1u0h Citations

Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 '(3')-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate.

J Biol Chem 280 7253-61 (2005)
Cited: 50 times
EuropePMC logo PMID: 15591060

Abstract

Membrane-bound mammalian adenylyl cyclase (mAC) catalyzes the synthesis of intracellular cyclic AMP from ATP and is activated by stimulatory G protein alpha subunits (Galpha(s)) and by forskolin (FSK). mACs are inhibited with high potency by 2 '(3')-O-(N-methylanthraniloyl) (MANT)-substituted nucleotides. In this study, the crystal structures of the complex between Galpha(s).GTPgammaS and the catalytic C1 and C2 domains from type V and type II mAC (VC1.IIC2), bound to FSK and either MANT-GTP.Mg(2+) or MANT-GTP.Mn(2+) have been determined. MANT-GTP coordinates two metal ions and occupies the same position in the catalytic site as P-site inhibitors and substrate analogs. However, the orientation of the guanine ring is reversed relative to that of the adenine ring. The MANT fluorophore resides in a hydrophobic pocket at the interface between the VC1 and IIC2 domains and prevents mAC from undergoing the "open" to "closed" domain rearrangement. The K(i) of MANT-GTP for inhibition of VC1.IIC2 is lower in the presence of mAC activators and lower in the presence of Mn(2+) compared with Mg(2+), indicating that the inhibitor binds more tightly to the catalytically most active form of the enzyme. Fluorescence resonance energy transfer-stimulated emission from the MANT fluorophore upon excitation of Trp-1020 in the MANT-binding pocket of IIC2 is also stronger in the presence of FSK. Mutational analysis of two non-conserved amino acids in the MANT-binding pocket suggests that residues outside of the binding site influence isoform selectivity toward MANT-GTP.

Articles - 1u0h mentioned but not cited (2)

  1. Chemical activation of adenylyl cyclase Rv1625c inhibits growth of Mycobacterium tuberculosis on cholesterol and modulates intramacrophage signaling. Johnson RM, Bai G, DeMott CM, Banavali NK, Montague CR, Moon C, Shekhtman A, VanderVen B, McDonough KA. Mol Microbiol 105 294-308 (2017)
  2. Characterization of Adenylyl Cyclase Isoform 6 Residues Interacting with Forskolin. Bhatia V, Maghsoudi S, Hinton M, Bhagirath AY, Singh N, Jaggupilli A, Chelikani P, Dakshinamurti S. Biology (Basel) 12 572 (2023)


Reviews citing this publication (10)

  1. Molecular details of cAMP generation in mammalian cells: a tale of two systems. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. J Mol Biol 362 623-639 (2006)
  2. Capturing adenylyl cyclases as potential drug targets. Pierre S, Eschenhagen T, Geisslinger G, Scholich K. Nat Rev Drug Discov 8 321-335 (2009)
  3. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. Pharmacol Rev 69 93-139 (2017)
  4. Inhibitors of membranous adenylyl cyclases. Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR. Trends Pharmacol Sci 33 64-78 (2012)
  5. Adenylyl cyclase signalling complexes - Pharmacological challenges and opportunities. Halls ML, Cooper DMF. Pharmacol Ther 172 171-180 (2017)
  6. Adenylyl cyclases as innovative therapeutic goals. Pavan B, Biondi C, Dalpiaz A. Drug Discov Today 14 982-991 (2009)
  7. Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis. Seifert R, Dove S. Trends Microbiol 20 343-351 (2012)
  8. Inhibitors of Bacillus anthracis edema factor. Seifert R, Dove S. Pharmacol Ther 140 200-212 (2013)
  9. Structure/function of the soluble guanylyl cyclase catalytic domain. Childers KC, Garcin ED. Nitric Oxide 77 53-64 (2018)
  10. Natural products as modulators of the cyclic-AMP pathway: evaluation and synthesis of lead compounds. Sengupta S, Mehta G. Org Biomol Chem 16 6372-6390 (2018)

Articles citing this publication (38)

