1u45 Citations

Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase.

Nature 431 217-21 (2004)
Related entries: 1u47, 1u48, 1u49, 1u4b

Cited: 192 times
EuropePMC logo PMID: 15322558

Abstract

Aerobic respiration generates reactive oxygen species that can damage guanine residues and lead to the production of 8-oxoguanine (8oxoG), the major mutagenic oxidative lesion in the genome. Oxidative damage is implicated in ageing and cancer, and its prevalence presents a constant challenge to DNA polymerases that ensure accurate transmission of genomic information. When these polymerases encounter 8oxoG, they frequently catalyse misincorporation of adenine in preference to accurate incorporation of cytosine. This results in the propagation of G to T transversions, which are commonly observed somatic mutations associated with human cancers. Here, we present sequential snapshots of a high-fidelity DNA polymerase during both accurate and mutagenic replication of 8oxoG. Comparison of these crystal structures reveals that 8oxoG induces an inversion of the mismatch recognition mechanisms that normally proofread DNA, such that the 8oxoG.adenine mismatch mimics a cognate base pair whereas the 8oxoG.cytosine base pair behaves as a mismatch. These studies reveal a fundamental mechanism of error-prone replication and show how 8oxoG, and DNA lesions in general, can form mismatches that evade polymerase error-detection mechanisms, potentially leading to the stable incorporation of lethal mutations.

Articles - 1u45 mentioned but not cited (1)

  1. Chemical discrimination between dC and 5MedC via their hydroxylamine adducts. Münzel M, Lercher L, Müller M, Carell T. Nucleic Acids Res 38 e192 (2010)


Reviews citing this publication (42)

  1. Base-excision repair of oxidative DNA damage. David SS, O'Shea VL, Kundu S. Nature 447 941-950 (2007)
  2. Base excision repair and cancer. Wallace SS, Murphy DL, Sweasy JB. Cancer Lett 327 73-89 (2012)
  3. Inflammation-induced DNA damage, mutations and cancer. Kay J, Thadhani E, Samson L, Engelward B. DNA Repair (Amst) 83 102673 (2019)
  4. Recent advances in the structural mechanisms of DNA glycosylases. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Biochim Biophys Acta 1834 247-271 (2013)
  5. DNA repair and genome maintenance in Bacillus subtilis. Lenhart JS, Schroeder JW, Walsh BW, Simmons LA. Microbiol Mol Biol Rev 76 530-564 (2012)
  6. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol Rev 33 1044-1078 (2009)
  7. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. Hum Mutat 32 1075-1099 (2011)
  8. Transcriptional mutagenesis: causes and involvement in tumour development. Brégeon D, Doetsch PW. Nat Rev Cancer 11 218-227 (2011)
  9. DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Beard WA, Batra VK, Wilson SH. Mutat Res 703 18-23 (2010)
  10. How do cells cope with RNA damage and its consequences? Yan LL, Zaher HS. J Biol Chem 294 15158-15171 (2019)
  11. Variations on a theme: eukaryotic Y-family DNA polymerases. Washington MT, Carlson KD, Freudenthal BD, Pryor JM. Biochim Biophys Acta 1804 1113-1123 (2010)
  12. Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Broyde S, Wang L, Rechkoblit O, Geacintov NE, Patel DJ. Trends Biochem Sci 33 209-219 (2008)
  13. Quality control of chemically damaged RNA. Simms CL, Zaher HS. Cell Mol Life Sci 73 3639-3653 (2016)
  14. Redox environment, free radical, and oxidative DNA damage. Storr SJ, Woolston CM, Zhang Y, Martin SG. Antioxid Redox Signal 18 2399-2408 (2013)
  15. The Toolbox for Modified Aptamers. Lapa SA, Chudinov AV, Timofeev EN. Mol Biotechnol 58 79-92 (2016)
  16. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Fasnacht M, Polacek N. Front Mol Biosci 8 671037 (2021)
  17. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Zahn KE, Wallace SS, Doublié S. Curr Opin Struct Biol 21 358-369 (2011)
  18. Pathways controlling dNTP pools to maintain genome stability. Rudd SG, Valerie NCK, Helleday T. DNA Repair (Amst) 44 193-204 (2016)
  19. Removal of oxidatively generated DNA damage by overlapping repair pathways. Shafirovich V, Geacintov NE. Free Radic Biol Med 107 53-61 (2017)
