1tka Citations

Specificity of coenzyme binding in thiamin diphosphate-dependent enzymes. Crystal structures of yeast transketolase in complex with analogs of thiamin diphosphate.

J Biol Chem 269 10879-82 (1994)
Related entries: 1tkb, 1tkc

Cited: 19 times
EuropePMC logo PMID: 8144674

Abstract

The three-dimensional structures of complexes of yeast apotransketolase with the coenzyme analogs 6'-methyl, N1'-pyridyl, and N3'-pyridyl thiamin diphosphate, respectively, were determined with protein crystallographic methods. All three coenzyme analogs bind to the enzyme in a fashion highly similar to the cofactor thiamin diphosphate. Thus, either one of the hydrogen bonds of the pyrimidine ring nitrogens to the protein is sufficient for proper binding and positioning of the cofactor. The lack of catalytic activity of the N3'-pyridyl analog is not due to incorrect orientation of the pyrimidine ring, but results from the absence of the hydrogen bond between the N1' nitrogen atom and the conserved residue Glu418. The structure analysis provides further evidence for the importance of this conserved interaction for enzymatic thiamin catalysis.

Articles - 1tka mentioned but not cited (3)

  1. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Hasan MA, Mazumder MH, Chowdhury AS, Datta A, Khan MA. Source Code Biol Med 10 7 (2015)
  2. An Efficient ABC_DE_Based Hybrid Algorithm for Protein-Ligand Docking. Guan B, Zhang C, Zhao Y. Int J Mol Sci 19 E1181 (2018)
  3. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate. Lukacik P, Lobley CM, Bumann M, Arena de Souza V, Owens RJ, O'Toole PW, Walsh MA. Acta Crystallogr F Struct Biol Commun 71 1327-1334 (2015)


Reviews citing this publication (4)

Articles citing this publication (12)

  1. Structure and properties of an engineered transketolase from maize. Gerhardt S, Echt S, Busch M, Freigang J, Auerbach G, Bader G, Martin WF, Bacher A, Huber R, Fischer M. Plant Physiol 132 1941-1949 (2003)
  2. The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Candy JM, Koga J, Nixon PF, Duggleby RG. Biochem J 315 ( Pt 3) 745-751 (1996)
  3. Donor substrate regulation of transketolase. Esakova OA, Meshalkina LE, Golbik R, Hübner G, Kochetov GA. Eur J Biochem 271 4189-4194 (2004)
  4. Structure of a eukaryotic thiaminase I. Kreinbring CA, Remillard SP, Hubbard P, Brodkin HR, Leeper FJ, Hawksley D, Lai EY, Fulton C, Petsko GA, Ringe D. Proc Natl Acad Sci U S A 111 137-142 (2014)
  5. A thermostable transketolase evolved for aliphatic aldehyde acceptors. Yi D, Saravanan T, Devamani T, Charmantray F, Hecquet L, Fessner WD. Chem Commun (Camb) 51 480-483 (2015)
  6. Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae. Golbik R, Meshalkina LE, Sandalova T, Tittmann K, Fiedler E, Neef H, König S, Kluger R, Kochetov GA, Schneider G, Hübner G. FEBS J 272 1326-1342 (2005)
  7. The origin of the absorption band induced through the interaction between apotransketolase and thiamin diphosphate. Kovina MV, Bykova IA, Solovjeva ON, Meshalkina LE, Kochetov GA. Biochem Biophys Res Commun 294 155-160 (2002)
  8. Effect of transketolase substrates on holoenzyme reconstitution and stability. Esakova OA, Khanova EA, Meshalkina LE, Golbik R, Hübner G, Kochetov GA. Biochemistry (Mosc) 70 770-776 (2005)
  9. Mechanical insights of oxythiamine compound as potent inhibitor for human transketolase-like protein 1 (TKTL1 protein). Mariadasse R, Biswal J, Jayaprakash P, Rao GR, Choubey SK, Rajendran S, Jeyakanthan J. J Recept Signal Transduct Res 36 233-242 (2016)
  10. The molecular origin of the thiamine diphosphate-induced spectral bands of ThDP-dependent enzymes. Kovina MV, De Kok A, Sevostyanova IA, Khailova LS, Belkina NV, Kochetov GA. Proteins 56 338-345 (2004)
  11. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides. Bobst CE, Tabita FR. Arch Biochem Biophys 426 43-54 (2004)
  12. Interaction of transketolase from human tissues with substrates. Meshalkina LE, Solovjeva ON, Kochetov GA. Biochemistry (Mosc) 76 1061-1064 (2011)


Related citations provided by authors (4)

  1. Refined Structure of Transketolase from Saccharomyces Cerevisiae at 2.0 Angstrom Resolution. Nikkola M, Lindqvist Y, Schneider G J. Mol. Biol. 238 387- (1994)
  2. Yeast Tkl1 Gene Encodes a Transketolase that is Required for Efficient Glycolysis and Biosynthesis of Aromatic Amino Acids. Sundstrom M, Lindqvist Y, Schneider G, Hellman U, Ronne H J. Biol. Chem. 268 24346- (1993)
  3. Three-Dimensional Structure of Transketolase, a Thiamine Diphosphate Dependent Enzyme, at 2.5 Angstroms Resolution. Lindqvist Y, Schneider G, Ermler U, Sundstrom M EMBO J. 11 2373- (1992)
  4. Preliminary Crystallographic Data for Transketolase from Yeast. Schneider G, Sundstrom M, Lindqvist Y J. Biol. Chem. 264 21619- (1989)