1tg2 Citations

Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations.

Abstract

Phenylketonuria patients harboring a subset of phenylalanine hydroxylase (PAH) mutations have recently shown normalization of blood phenylalanine levels upon oral administration of the PAH cofactor tetrahydrobiopterin [(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)]. Several hypotheses have been put forward to explain BH4 responsiveness, but the molecular basis for the corrective effect(s) of BH4 has not been understood. We have investigated the biochemical, kinetic, and structural changes associated with BH4-responsive mutations (F39L, I65T, R68S, H170D, E178G, V190A, R261Q, A300S, L308F, A313T, A373T, V388M, E390G, P407S, and Y414C). The biochemical and kinetic characterization of the 15 mutants studied points toward a multifactorial basis for the BH4 responsiveness; the mutants show residual activity (>30% of WT) and display various kinetic defects, including increased Km (BH4) and reduced cooperativity of substrate binding, but no decoupling of cofactor (BH4) oxidation. For some, BH4 seems to function through stabilization and protection of the enzyme from inactivation and proteolytic degradation. In the crystal structures of a phenylketonuria mutant, A313T, minor changes were seen when compared with the WT PAH structures, consistent with the mild effects the mutant has upon activity of the enzyme both in vitro and in vivo. Truncations made in the A313T mutant PAH form revealed that the N and C termini of the enzyme influence active site binding. Of fundamental importance is the observation that BH4 appears to increase Phe catabolism if at least one of the two heterozygous mutations has any residual activity remaining.

Articles - 1tg2 mentioned but not cited (3)

  1. Correction of kinetic and stability defects by tetrahydrobiopterin in phenylketonuria patients with certain phenylalanine hydroxylase mutations. Erlandsen H, Pey AL, Gámez A, Pérez B, Desviat LR, Aguado C, Koch R, Surendran S, Tyring S, Matalon R, Scriver CR, Ugarte M, Martínez A, Stevens RC. Proc Natl Acad Sci U S A 101 16903-16908 (2004)
  2. Dynamic regulation of phenylalanine hydroxylase by simulated redox manipulation. Fuchs JE, Huber RG, von Grafenstein S, Wallnoefer HG, Spitzer GM, Fuchs D, Liedl KR. PLoS One 7 e53005 (2012)
  3. Landscape of protein-small ligand binding modes. Kasahara K, Kinoshita K. Protein Sci 25 1659-1671 (2016)


Reviews citing this publication (22)