  20. 8-oxoguanine DNA glycosylases: one lesion, three subfamilies. Faucher F, Doublié S, Jia Z. Int J Mol Sci 13 6711-6729 (2012)
  21. Chemistry and structural biology of DNA damage and biological consequences. Stone MP, Huang H, Brown KL, Shanmugam G. Chem Biodivers 8 1571-1615 (2011)
  22. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer. Berdis AJ. Front Mol Biosci 4 78 (2017)
  23. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Vlcek D, Sevcovicová A, Sviezená B, Gálová E, Miadoková E. Curr Genet 53 1-22 (2008)
  24. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Genes (Basel) 8 E190 (2017)
  25. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. Gorini F, Scala G, Cooke MS, Majello B, Amente S. DNA Repair (Amst) 97 103027 (2021)
  26. Crystal structure analysis of DNA lesion repair and tolerance mechanisms. Schneider S, Schorr S, Carell T. Curr Opin Struct Biol 19 87-95 (2009)
  27. A Comprehensive View of Translesion Synthesis in Escherichia coli. Fujii S, Fuchs RP. Microbiol Mol Biol Rev 84 e00002-20 (2020)
  28. Chemical synthesis of oligonucleotides containing damaged bases for biological studies. Iwai S. Nucleosides Nucleotides Nucleic Acids 25 561-582 (2006)
  29. Systemic signalling and local effectors in developmental stability, body symmetry, and size. Juarez-Carreño S, Morante J, Dominguez M. Cell Stress 2 340-361 (2018)
  30. Ubiquitylation of DNA polymerase λ. Markkanen E, van Loon B, Ferrari E, Hübscher U. FEBS Lett 585 2826-2830 (2011)
  31. Mutators and hypermutability in bacteria: the Escherichia coli paradigm. Jayaraman R. J Genet 88 379-391 (2009)
  32. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Yin Y, Chen F. Acta Pharm Sin B 10 2259-2271 (2020)
  33. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Hahm JY, Park J, Jang ES, Chi SW. Exp Mol Med 54 1626-1642 (2022)
  34. DNA Repair in Staphylococcus aureus. Ha KP, Edwards AM. Microbiol Mol Biol Rev 85 e0009121 (2021)
  35. History of DNA polymerase β X-ray crystallography. Whitaker AM, Freudenthal BD. DNA Repair (Amst) 93 102928 (2020)
  36. Significance of Singlet Oxygen Molecule in Pathologies. Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Int J Mol Sci 24 2739 (2023)
  37. The origin of human mutation in light of genomic data. Seplyarskiy VB, Sunyaev S. Nat Rev Genet 22 672-686 (2021)
  38. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Franco MK, Koutmou KS. Biophys Chem 285 106780 (2022)
  39. Lost in the Crowd: How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome? D'Augustin O, Huet S, Campalans A, Radicella JP. Int J Mol Sci 21 E8360 (2020)
  40. Structural Insights into the Specificity of 8-Oxo-7,8-dihydro-2'-deoxyguanosine Bypass by Family X DNA Polymerases. Kaminski AM, Kunkel TA, Pedersen LC, Bebenek K. Genes (Basel) 13 15 (2021)
  41. Bst polymerase - a humble relative of Taq polymerase. Oscorbin I, Filipenko M. Comput Struct Biotechnol J 21 4519-4535 (2023)
  42. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Andrés CMC, Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Int J Mol Sci 24 15240 (2023)

Articles citing this publication (149)

  1. Direct detection of DNA methylation during single-molecule, real-time sequencing. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW. Nat Methods 7 461-465 (2010)
  2. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Sekhar A, Kay LE. Proc Natl Acad Sci U S A 110 12867-12874 (2013)
  3. Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis. Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL. Mol Cell 75 117-130.e6 (2019)
  4. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. Rechkoblit O, Malinina L, Cheng Y, Kuryavyi V, Broyde S, Geacintov NE, Patel DJ. PLoS Biol 4 e11 (2006)
  5. Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure 13 1569-1577 (2005)
  6. Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme. Qi Y, Spong MC, Nam K, Banerjee A, Banerjee A, Jiralerspong S, Karplus M, Verdine GL. Nature 462 762-766 (2009)
  7. The structural basis for the mutagenicity of O(6)-methyl-guanine lesions. Warren JJ, Forsberg LJ, Beese LS. Proc Natl Acad Sci U S A 103 19701-19706 (2006)
  8. Oxidative guanine base damage regulates human telomerase activity. Fouquerel E, Lormand J, Bose A, Lee HT, Kim GS, Li J, Sobol RW, Freudenthal BD, Myong S, Opresko PL. Nat Struct Mol Biol 23 1092-1100 (2016)
