1tkg Citations

Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution.

Mol Cell 16 375-86 (2004)
Related entries: 1tje, 1tke, 1tky

Cited: 71 times
EuropePMC logo PMID: 15525511

Abstract

The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this editing domain in its apo form and in complex with the serine product, and with two nonhydrolyzable analogs of potential substrates: the terminal tRNA adenosine charged with serine, and seryl adenylate. The structures show how serine is recognized, and threonine rejected, and provide the structural basis for the editing mechanism, a water-mediated hydrolysis of the mischarged tRNA. When the adenylate analog binds in the editing site, a phosphate oxygen takes the place of one of the catalytic water molecules, thereby blocking the reaction. This rules out a correction mechanism that would occur before the binding of the amino acid on the tRNA.

Reviews citing this publication (10)

  1. Aminoacyl-tRNA synthesis and translational quality control. Ling J, Reynolds N, Ibba M. Annu Rev Microbiol 63 61-78 (2009)
  2. Aminoacyl-tRNA synthetases. Rubio Gomez MA, Ibba M. RNA 26 910-936 (2020)
  3. The balance between pre- and post-transfer editing in tRNA synthetases. Martinis SA, Boniecki MT. FEBS Lett 584 455-459 (2010)
  4. Quality control in tRNA charging. Jakubowski H. Wiley Interdiscip Rev RNA 3 295-310 (2012)
  5. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Fasnacht M, Polacek N. Front Mol Biosci 8 671037 (2021)
  6. DNA polymerases and aminoacyl-tRNA synthetases: shared mechanisms for ensuring the fidelity of gene expression. Francklyn CS. Biochemistry 47 11695-11703 (2008)
  7. Structural analyses clarify the complex control of mistranslation by tRNA synthetases. Guo M, Schimmel P. Curr Opin Struct Biol 22 119-126 (2012)
  8. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. Zhou X, Wang E. Sci China Life Sci 56 921-932 (2013)
  9. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Fang P, Guo M. Life (Basel) 5 1703-1725 (2015)
  10. Translational Fidelity during Bacterial Stresses and Host Interactions. Lyu Z, Wilson C, Ling J. Pathogens 12 383 (2023)

Articles citing this publication (61)