  1. B6-responsive disorders: a model of vitamin dependency. Clayton PT. J Inherit Metab Dis 29 317-326 (2006)
  2. Phenylalanine hydroxylase deficiency. Mitchell JJ, Trakadis YJ, Scriver CR. Genet Med 13 697-707 (2011)
  3. Genetics of Phenylketonuria: Then and Now. Blau N. Hum Mutat 37 508-515 (2016)
  4. Phenylalanine hydroxylase: function, structure, and regulation. Flydal MI, Martinez A. IUBMB Life 65 341-349 (2013)
  5. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. J Inherit Metab Dis 37 505-523 (2014)
  6. Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2. Zhang X, Beaulieu JM, Gainetdinov RR, Caron MG. Cell Mol Life Sci 63 6-11 (2006)
  7. Up to date knowledge on different treatment strategies for phenylketonuria. Bélanger-Quintana A, Burlina A, Harding CO, Muntau AC. Mol Genet Metab 104 Suppl S19-25 (2011)
  8. Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Heintz C, Cotton RG, Blau N. Hum Mutat 34 927-936 (2013)
  9. Kinetic and stability analysis of PKU mutations identified in BH4-responsive patients. Pérez B, Desviat LR, Gómez-Puertas P, Martínez A, Stevens RC, Ugarte M. Mol Genet Metab 86 Suppl 1 S11-6 (2005)
  10. Phenylalanine hydroxylase misfolding and pharmacological chaperones. Underhaug J, Aubi O, Martinez A. Curr Top Med Chem 12 2534-2545 (2012)
  11. Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism. Muntau AC, Gersting SW. J Inherit Metab Dis 33 649-658 (2010)
  12. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Waløen K, Kleppe R, Martinez A, Haavik J. Expert Opin Ther Targets 21 167-180 (2017)
  13. Sapropterin: a review of its use in the treatment of primary hyperphenylalaninaemia. Sanford M, Keating GM. Drugs 69 461-476 (2009)
  14. New protein structures provide an updated understanding of phenylketonuria. Jaffe EK. Mol Genet Metab 121 289-296 (2017)
  15. Progress toward cell-directed therapy for phenylketonuria. Harding C. Clin Genet 74 97-104 (2008)
  16. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Tran ML, Génisson Y, Ballereau S, Dehoux C. Molecules 25 E3145 (2020)
  17. What we know that could influence future treatment of phenylketonuria. Sarkissian CN, Gámez A, Scriver CR. J Inherit Metab Dis 32 3-9 (2009)
  18. Phenylketonuria: translating research into novel therapies. Ho G, Christodoulou J. Transl Pediatr 3 49-62 (2014)
  19. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies. Pey AL. Amino Acids 45 1331-1341 (2013)
  20. Sapropterin dihydrochloride for phenylketonuria. Somaraju UR, Merrin M. Cochrane Database Syst Rev CD008005 (2015)
  21. Sapropterin dihydrochloride, 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin, in the treatment of phenylketonuria. Michals-Matalon K. Expert Opin Investig Drugs 17 245-251 (2008)
  22. Spotlight on sapropterin in primary hyperphenylalaninemia. Sanford M, Keating GM. BioDrugs 23 201-202 (2009)

Articles citing this publication (80)