  9. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. McCulloch SD, Kokoska RJ, Garg P, Burgers PM, Kunkel TA. Nucleic Acids Res 37 2830-2840 (2009)
  10. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. Kakoki M, Kizer CM, Yi X, Takahashi N, Kim HS, Bagnell CR, Edgell CJ, Maeda N, Jennette JC, Smithies O. J Clin Invest 116 1302-1309 (2006)
  11. The DNA polymerase gamma Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine. Graziewicz MA, Bienstock RJ, Copeland WC. Hum Mol Genet 16 2729-2739 (2007)
  12. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. Ong JL, Loakes D, Jaroslawski S, Too K, Holliger P. J Mol Biol 361 537-550 (2006)
  13. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct. Irimia A, Eoff RL, Guengerich FP, Egli M. J Biol Chem 284 22467-22480 (2009)
  14. DNA damage alters DNA polymerase delta to a form that exhibits increased discrimination against modified template bases and mismatched primers. Meng X, Zhou Y, Zhang S, Lee EY, Frick DN, Lee MY. Nucleic Acids Res 37 647-657 (2009)
  15. Replication through an abasic DNA lesion: structural basis for adenine selectivity. Obeid S, Blatter N, Kranaster R, Schnur A, Diederichs K, Welte W, Marx A. EMBO J 29 1738-1747 (2010)
  16. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Batra VK, Shock DD, Beard WA, McKenna CE, Wilson SH. Proc Natl Acad Sci U S A 109 113-118 (2012)
  17. N7 methylation alters hydrogen-bonding patterns of guanine in duplex DNA. Kou Y, Koag MC, Lee S. J Am Chem Soc 137 14067-14070 (2015)
  18. 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Kitsera N, Stathis D, Lühnsdorf B, Müller H, Carell T, Epe B, Khobta A. Nucleic Acids Res 39 5926-5934 (2011)
  19. Multiple functions of DNA polymerases. Garcia-Diaz M, Bebenek K. CRC Crit Rev Plant Sci 26 105-122 (2007)
  20. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta. Carlson KD, Washington MT. Mol Cell Biol 25 2169-2176 (2005)
  21. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Sakai A, Nakanishi M, Yoshiyama K, Maki H. Genes Cells 11 767-778 (2006)
  22. Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major. Passos-Silva DG, Rajão MA, Nascimento de Aguiar PH, Vieira-da-Rocha JP, Machado CR, Furtado C. J Nucleic Acids 2010 840768 (2010)
  23. Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site. Batra VK, Beard WA, Hou EW, Pedersen LC, Prasad R, Wilson SH. Nat Struct Mol Biol 17 889-890 (2010)
  24. The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis. Golosov AA, Warren JJ, Beese LS, Karplus M. Structure 18 83-93 (2010)
  25. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. Damsma GE, Cramer P. J Biol Chem 284 31658-31663 (2009)
  26. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. Radom CT, Banerjee A, Banerjee A, Verdine GL. J Biol Chem 282 9182-9194 (2007)
  27. The 3'->5' exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Ishchenko AA, Yang X, Ramotar D, Saparbaev M. Mol Cell Biol 25 6380-6390 (2005)
  28. MUTYH DNA glycosylase: the rationale for removing undamaged bases from the DNA. Markkanen E, Dorn J, Hübscher U. Front Genet 4 18 (2013)
  29. Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases lambda and beta. Brown JA, Duym WW, Fowler JD, Suo Z. J Mol Biol 367 1258-1269 (2007)
  30. Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion. Vasquez-Del Carpio R, Silverstein TD, Lone S, Swan MK, Choudhury JR, Johnson RE, Prakash S, Prakash L, Aggarwal AK. PLoS One 4 e5766 (2009)
  31. Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the Brown Norway rat. Paul C, Nagano M, Robaire B. Biol Reprod 85 1269-1278 (2011)
  32. Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides. Wang W, Wu EY, Hellinga HW, Beese LS. J Biol Chem 287 28215-28226 (2012)
  33. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota. Kirouac KN, Ling H. Proc Natl Acad Sci U S A 108 3210-3215 (2011)
  34. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Allgayer J, Kitsera N, Bartelt S, Epe B, Khobta A. Nucleic Acids Res 44 7267-7280 (2016)
  35. A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex. Banerjee A, Banerjee A, Verdine GL. Proc Natl Acad Sci U S A 103 15020-15025 (2006)