  1. Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Ling J, Söll D. Proc Natl Acad Sci U S A 107 4028-4033 (2010)
  2. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S. Nat Struct Mol Biol 12 923-930 (2005)
  3. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Li L, Boniecki MT, Jaffe JD, Imai BS, Yau PM, Luthey-Schulten ZA, Martinis SA. Proc Natl Acad Sci U S A 108 9378-9383 (2011)
  4. CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase. Boniecki MT, Vu MT, Betha AK, Martinis SA. Proc Natl Acad Sci U S A 105 19223-19228 (2008)
  5. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Söll D, Weygand-Durasevic I, Ban N. EMBO J 25 2498-2509 (2006)
  6. Mechanism of tRNA-dependent editing in translational quality control. Ling J, Roy H, Ibba M. Proc Natl Acad Sci U S A 104 72-77 (2007)
  7. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I. J Biol Chem 285 23799-23809 (2010)
  8. Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. Hussain T, Kruparani SP, Pal B, Dock-Bregeon AC, Dwivedi S, Shekar MR, Sureshbabu K, Sankaranarayanan R. EMBO J 25 4152-4162 (2006)
  9. Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain. Crepin T, Yaremchuk A, Tukalo M, Cusack S. Structure 14 1511-1525 (2006)
  10. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Kotik-Kogan O, Moor N, Tworowski D, Safro M. Structure 13 1799-1807 (2005)
  11. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine. Ling J, Yadavalli SS, Ibba M. RNA 13 1881-1886 (2007)
  12. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. Gruic-Sovulj I, Rokov-Plavec J, Weygand-Durasevic I. FEBS Lett 581 5110-5114 (2007)
  13. Molecular basis of alanine discrimination in editing site. Sokabe M, Okada A, Yao M, Nakashima T, Tanaka I. Proc Natl Acad Sci U S A 102 11669-11674 (2005)
  14. Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum. Khan S, Sharma A, Jamwal A, Sharma V, Pole AK, Thakur KK, Sharma A. Sci Rep 1 188 (2011)
  15. Mechanistic insights into cognate substrate discrimination during proofreading in translation. Hussain T, Kamarthapu V, Kruparani SP, Deshmukh MV, Sankaranarayanan R. Proc Natl Acad Sci U S A 107 22117-22121 (2010)
  16. Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Naganuma M, Sekine S, Fukunaga R, Yokoyama S. Proc Natl Acad Sci U S A 106 8489-8494 (2009)
  17. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. Minajigi A, Francklyn CS. J Biol Chem 285 23810-23817 (2010)
  18. Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote. Zhou XL, Ruan ZR, Huang Q, Tan M, Wang ED. Nucleic Acids Res 41 302-314 (2013)
  19. A Human Disease-causing Point Mutation in Mitochondrial Threonyl-tRNA Synthetase Induces Both Structural and Functional Defects. Wang Y, Zhou XL, Ruan ZR, Liu RJ, Eriani G, Wang ED. J Biol Chem 291 6507-6520 (2016)
  20. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Wu J, Fan Y, Ling J. Nucleic Acids Res 42 6523-6531 (2014)
  21. Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. Cvetesic N, Perona JJ, Gruic-Sovulj I. J Biol Chem 287 25381-25394 (2012)
  22. Crystal structure of a transfer-ribonucleoprotein particle that promotes asparagine formation. Blaise M, Bailly M, Frechin M, Behrens MA, Fischer F, Oliveira CL, Becker HD, Pedersen JS, Thirup S, Kern D. EMBO J 29 3118-3129 (2010)
  23. The structure of alanyl-tRNA synthetase with editing domain. Sokabe M, Ose T, Nakamura A, Tokunaga K, Nureki O, Yao M, Tanaka I. Proc Natl Acad Sci U S A 106 11028-11033 (2009)
  24. Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase. Liu C, Gamper H, Shtivelband S, Hauenstein S, Perona JJ, Hou YM. J Mol Biol 367 1063-1078 (2007)
  25. In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity. Splan KE, Musier-Forsyth K, Boniecki MT, Martinis SA. Methods 44 119-128 (2008)
  26. The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase. Ling J, Peterson KM, Simonovic I, Söll D, Simonovic M. J Biol Chem 287 28518-28525 (2012)
  27. A threonyl-tRNA synthetase-like protein has tRNA aminoacylation and editing activities. Chen Y, Ruan ZR, Wang Y, Huang Q, Xue MQ, Zhou XL, Wang ED. Nucleic Acids Res 46 3643-3656 (2018)
  28. Discrimination between distant homologs and structural analogs: lessons from manually constructed, reliable data sets. Cheng H, Kim BH, Grishin NV. J Mol Biol 377 1265-1278 (2008)
  29. Substrate-mediated fidelity mechanism ensures accurate decoding of proline codons. So BR, An S, Kumar S, Das M, Turner DA, Hadad CM, Musier-Forsyth K. J Biol Chem 286 31810-31820 (2011)
  30. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Proc Natl Acad Sci U S A 109 3281-3286 (2012)
  31. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading. Zhou XL, Ruan ZR, Wang M, Fang ZP, Wang Y, Chen Y, Liu RJ, Eriani G, Wang ED. Nucleic Acids Res 42 13873-13886 (2014)
  32. Loss of protein synthesis quality control in host-restricted organisms. Melnikov SV, van den Elzen A, Stevens DL, Thoreen CC, Söll D. Proc Natl Acad Sci U S A 115 E11505-E11512 (2018)
  33. Mechanism of chiral proofreading during translation of the genetic code. Ahmad S, Routh SB, Kamarthapu V, Chalissery J, Muthukumar S, Hussain T, Kruparani SP, Deshmukh MV, Sankaranarayanan R. Elife 2 e01519 (2013)
  34. Substrate specificity and catalysis by the editing active site of Alanyl-tRNA synthetase from Escherichia coli. Pasman Z, Robey-Bond S, Mirando AC, Smith GJ, Lague A, Francklyn CS. Biochemistry 50 1474-1482 (2011)