  1. Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Pey AL, Stricher F, Serrano L, Martinez A. Am J Hum Genet 81 1006-1024 (2007)
  2. Congress Phenylketonuria Scientific Review Conference: state of the science and future research needs. Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, Burton BK, Chang CS, Coates PM, Cunningham AC, Dobrowolski SF, Ferguson JH, Franklin TD, Frazier DM, Grange DK, Greene CL, Groft SC, Harding CO, Howell RR, Huntington KL, Hyatt-Knorr HD, Jevaji IP, Levy HL, Lichter-Konecki U, Lindegren ML, Lloyd-Puryear MA, Matalon K, MacDonald A, McPheeters ML, Mitchell JJ, Mofidi S, Moseley KD, Mueller CM, Mulberg AE, Nerurkar LS, Ogata BN, Pariser AR, Prasad S, Pridjian G, Rasmussen SA, Reddy UM, Rohr FJ, Singh RH, Sirrs SM, Stremer SE, Tagle DA, Thompson SM, Urv TK, Utz JR, van Spronsen F, Vockley J, Waisbren SE, Weglicki LS, White DA, Whitley CB, Wilfond BS, Yannicelli S, Young JM. Mol Genet Metab 112 87-122 (2014)
  3. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Zurflüh MR, Zschocke J, Lindner M, Feillet F, Chery C, Burlina A, Stevens RC, Thöny B, Blau N. Hum Mutat 29 167-175 (2008)
  4. Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. Pey AL, Ying M, Cremades N, Velazquez-Campoy A, Scherer T, Thöny B, Sancho J, Martinez A. J Clin Invest 118 2858-2867 (2008)
  5. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Gersting SW, Kemter KF, Staudigl M, Messing DD, Danecka MK, Lagler FB, Sommerhoff CP, Roscher AA, Muntau AC. Am J Hum Genet 83 5-17 (2008)
  6. Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. Matalon R, Michals-Matalon K, Bhatia G, Burlina AB, Burlina AP, Braga C, Fiori L, Giovannini M, Grechanina E, Novikov P, Grady J, Tyring SK, Guttler F. J Inherit Metab Dis 30 153-158 (2007)
  7. Large neutral amino acids in the treatment of phenylketonuria (PKU). Matalon R, Michals-Matalon K, Bhatia G, Grechanina E, Novikov P, McDonald JD, Grady J, Tyring SK, Guttler F. J Inherit Metab Dis 29 732-738 (2006)
  8. Human cystathionine β-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): complex regulation of CBS activity and stability by SAM. Pey AL, Majtan T, Sanchez-Ruiz JM, Kraus JP. Biochem J 449 109-121 (2013)
  9. Significance of genotype in tetrahydrobiopterin-responsive phenylketonuria. Trefz FK, Scheible D, Götz H, Frauendienst-Egger G. J Inherit Metab Dis 32 22-26 (2009)
  10. The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response. Staudigl M, Gersting SW, Danecka MK, Messing DD, Woidy M, Pinkas D, Kemter KF, Blau N, Muntau AC. Hum Mol Genet 20 2628-2641 (2011)
  11. The spectrum of phenylalanine variations under tetrahydrobiopterin load in subjects affected by phenylalanine hydroxylase deficiency. Leuzzi V, Carducci C, Carducci C, Chiarotti F, Artiola C, Giovanniello T, Antonozzi I. J Inherit Metab Dis 29 38-46 (2006)
  12. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Wettstein S, Underhaug J, Perez B, Marsden BD, Yue WW, Martinez A, Blau N. Eur J Hum Genet 23 302-309 (2015)
  13. Recommendations for evaluation of responsiveness to tetrahydrobiopterin (BH(4)) in phenylketonuria and its use in treatment. Levy H, Burton B, Cederbaum S, Scriver C. Mol Genet Metab 92 287-291 (2007)
  14. Methylmalonic acidaemia: examination of genotype and biochemical data in 32 patients belonging to mut, cblA or cblB complementation group. Merinero B, Pérez B, Pérez-Cerdá C, Rincón A, Desviat LR, Martínez MA, Sala PR, García MJ, Aldamiz-Echevarría L, Campos J, Cornejo V, Del Toro M, Mahfoud A, Martínez-Pardo M, Parini R, Pedrón C, Peña-Quintana L, Pérez M, Pourfarzam M, Ugarte M. J Inherit Metab Dis 31 55-66 (2008)
  15. Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo. Gersting SW, Lagler FB, Eichinger A, Kemter KF, Danecka MK, Messing DD, Staudigl M, Domdey KA, Zsifkovits C, Fingerhut R, Glossmann H, Roscher AA, Muntau AC. Hum Mol Genet 19 2039-2049 (2010)
  16. Novel pharmacological chaperones that correct phenylketonuria in mice. Santos-Sierra S, Kirchmair J, Perna AM, Reiss D, Kemter K, Röschinger W, Glossmann H, Gersting SW, Muntau AC, Wolber G, Lagler FB. Hum Mol Genet 21 1877-1887 (2012)