  36. A switch between DNA polymerases δ and λ promotes error-free bypass of 8-oxo-G lesions. Markkanen E, Castrec B, Villani G, Hübscher U. Proc Natl Acad Sci U S A 109 20401-20406 (2012)
  37. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Arthur CR, Morton SL, Dunham LD, Keeney PM, Bennett JP. Mol Neurodegener 4 37 (2009)
  38. Remarkable sensitivity to DNA base shape in the DNA polymerase active site. Sintim HO, Kool ET. Angew Chem Int Ed Engl 45 1974-1979 (2006)
  39. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Freudenthal BD, Beard WA, Wilson SH. Nucleic Acids Res 41 1848-1858 (2013)
  40. Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity. Yamaguchi Y, Mura T, Chanarat S, Okamoto S, Handa H. Genes Cells 12 863-875 (2007)
  41. Microscopic mechanism of DNA damage searching by hOGG1. Rowland MM, Schonhoft JD, McKibbin PL, David SS, Stivers JT. Nucleic Acids Res 42 9295-9303 (2014)
  42. A lysine residue in the fingers subdomain of T7 DNA polymerase modulates the miscoding potential of 8-oxo-7,8-dihydroguanosine. Brieba LG, Kokoska RJ, Bebenek K, Kunkel TA, Ellenberger T. Structure 13 1653-1659 (2005)
  43. Trypanosoma cruzi Needs a Signal Provided by Reactive Oxygen Species to Infect Macrophages. Goes GR, Rocha PS, Diniz AR, Aguiar PH, Machado CR, Vieira LQ. PLoS Negl Trop Dis 10 e0004555 (2016)
  44. Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin. Aller P, Ye Y, Wallace SS, Burrows CJ, Doublié S. Biochemistry 49 2502-2509 (2010)
  45. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad. Cheong VV, Heddi B, Lech CJ, Phan AT. Nucleic Acids Res 43 10506-10514 (2015)
  46. Hidden in plain sight: subtle effects of the 8-oxoguanine lesion on the structure, dynamics, and thermodynamics of a 15-base pair oligodeoxynucleotide duplex. Crenshaw CM, Wade JE, Arthanari H, Frueh D, Lane BF, Núñez ME. Biochemistry 50 8463-8477 (2011)
  47. Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate. Batra VK, Beard WA, Shock DD, Pedersen LC, Wilson SH. Structure 13 1225-1233 (2005)
  48. Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Silverstein TD, Jain R, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure 18 1463-1470 (2010)
  49. Specific binding of PCBP1 to heavily oxidized RNA to induce cell death. Ishii T, Hayakawa H, Igawa T, Sekiguchi T, Sekiguchi M. Proc Natl Acad Sci U S A 115 6715-6720 (2018)
  50. Unexpected non-Hoogsteen-based mutagenicity mechanism of FaPy-DNA lesions. Gehrke TH, Lischke U, Gasteiger KL, Schneider S, Arnold S, Müller HC, Stephenson DS, Zipse H, Carell T. Nat Chem Biol 9 455-461 (2013)
  51. Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases. Rechkoblit O, Malinina L, Cheng Y, Geacintov NE, Broyde S, Patel DJ. Structure 17 725-736 (2009)
  52. Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence. Allgayer J, Kitsera N, von der Lippen C, Epe B, Khobta A. Nucleic Acids Res 41 8559-8571 (2013)
  53. Distinct energetics and closing pathways for DNA polymerase beta with 8-oxoG template and different incoming nucleotides. Wang Y, Schlick T. BMC Struct Biol 7 7 (2007)
  54. A quantitative model of error accumulation during PCR amplification. Pienaar E, Theron M, Nelson M, Viljoen HJ. Comput Biol Chem 30 102-111 (2006)
  55. Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta. Wang Y, Reddy S, Beard WA, Wilson SH, Schlick T. Biophys J 92 3063-3070 (2007)
  56. Transition state in DNA polymerase β catalysis: rate-limiting chemistry altered by base-pair configuration. Oertell K, Chamberlain BT, Wu Y, Ferri E, Kashemirov BA, Beard WA, Wilson SH, McKenna CE, Goodman MF. Biochemistry 53 1842-1848 (2014)
  57. Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage. Castillo P, Bogliolo M, Surralles J. DNA Repair (Amst) 10 518-525 (2011)
  58. Efficiency of the Polymerase Chain Reaction. Booth CS, Pienaar E, Termaat JR, Whitney SE, Louw TM, Viljoen HJ. Chem Eng Sci 65 4996-5006 (2010)
  59. In vitro ligation of oligodeoxynucleotides containing C8-oxidized purine lesions using bacteriophage T4 DNA ligase. Zhao X, Muller JG, Halasyam M, David SS, Burrows CJ. Biochemistry 46 3734-3744 (2007)