  35. Alanyl-tRNA Synthetase Quality Control Prevents Global Dysregulation of the Escherichia coli Proteome. Kelly P, Backes N, Mohler K, Buser C, Kavoor A, Rinehart J, Phillips G, Ibba M. mBio 10 e02921-19 (2019)
  36. Specificity and catalysis hardwired at the RNA-protein interface in a translational proofreading enzyme. Ahmad S, Muthukumar S, Kuncha SK, Routh SB, Yerabham AS, Hussain T, Kamarthapu V, Kruparani SP, Sankaranarayanan R. Nat Commun 6 7552 (2015)
  37. Discovery and Investigation of Natural Editing Function against Artificial Amino Acids in Protein Translation. Völler JS, Dulic M, Gerling-Driessen UI, Biava H, Baumann T, Budisa N, Gruic-Sovulj I, Koksch B. ACS Cent Sci 3 73-80 (2017)
  38. Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens. Li L, Palencia A, Lukk T, Li Z, Luthey-Schulten ZA, Cusack S, Martinis SA, Boniecki MT. Proc Natl Acad Sci U S A 110 3817-3822 (2013)
  39. Translational Quality Control by Bacterial Threonyl-tRNA Synthetases. Zhou XL, Chen Y, Fang ZP, Ruan ZR, Wang Y, Liu RJ, Xue MQ, Wang ED. J Biol Chem 291 21208-21221 (2016)
  40. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Dulic M, Perona JJ, Gruic-Sovulj I. Biochemistry 53 6189-6198 (2014)
  41. Pyrrolo-C as a molecular probe for monitoring conformations of the tRNA 3' end. Zhang CM, Liu C, Christian T, Gamper H, Rozenski J, Pan D, Randolph JB, Wickstrom E, Cooperman BS, Hou YM. RNA 14 2245-2253 (2008)
  42. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress. Rubio MÁ, Napolitano M, Ochoa de Alda JA, Santamaría-Gómez J, Patterson CJ, Foster AW, Bru-Martínez R, Robinson NJ, Luque I. Nucleic Acids Res 43 9905-9917 (2015)
  43. Fidelity escape by the unnatural amino acid β-hydroxynorvaline: an efficient substrate for Escherichia coli threonyl-tRNA synthetase with toxic effects on growth. Minajigi A, Deng B, Francklyn CS. Biochemistry 50 1101-1109 (2011)
  44. Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog. Ruan ZR, Fang ZP, Ye Q, Lei HY, Eriani G, Zhou XL, Wang ED. J Biol Chem 290 1664-1678 (2015)
  45. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. Cvetesic N, Bilus M, Gruic-Sovulj I. J Biol Chem 290 13981-13991 (2015)
  46. Crystal structure of alanyl-tRNA synthetase editing-domain homolog (PH0574) from a hyperthermophile, Pyrococcus horikoshii OT3 at 1.45 A resolution. Ishijima J, Uchida Y, Kuroishi C, Tuzuki C, Takahashi N, Okazaki N, Yutani K, Miyano M. Proteins 62 1133-1137 (2006)
  47. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation. Chen M, Kuhle B, Diedrich J, Liu Z, Moresco JJ, Yates Iii JR, Pan T, Yang XL. Nucleic Acids Res 48 6445-6457 (2020)
  48. Universal pathway for posttransfer editing reactions: insights from the crystal structure of TtPheRS with puromycin. Tworowski D, Klipcan L, Peretz M, Moor N, Safro MG. Proc Natl Acad Sci U S A 112 3967-3972 (2015)
  49. Proofreading in translation: dynamics of the double-sieve model. Moras D. Proc Natl Acad Sci U S A 107 21949-21950 (2010)
  50. Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation. Chen L, Tanimoto A, So BR, Bakhtina M, Magliery TJ, Wysocki VH, Musier-Forsyth K. Nucleic Acids Res 47 929-940 (2019)
  51. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase. Boyarshin KS, Priss AE, Rayevskiy AV, Ilchenko MM, Dubey IY, Kriklivyi IA, Yaremchuk AD, Tukalo MA. J Biomol Struct Dyn 35 669-682 (2017)
  52. Crystallization and preliminary crystallographic studies of putative threonyl-tRNA synthetases from Aeropyrum pernix and Sulfolobus tokodaii. Shimizu S, Juan EC, Miyashita YI, Sato Y, Hoque MM, Suzuki K, Yogiashi M, Tsunoda M, Dock-Bregeon AC, Moras D, Sekiguchi T, Takénaka A. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 903-910 (2008)
  53. Identification of 2-oxohistidine Interacting Proteins Using E. coli Proteome Chips. Lin JM, Tsai YT, Liu YH, Lin Y, Tai HC, Chen CS. Mol Cell Proteomics 15 3581-3593 (2016)
  54. Synthesis and biological evaluation of non-isomerizable analogues of Ala-tRNA(Ala). Mellal D, Fonvielle M, Santarem M, Chemama M, Schneider Y, Iannazzo L, Braud E, Arthur M, Etheve-Quelquejeu M. Org Biomol Chem 11 6161-6169 (2013)
  55. A Synthetic Reporter for Probing Mistranslation in Living Cells. Chen H, Ercanbrack C, Wang T, Gan Q, Fan C. Front Bioeng Biotechnol 8 623 (2020)
  56. Biological effects of the loss of homochirality in a multicellular organism. Banreti A, Bhattacharya S, Wien F, Matsuo K, Réfrégiers M, Meinert C, Meierhenrich U, Hudry B, Thompson D, Noselli S. Nat Commun 13 7059 (2022)
  57. Escherichia coli alanyl-tRNA synthetase maintains proofreading activity and translational accuracy under oxidative stress. Kavoor A, Kelly P, Ibba M. J Biol Chem 298 101601 (2022)
  58. Fine-Tuning of Alanyl-tRNA Synthetase Quality Control Alleviates Global Dysregulation of the Proteome. Kelly P, Kavoor A, Ibba M. Genes (Basel) 11 E1222 (2020)
  59. CAT-Site: Predicting Protein Binding Sites Using a Convolutional Neural Network. Petrovski ŽH, Hribar-Lee B, Bosnić Z. Pharmaceutics 15 119 (2022)
  60. Coordination between aminoacylation and editing to protect against proteotoxicity. Zhang H, Murphy P, Yu J, Lee S, Tsai FTF, van Hoof A, Ling J. Nucleic Acids Res 51 10606-10618 (2023)
  61. Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. Kuncha SK, Venkadasamy VL, Amudhan G, Dahate P, Kola SR, Pottabathini S, Kruparani SP, Shekar PC, Sankaranarayanan R. Elife 9 e58118 (2020)