai M, Brannstrom K, Vestling M, Olofsson A, Dumy P, Chierici S, Garcia J. Org Biomol Chem 9 1140-1147 (2011)
  59. Design, Synthesis and Biological Evaluation of Novel Triazole N-acylhydrazone Hybrids for Alzheimer's Disease. de Freitas Silva M, Tardelli Lima E, Pruccoli L, Castro NG, Guimarães MJR, M R da Silva F, Fonseca Nadur N, de Azevedo LL, Kümmerle AE, Guedes IA, Dardenne LE, Gontijo VS, Tarozzi A, Viegas C. Molecules 25 E3165 (2020)
  60. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase. Tong F, Islam RM, Carlier PR, Ma M, Ekström F, Bloomquist JR. Pestic Biochem Physiol 106 79-84 (2013)
  61. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer's Disease. Komatović K, Matošević A, Terzić-Jovanović N, Žunec S, Šegan S, Zlatović M, Maraković N, Bosak A, Opsenica DM. Pharmaceutics 14 1305 (2022)
  62. Novel tacrine analogs as potential cholinesterase inhibitors in Alzheimer's disease. El-Malah A, Gedawy EM, Kassab AE, Salam RM. Arch Pharm (Weinheim) 347 96-103 (2014)
  63. Design, synthesis, and biological evaluation of new thalidomide-donepezil hybrids as neuroprotective agents targeting cholinesterases and neuroinflammation. Cristancho Ortiz CJ, de Freitas Silva M, Pruccoli L, Fonseca Nadur N, de Azevedo LL, Kümmerle AE, Guedes IA, Dardenne LE, Leomil Coelho LF, Guimarães MJ, da Silva FMR, Castro N, Gontijo VS, Rojas VCT, de Oliveira MK, Vilela FC, Giusti-Paiva A, Barbosa G, Lima LM, Pinheiro GB, Veras LG, Mortari MR, Tarozzi A, Viegas C. RSC Med Chem 13 568-584 (2022)
  64. Protective effects of a piperazine derivative [N-{4-[4-(2-methoxy-phenyl)-piperazin-1-yl]-phenyl} carbamic acid ethyl ester] against aluminium-induced neurotoxicity: insights from in silico and in vivo studies. Meena P, Manral A, Saini V, Tiwari M. Neurotox Res 27 314-327 (2015)
  65. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. Santos SN, Alves de Souza G, Pereira TM, Franco DP, de Nigris Del Cistia C, Sant'Anna CMR, Lacerda RB, Kümmerle AE. RSC Adv 9 20356-20369 (2019)
  66. Structural basis of femtomolar inhibitors for acetylcholinesterase subtype selectivity: insights from computational simulations. Zhu XL, Yu NX, Hao GF, Yang WC, Yang GF. J Mol Graph Model 41 55-60 (2013)
  67. Use of connectivity index and simple topological parameters for estimating the inhibition potency of acetylcholinesterase. Miličević A, Šinko G. Saudi Pharm J 30 369-376 (2022)
  68. Zn(II)/pyridyloxime complexes as potential reactivators of OP-inhibited acetylcholinesterase: in vitro and docking simulation studies. Konidaris KF, Dalkas GA, Katsoulakou E, Pairas G, Raptopoulou CP, Lamari FN, Spyroulias GA, Manessi-Zoupa E. J Inorg Biochem 134 12-19 (2014)
  69. Neurotoxicology of bis(n)-tacrines on Blattella germanica and Drosophila melanogaster acetylcholinesterase. Mutunga JM, Boina DR, Anderson TD, Bloomquist JR, Carlier PR, Wong DM, Lam PC, Totrov MM. Arch Insect Biochem Physiol 83 180-194 (2013)


Related citations provided by authors (5)

  1. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.. Wong DM, Greenblatt HM, Dvir H, Carlier PR, Han YF, Pang YP, Silman I, Sussman JL J Am Chem Soc 125 363-73 (2003)
  2. Heterodimeric tacrine-based acetylcholinesterase inhibitors: investigating ligand-peripheral site interactions.. Carlier PR, Chow ES, Han Y, Liu J, El Yazal J, Pang YP J Med Chem 42 4225-31 (1999)
  3. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies.. Pang YP, Kozikowski AP J Comput Aided Mol Des 8 669-81 (1994)
  4. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase.. Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL Proc Natl Acad Sci U S A 90 9031-5 (1993)
  5. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein.. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I Science 253 872-9 (1991)