  60. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine. Cheong VV, Lech CJ, Heddi B, Phan AT. Angew Chem Int Ed Engl 55 160-163 (2016)
  61. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Mercer JR, Gray K, Figg N, Kumar S, Bennett MR. Arterioscler Thromb Vasc Biol 32 2461-2467 (2012)
  62. A fidelity mechanism in DNA polymerase lambda promotes error-free bypass of 8-oxo-dG. Burak MJ, Guja KE, Hambardjieva E, Derkunt B, Garcia-Diaz M. EMBO J 35 2045-2059 (2016)
  63. Capturing a mammalian DNA polymerase extending from an oxidized nucleotide. Whitaker AM, Smith MR, Schaich MA, Freudenthal BD. Nucleic Acids Res 45 6934-6944 (2017)
  64. Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study. Rangel-López A, Paniagua-Medina ME, Urbán-Reyes M, Cortes-Arredondo M, Alvarez-Aguilar C, López-Meza J, Ochoa-Zarzosa A, Lindholm B, García-López E, Paniagua JR. Mutagenesis 28 219-225 (2013)
  65. Interaction of human DNA polymerase alpha and DNA polymerase I from Bacillus stearothermophilus with hypoxanthine and 8-oxoguanine nucleotides. Patro JN, Urban M, Kuchta RD. Biochemistry 48 8271-8278 (2009)
  66. Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome. Thomas EN, Simms CL, Keedy HE, Zaher HS. Nucleic Acids Res 47 9857-9870 (2019)
  67. Reactive Oxygen Species Play an Important Role in the Bactericidal Activity of Quinolone Antibiotics. Kottur J, Nair DT. Angew Chem Int Ed Engl 55 2397-2400 (2016)
  68. A highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7,8-dihydro-2'-deoxyguanosine. de Vega M, Salas M. Nucleic Acids Res 35 5096-5107 (2007)
  69. Error-Prone Translesion DNA Synthesis by Escherichia coli DNA Polymerase IV (DinB) on Templates Containing 1,2-dihydro-2-oxoadenine. Hori M, Yonekura S, Nohmi T, Gruz P, Sugiyama H, Yonei S, Zhang-Akiyama QM. J Nucleic Acids 2010 807579 (2010)
  70. Mechanisms of telomerase inhibition by oxidized and therapeutic dNTPs. Sanford SL, Welfer GA, Freudenthal BD, Opresko PL. Nat Commun 11 5288 (2020)
  71. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Koag MC, Jung H, Lee S. Nucleic Acids Res 48 5119-5134 (2020)
  72. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. Koag MC, Jung H, Lee S. J Am Chem Soc 141 4584-4596 (2019)
  73. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Alenko A, Fleming AM, Burrows CJ. Biochemistry 56 5053-5064 (2017)
  74. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP to be inserted opposite 7,8-dihydro-8-oxoguanine . Beckman J, Wang M, Blaha G, Wang J, Konigsberg WH. Biochemistry 49 4116-4125 (2010)
  75. The miscoding potential of 5-hydroxycytosine arises due to template instability in the replicative polymerase active site. Zahn KE, Averill A, Wallace SS, Doublié S. Biochemistry 50 10350-10358 (2011)
  76. Two-tiered enforcement of high-fidelity DNA ligation. Tumbale PP, Jurkiw TJ, Schellenberg MJ, Riccio AA, O'Brien PJ, Williams RS. Nat Commun 10 5431 (2019)
  77. Inactivation of the DNA repair genes mutS, mutL or the anti-recombination gene mutS2 leads to activation of vitamin B1 biosynthesis genes. Fukui K, Wakamatsu T, Agari Y, Masui R, Kuramitsu S. PLoS One 6 e19053 (2011)
  78. Promutagenicity of 8-Chloroguanine, A Major Inflammation-Induced Halogenated DNA Lesion. Kou Y, Koag MC, Lee S. Molecules 24 E3507 (2019)
  79. A new proofreading mechanism for lesion bypass by DNA polymerase-λ. Crespan E, Maga G, Hübscher U. EMBO Rep 13 68-74 (2011)
  80. KsgA, a 16S rRNA adenine methyltransferase, has a novel DNA glycosylase/AP lyase activity to prevent mutations in Escherichia coli. Zhang-Akiyama QM, Morinaga H, Kikuchi M, Yonekura S, Sugiyama H, Yamamoto K, Yonei S. Nucleic Acids Res 37 2116-2125 (2009)
  81. Redesigned tetrads with altered hydrogen bonding patterns enable programming of quadruplex topologies. Benz A, Hartig JS. Chem Commun (Camb) 4010-4012 (2008)
  82. Interaction between RECQL4 and OGG1 promotes repair of oxidative base lesion 8-oxoG and is regulated by SIRT1 deacetylase. Duan S, Han X, Akbari M, Croteau DL, Rasmussen LJ, Bohr VA. Nucleic Acids Res 48 6530-6546 (2020)
  83. Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda. Burak MJ, Guja KE, Garcia-Diaz M. Nucleic Acids Res 43 8089-8099 (2015)