  1. Cytidylyl and uridylyl cyclase activity of bacillus anthracis edema factor and Bordetella pertussis CyaA. Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, Shen Y, Tang WJ, Kaever V, Seifert R. Biochemistry 49 5494-5503 (2010)
  2. Broad specificity of mammalian adenylyl cyclase for interaction with 2',3'-substituted purine- and pyrimidine nucleotide inhibitors. Mou TC, Gille A, Suryanarayana S, Richter M, Seifert R, Sprang SR. Mol Pharmacol 70 878-886 (2006)
  3. Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds. Brand CS, Hocker HJ, Gorfe AA, Cavasotto CN, Dessauer CW. J Pharmacol Exp Ther 347 265-275 (2013)
  4. Europium tetracycline as a luminescent probe for nucleoside phosphates and its application to the determination of kinase activity. Schäferling M, Wolfbeis OS. Chemistry 13 4342-4349 (2007)
  5. Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Mou TC, Masada N, Cooper DM, Sprang SR. Biochemistry 48 3387-3397 (2009)
  6. Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Göttle M, Dove S, Steindel P, Shen Y, Tang WJ, Geduhn J, König B, Seifert R. Mol Pharmacol 72 526-535 (2007)
  7. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2'(3')-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Taha HM, Schmidt J, Göttle M, Suryanarayana S, Shen Y, Tang WJ, Gille A, Geduhn J, König B, Dove S, Seifert R. Mol Pharmacol 75 693-703 (2009)
  8. Real-time NMR study of three small GTPases reveals that fluorescent 2'(3')-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics. Mazhab-Jafari MT, Marshall CB, Smith M, Smith M, Gasmi-Seabrook GM, Stambolic V, Rottapel R, Neel BG, Ikura M. J Biol Chem 285 5132-5136 (2010)
  9. Structure-based development of novel adenylyl cyclase inhibitors. Schlicker C, Rauch A, Hess KC, Kachholz B, Levin LR, Buck J, Steegborn C. J Med Chem 51 4456-4464 (2008)
  10. Bis-halogen-anthraniloyl-substituted nucleoside 5'-triphosphates as potent and selective inhibitors of Bordetella pertussis adenylyl cyclase toxin. Geduhn J, Dove S, Shen Y, Tang WJ, König B, Seifert R. J Pharmacol Exp Ther 336 104-115 (2011)
  11. Differential inhibition of various adenylyl cyclase isoforms and soluble guanylyl cyclase by 2',3'-O-(2,4,6-trinitrophenyl)-substituted nucleoside 5'-triphosphates. Suryanarayana S, Göttle M, Hübner M, Gille A, Mou TC, Sprang SR, Richter M, Seifert R. J Pharmacol Exp Ther 330 687-695 (2009)
  12. Differential interactions of the catalytic subunits of adenylyl cyclase with forskolin analogs. Pinto C, Hübner M, Gille A, Richter M, Mou TC, Sprang SR, Seifert R. Biochem Pharmacol 78 62-69 (2009)
  13. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. Vo U, Vajpai N, Flavell L, Bobby R, Breeze AL, Embrey KJ, Golovanov AP. J Biol Chem 291 1703-1718 (2016)
  14. Differential interactions of G-proteins and adenylyl cyclase with nucleoside 5'-triphosphates, nucleoside 5'-[gamma-thio]triphosphates and nucleoside 5'-[beta,gamma-imido]triphosphates. Gille A, Guo J, Mou TC, Doughty MB, Lushington GH, Seifert R. Biochem Pharmacol 71 89-97 (2005)
  15. Nitric oxide activation of guanylate cyclase pushes the α1 signaling helix and the β1 heme-binding domain closer to the substrate-binding site. Busker M, Neidhardt I, Behrends S. J Biol Chem 289 476-484 (2014)
  16. Similarly potent inhibition of adenylyl cyclase by P-site inhibitors in hearts from wild type and AC5 knockout mice. Braeunig JH, Schweda F, Han PL, Seifert R. PLoS One 8 e68009 (2013)
  17. Functional adenylyl cyclase inhibition in murine cardiomyocytes by 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate. Rottlaender D, Matthes J, Vatner SF, Seifert R, Herzig S. J Pharmacol Exp Ther 321 608-615 (2007)
  18. Structure-activity relationships for the interactions of 2'- and 3'-(O)-(N-methyl)anthraniloyl-substituted purine and pyrimidine nucleotides with mammalian adenylyl cyclases. Pinto C, Lushington GH, Richter M, Gille A, Geduhn J, König B, Mou TC, Sprang SR, Seifert R. Biochem Pharmacol 82 358-370 (2011)