  84. Recombinant Schizosaccharomyces pombe Nth1 protein exhibits DNA glycosylase activities for 8-oxo-7,8-dihydroguanine and thymine residues oxidized in the methyl group. Yonekura S, Nakamura N, Doi T, Sugiyama H, Yamamoto K, Yonei S, Zhang QM. J Radiat Res 48 417-424 (2007)
  85. The Shizosaccharomyces pombe homolog (SpMYH) of the Escherichia coli MutY is required for removal of guanine from 8-oxoguanine/guanine mispairs to prevent G:C to C:G transversions. Doi T, Yonekura S, Tano K, Yasuhira S, Yonei S, Zhang QM. J Radiat Res 46 205-214 (2005)
  86. The effect of the 2-amino group of 7,8-dihydro-8-oxo-2'-deoxyguanosine on translesion synthesis and duplex stability. Oka N, Greenberg MM. Nucleic Acids Res 33 1637-1643 (2005)
  87. Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase. Xu P, Oum L, Lee YC, Geacintov NE, Broyde S. Biochemistry 48 4677-4690 (2009)
  88. Common mitochondrial DNA mutations generated through DNA-mediated charge transport. Merino EJ, Davis ML, Barton JK. Biochemistry 48 660-666 (2009)
  89. Methanol exposure does not lead to accumulation of oxidative DNA damage in bone marrow and spleen of mice, rabbits or primates. McCallum GP, Siu M, Ondovcik SL, Sweeting JN, Wells PG. Mol Carcinog 50 163-172 (2011)
  90. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Ignatov AV, Bondarenko KA, Makarova AV. Acta Naturae 9 12-26 (2017)
  91. Replication of a universal nucleobase provides unique insight into the role of entropy during DNA polymerization and pyrophosphorolysis. Zhang X, Motea E, Lee I, Berdis AJ. Biochemistry 49 3009-3023 (2010)
  92. Effect of condensate formation on long-distance radical cation migration in DNA. Das P, Schuster GB. Proc Natl Acad Sci U S A 102 14227-14231 (2005)
  93. Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. Kumar N, Theil AF, Roginskaya V, Ali Y, Calderon M, Watkins SC, Barnes RP, Opresko PL, Pines A, Lans H, Vermeulen W, Van Houten B. Nat Commun 13 974 (2022)
  94. Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated differential coding. Tang F, Liu S, Li QY, Yuan J, Li L, Wang Y, Yuan BF, Feng YQ. Chem Sci 10 4272-4281 (2019)
  95. NDX-1 protein hydrolyzes 8-oxo-7, 8-dihydrodeoxyguanosine-5'-diphosphate to sanitize oxidized nucleotides and prevent oxidative stress in Caenorhabditis elegans. Sanada U, Yonekura S, Kikuchi M, Hashiguchi K, Nakamura N, Yonei S, Zhang-Akiyama QM. J Biochem 150 649-657 (2011)
  96. Rational de novo gene synthesis by rapid polymerase chain assembly (PCA) and expression of endothelial protein-C and thrombin receptor genes. Mamedov TG, Padhye NV, Viljoen H, Subramanian A. J Biotechnol 131 379-387 (2007)
  97. Sequence determination of nucleic acids containing 5-methylisocytosine and isoguanine: identification and insight into polymerase replication of the non-natural nucleobases. Ahle JD, Barr S, Chin AM, Battersby TR. Nucleic Acids Res 33 3176-3184 (2005)
  98. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa. Maddukuri L, Ketkar A, Eddy S, Zafar MK, Eoff RL. Nucleic Acids Res 42 12027-12040 (2014)
  99. The interplay at the replisome mitigates the impact of oxidative damage on the genetic integrity of hyperthermophilic Archaea. Killelea T, Palud A, Akcha F, Lemor M, L'haridon S, Godfroy A, Henneke G. Elife 8 e45320 (2019)
  100. Letter Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI. Antipova VN, Zheleznaya LA, Zyrina NV. FEMS Microbiol Lett 357 144-150 (2014)
  101. Discrimination between 8-oxo-2'-deoxyguanosine and 2'-deoxyguanosine in DNA by the single nucleotide primer extension reaction with adap triphosphate. Taniguchi Y, Kikukawa Y, Sasaki S. Angew Chem Int Ed Engl 54 5147-5151 (2015)
  102. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY. Trasviña-Arenas CH, Lopez-Castillo LM, Sanchez-Sandoval E, Brieba LG. FEBS J 283 521-540 (2016)
  103. G quadruplexes stabilised by 8-oxo-2'-deoxyguanosine. Singh V, Benz A, Hartig JS. Chemistry 17 10838-10843 (2011)
  104. Quantifying the stability of oxidatively damaged DNA by single-molecule DNA stretching. McCauley MJ, Furman L, Dietrich CA, Rouzina I, Núñez ME, Williams MC. Nucleic Acids Res 46 4033-4043 (2018)
  105. Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase. Rechkoblit O, Johnson RE, Gupta YK, Prakash L, Prakash S, Aggarwal AK. Nat Commun 12 4020 (2021)
  106. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Basu AK, Pande P, Bose A. Chem Res Toxicol 30 61-72 (2017)
  107. A transposon-derived DNA polymerase from Entamoeba histolytica displays intrinsic strand displacement, processivity and lesion bypass. Pastor-Palacios G, López-Ramírez V, Cardona-Felix CS, Brieba LG. PLoS One 7 e49964 (2012)
  108. Cloning and characterization of an ascidian homolog of the human 8-oxoguanine DNA glycosylase (Ogg1) that is involved in the repair of 8-oxo-7,8-dihydroguanine in DNA in Ciona intestinalis. Jin G, Zhang QM, Satou Y, Satoh N, Kasai H, Yonei S. Int J Radiat Biol 82 241-250 (2006)
  109. Global deformation facilitates flipping of damaged 8-oxo-guanine and guanine in DNA. La Rosa G, Zacharias M. Nucleic Acids Res 44 9591-9599 (2016)
  110. Guanine to inosine substitution leads to large increases in the population of a transient G·C Hoogsteen base pair. Nikolova EN, Stull F, Al-Hashimi HM. Biochemistry 53 7145-7147 (2014)
  111. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Sakofsky CJ, Grogan DW. Genetics 201 513-523 (2015)
  112. Recognition and excision properties of 8-halogenated-7-deaza-2'-deoxyguanosine as 8-oxo-2'-deoxyguanosine analogues and Fpg and hOGG1 inhibitors. Yin Y, Sasaki S, Taniguchi Y. Chembiochem 16 1190-1198 (2015)
  113. A nuclear family A DNA polymerase from Entamoeba histolytica bypasses thymine glycol. Pastor-Palacios G, Azuara-Liceaga E, Brieba LG. PLoS Negl Trop Dis 4 e786 (2010)
  114. Computational evolution of an RNA-binding protein towards enhanced oxidized-RNA binding. Gonzalez-Rivera JC, Orr AA, Engels SM, Jakubowski JM, Sherman MW, O'Connor KN, Matteson T, Woodcock BC, Contreras LM, Tamamis P. Comput Struct Biotechnol J 18 137-152 (2020)
  115. DNA ligase I variants fail in the ligation of mutagenic repair intermediates with mismatches and oxidative DNA damage. Tang Q, Kamble P, Çağlayan M. Mutagenesis 35 391-404 (2020)
  116. Direct detection of 8-oxo-deoxyguanosine using UV resonance Raman spectroscopy. Kundu LM, Loppnow GR. Photochem Photobiol 83 600-602 (2007)
  117. Does tautomerization of FapyG influence its mutagenicity? Jena NR, Mark AE, Mishra PC. Chemphyschem 15 1779-1784 (2014)
  118. Enhanced cytarabine-induced killing in OGG1-deficient acute myeloid leukemia cells. Owen N, Minko IG, Moellmer SA, Cammann SK, Lloyd RS, McCullough AK. Proc Natl Acad Sci U S A 118 e2016833118 (2021)
  119. Error-prone replication bypass of the imidazole ring-opened formamidopyrimidine deoxyguanosine adduct. Sha Y, Minko IG, Malik CK, Rizzo CJ, Lloyd RS. Environ Mol Mutagen 58 182-189 (2017)
  120. Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical α-anomer. Minko IG, Rizzo CJ, Lloyd RS. J Biol Chem 292 18790-18799 (2017)
  121. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4. Jung H, Lee S. Biochem J 477 2859-2871 (2020)
  122. Structural studies reveal a ring-shaped architecture of deep-sea vent phage NrS-1 polymerase. Chen X, Su S, Chen Y, Gao Y, Li Y, Shao Z, Zhang Y, Shao Q, Liu H, Li J, Ma J, Gan J. Nucleic Acids Res 48 3343-3355 (2020)
  123. Synthesis of N2-alkyl-8-oxo-7,8-dihydro-2'-deoxyguanosine derivatives and effects of these modifications on RNA duplex stability. Kannan A, Burrows CJ. J Org Chem 76 720-723 (2011)
  124. CiMutT, an asidian MutT homologue, has a 7, 8-dihydro-8-oxo-dGTP pyrophosphohydrolase activity responsible for sanitization of oxidized nucleotides in Ciona intestinalis. Yonekura S, Sanada U, Zhang-Akiyama QM. Genes Genet Syst 85 287-295 (2010)
  125. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway. Raper AT, Maxwell BA, Suo Z. J Mol Biol 433 166811 (2021)
  126. Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus. Venkatramani R, Radhakrishnan R. Proteins 71 1360-1372 (2008)
  127. Lipid peroxides as endogenous oxidants forming 8-oxo-guanosine and lipid-soluble antioxidants as suppressing agents. Kanazawa K, Sakamoto M, Kanazawa K, Ishigaki Y, Aihara Y, Hashimoto T, Mizuno M. J Clin Biochem Nutr 59 16-24 (2016)
  128. Once overlooked, now made visible: ATL proteins and DNA repair. Reissner T, Schorr S, Carell T. Angew Chem Int Ed Engl 48 7293-7295 (2009)