  19. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs. Erdorf M, Mou TC, Seifert R. Biochem Pharmacol 82 1673-1681 (2011)
  20. Pharmacological characterization of adenylyl cyclase isoforms in rabbit kidney membranes. Erdorf M, Seifert R. Naunyn Schmiedebergs Arch Pharmacol 383 357-372 (2011)
  21. A conformational transition in the adenylyl cyclase catalytic site yields different binding modes for ribosyl-modified and unmodified nucleotide inhibitors. Wang JL, Guo JX, Zhang QY, Wu JJ, Seifert R, Lushington GH. Bioorg Med Chem 15 2993-3002 (2007)
  22. Distinct interactions of 2'- and 3'-O-(N-methyl)anthraniloyl-isomers of ATP and GTP with the adenylyl cyclase toxin of Bacillus anthracis, edema factor. Suryanarayana S, Wang JL, Richter M, Shen Y, Tang WJ, Lushington GH, Seifert R. Biochem Pharmacol 78 224-230 (2009)
  23. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates. Taha H, Dove S, Geduhn J, König B, Shen Y, Tang WJ, Seifert R. Naunyn Schmiedebergs Arch Pharmacol 385 57-68 (2012)
  24. Generation and characterization of ATP analog-specific protein kinase Cδ. Kumar V, Weng YC, Geldenhuys WJ, Wang D, Han X, Messing RO, Chou WH. J Biol Chem 290 1936-1951 (2015)
  25. Germline-Derived Gain-of-Function Variants of Gsα-Coding GNAS Gene Identified in Nephrogenic Syndrome of Inappropriate Antidiuresis. Miyado M, Fukami M, Takada S, Terao M, Nakabayashi K, Hata K, Matsubara Y, Tanaka Y, Sasaki G, Nagasaki K, Shiina M, Ogata K, Masunaga Y, Saitsu H, Ogata T. J Am Soc Nephrol 30 877-889 (2019)
  26. Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin. Lübker C, Urbauer RJ, Moskovitz J, Dove S, Weisemann J, Fedorova M, Urbauer JL, Seifert R. Biochem Pharmacol 93 196-209 (2015)
  27. Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2',3'-o-(N-methylanthraniloyl)-inosine 5'-triphosphate. Hübner M, Dixit A, Mou TC, Lushington GH, Pinto C, Gille A, Geduhn J, König B, Sprang SR, Seifert R. Mol Pharmacol 80 87-96 (2011)
  28. Interaction of the diguanylate cyclase YdeH of Escherichia coli with 2',(3')-substituted purine and pyrimidine nucleotides. Spangler C, Kaever V, Seifert R. J Pharmacol Exp Ther 336 234-241 (2011)
  29. Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1. Dove S, Danker KY, Stasch JP, Kaever V, Seifert R. Mol Pharmacol 85 598-607 (2014)
  30. Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry. Reinecke D, Schwede F, Genieser HG, Seifert R. PLoS One 8 e54158 (2013)
  31. Inhibition of melanogenesis by 5,7-dihydroxyflavone (chrysin) via blocking adenylyl cyclase activity. Kim DC, Rho SH, Shin JC, Park HH, Kim D. Biochem Biophys Res Commun 411 121-125 (2011)
  32. Effect of MANT-nucleotides on L-type calcium currents in murine cardiomyocytes. Hübner M, Dizayee S, Matthes J, Seifert R, Herzig S. Naunyn Schmiedebergs Arch Pharmacol 383 573-583 (2011)
  33. Structural basis of adenylyl cyclase 9 activation. Qi C, Lavriha P, Mehta V, Khanppnavar B, Mohammed I, Li Y, Lazaratos M, Schaefer JV, Dreier B, Plückthun A, Bondar AN, Dessauer CW, Korkhov VM. Nat Commun 13 1045 (2022)
  34. Synthesis and evaluation of fluorescent cap analogues for mRNA labelling. Ziemniak M, Szabelski M, Lukaszewicz M, Nowicka A, Darzynkiewicz E, Rhoads RE, Wieczorek Z, Jemielity J. RSC Adv 3 (2013)
  35. Substrate specificity determinants of class III nucleotidyl cyclases. Bharambe NG, Barathy DV, Syed W, Visweswariah SS, Colaςo M, Misquith S, Suguna K. FEBS J 283 3723-3738 (2016)
  36. The C1 homodimer of adenylyl cyclase binds nucleotides with high affinity but possesses exceedingly low catalytic activity. Suryanarayana S, Pinto C, Mou TC, Richter M, Lushington GH, Seifert R. Neurosci Lett 467 1-5 (2009)
  37. Synthesis of a hydrolytically stable, fluorescent-labeled ATP analog as a tool for probing adenylyl cyclases. Emmrich T, El-Tayeb A, Taha H, Seifert R, Müller CE, Link A. Bioorg Med Chem Lett 20 232-235 (2010)
  38. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. Mitchell CW, Czajewski I, van Aalten DMF. J Biol Chem 298 102276 (2022)