  129. Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs. Wu X, Karsili TN, Domcke W. Molecules 22 E135 (2017)
  130. Configurational and Conformational Equilibria of N6-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG) Lesion in DNA. Bamberger SN, Malik CK, Voehler MW, Brown SK, Pan H, Johnson-Salyard TL, Rizzo CJ, Stone MP. Chem Res Toxicol 31 924-935 (2018)
  131. Comment Flexibility promotes fidelity. Perry JJ, Hitomi K, Tainer JA. Structure 17 633-634 (2009)
  132. Microsatellite Status and IκBα Expression Levels Predict Sensitivity to Pharmaceutical Curcumin in Colorectal Cancer Cells. Lu L, Przybylla R, Shang Y, Dai M, Krohn M, Krämer OH, Mullins CS, Linnebacher M. Cancers (Basel) 14 1032 (2022)
  133. Numerical simulation of Au nanoparticles effect on the PCR process. Chen C, Zhang A, Zhang X, Hu J, Xu LX. J Biomech Eng 131 074512 (2009)
  134. Regulation of GC box activity by 8-oxoguanine. Müller N, Khobta A. Redox Biol 43 101997 (2021)
  135. The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair. Azuara-Liceaga E, Betanzos A, Cardona-Felix CS, Castañeda-Ortiz EJ, Cárdenas H, Cárdenas-Guerra RE, Pastor-Palacios G, García-Rivera G, Hernández-Álvarez D, Trasviña-Arenas CH, Diaz-Quezada C, Orozco E, Brieba LG. Front Cell Infect Microbiol 8 214 (2018)
  136. The use of modified and non-natural nucleotides provide unique insights into pro-mutagenic replication catalyzed by polymerase eta. Choi JS, Dasari A, Hu P, Benkovic SJ, Berdis AJ. Nucleic Acids Res 44 1022-1035 (2016)
  137. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Aralov AV, Gubina N, Cabrero C, Tsvetkov VB, Turaev AV, Fedeles BI, Croy RG, Isaakova EA, Melnik D, Dukova S, Ryazantsev DY, Khrulev AA, Varizhuk AM, González C, Zatsepin TS, Essigmann JM. Nucleic Acids Res 50 3056-3069 (2022)
  138. Bidirectional Electron-Transfer in Polypeptides with Various Secondary Structures. Han P, Guo R, Wang Y, Yao L, Liu C. Sci Rep 7 16445 (2017)
  139. Development of MTH1-Binding Nucleotide Analogs Based on 7,8-Dihalogenated 7-Deaza-dG Derivatives. Shi H, Ishikawa R, Heh CH, Sasaki S, Taniguchi Y. Int J Mol Sci 22 1274 (2021)
  140. Experimental Validation of a Fundamental Model for PCR Efficiency. Louw TM, Booth CS, Pienaar E, Termaat JR, Whitney SE, Viljoen HJ. Chem Eng Sci 66 1783-1789 (2011)
  141. In vivo, in vitro, and x-ray crystallographic analyses suggest the involvement of an uncharacterized triose-phosphate isomerase (TIM) barrel protein in protection against oxidative stress. Nakane S, Wakamatsu T, Masui R, Kuramitsu S, Fukui K. J Biol Chem 286 41636-41646 (2011)
  142. Comment Poli: Shining light on repair of oxidative DNA lesions and mutations. Kirouac KN, Ling H. Cell Cycle 10 1520-1521 (2011)
  143. Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. Ryan BJ, Yang H, Bacurio JHT, Smith MR, Basu AK, Greenberg MM, Freudenthal BD. J Am Chem Soc 144 8054-8065 (2022)
  144. Comment Syn-full behavior by T7 DNA polymerase. Beard WA, Wilson SH. Structure 13 1580-1582 (2005)
  145. On the Role of Molecular Conformation of the 8-Oxoguanine Lesion in Damaged DNA Processing by Polymerases. Geronimo I, Vidossich P, De Vivo M. J Chem Inf Model 63 1521-1528 (2023)
  146. Congress Organic chemistry at the interface to biology. Clausen RP. Chembiochem 7 845-849 (2006)
  147. Processing oxidatively damaged bases at DNA strand breaks by APE1. Whitaker AM, Stark WJ, Freudenthal BD. Nucleic Acids Res 50 9521-9533 (2022)
  148. Spectroscopic analysis of polymerization and exonuclease proofreading by a high-fidelity DNA polymerase during translesion DNA synthesis. Devadoss B, Lee I, Berdis AJ. Biochim Biophys Acta 1834 34-45 (2013)
  149. Transient State Kinetics of Plasmodium falciparum Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis. Kumari A, Yadav A, Lahiri I. Biochemistry 61 2319-2333 (2022)


Related citations provided by authors (3)

  1. Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Johnson SJ, Beese LS Cell 116 803-816 (2004)
  2. Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations. Johnson SJ, Taylor JS, Beese LS Proc. Natl. Acad. Sci. U.S.A. 100 3895-3900 (2003)
  3. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Kiefer JR, Mao C, Braman JC, Beese LS Nature 391 304-307 (1998)