  17. START, a double blind, placebo-controlled pharmacogenetic test of responsiveness to sapropterin dihydrochloride in phenylketonuria patients. Utz JR, Lorentz CP, Markowitz D, Rudser KD, Diethelm-Okita B, Erickson D, Whitley CB. Mol Genet Metab 105 193-197 (2012)
  18. Spanish BH4-responsive phenylalanine hydroxylase-deficient patients: evolution of seven patients on long-term treatment with tetrahydrobiopterin. Bélanger-Quintana A, García MJ, Castro M, Desviat LR, Pérez B, Mejía B, Ugarte M, Martínez-Pardo M. Mol Genet Metab 86 Suppl 1 S61-6 (2005)
  19. Genotype-phenotype correlations analysis of mutations in the phenylalanine hydroxylase (PAH) gene. Bercovich D, Elimelech A, Zlotogora J, Korem S, Yardeni T, Gal N, Goldstein N, Vilensky B, Segev R, Avraham S, Loewenthal R, Schwartz G, Anikster Y. J Hum Genet 53 407-418 (2008)
  20. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW. Sci Rep 6 23748 (2016)
  21. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of Phenylketonuria. Sarkissian CN, Kang TS, Gámez A, Scriver CR, Stevens RC. Mol Genet Metab 104 249-254 (2011)
  22. Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool. Diez-Fernandez C, Martínez AI, Pekkala S, Barcelona B, Pérez-Arellano I, Guadalajara AM, Summar M, Cervera J, Rubio V. Hum Mutat 34 1149-1159 (2013)
  23. Response of patients with phenylketonuria in the US to tetrahydrobiopterin. Matalon R, Michals-Matalon K, Koch R, Grady J, Tyring S, Stevens RC. Mol Genet Metab 86 Suppl 1 S17-21 (2005)
  24. Functional and structural characterization of novel mutations and genotype-phenotype correlation in 51 phenylalanine hydroxylase deficient families from Southern Italy. Daniele A, Scala I, Cardillo G, Pennino C, Ungaro C, Sibilio M, Parenti G, Esposito L, Zagari A, Andria G, Salvatore F. FEBS J 276 2048-2059 (2009)
  25. Specific interaction of the diastereomers 7(R)- and 7(S)-tetrahydrobiopterin with phenylalanine hydroxylase: implications for understanding primapterinuria and vitiligo. Pey AL, Martinez A, Charubala R, Maitland DJ, Teigen K, Calvo A, Pfleiderer W, Wood JM, Schallreuter KU. FASEB J 20 2130-2132 (2006)
  26. Analysis of the effect of tetrahydrobiopterin on PAH gene expression in hepatoma cells. Aguado C, Pérez B, Ugarte M, Desviat LR. FEBS Lett 580 1697-1701 (2006)
  27. Stimulation of hepatic phenylalanine hydroxylase activity but not Pah-mRNA expression upon oral loading of tetrahydrobiopterin in normal mice. Scavelli R, Ding Z, Blau N, Haavik J, Martínez A, Thöny B. Mol Genet Metab 86 Suppl 1 S153-5 (2005)
  28. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. Danecka MK, Woidy M, Zschocke J, Feillet F, Muntau AC, Gersting SW. J Med Genet 52 175-185 (2015)
  29. Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin. Flydal MI, Alcorlo-Pagés M, Johannessen FG, Martínez-Caballero S, Skjærven L, Fernandez-Leiro R, Martinez A, Hermoso JA. Proc Natl Acad Sci U S A 116 11229-11234 (2019)
  30. The effects of tetrahydrobiopterin (BH4) treatment on brain function in individuals with phenylketonuria. Christ SE, Moffitt AJ, Peck D, White DA. Neuroimage Clin 3 539-547 (2013)
  31. Protein stability and in vivo concentration of missense mutations in phenylalanine hydroxylase. Shi Z, Sellers J, Moult J. Proteins 80 61-70 (2012)
  32. The activity of wild-type and mutant phenylalanine hydroxylase and its regulation by phenylalanine and tetrahydrobiopterin at physiological and pathological concentrations: an isothermal titration calorimetry study. Pey AL, Martinez A. Mol Genet Metab 86 Suppl 1 S43-53 (2005)
  33. Utility of phenylalanine hydroxylase genotype for tetrahydrobiopterin responsiveness classification in patients with phenylketonuria. Quirk ME, Dobrowolski SF, Nelson BE, Coffee B, Singh RH. Mol Genet Metab 107 31-36 (2012)
  34. Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor. Gersting SW, Staudigl M, Truger MS, Messing DD, Danecka MK, Sommerhoff CP, Kemter KF, Muntau AC. J Biol Chem 285 30686-30697 (2010)
  35. Functional and structural analysis of five mutations identified in methylmalonic aciduria cblB type. Jorge-Finnigan A, Aguado C, Sánchez-Alcudia R, Abia D, Richard E, Merinero B, Gámez A, Banerjee R, Desviat LR, Ugarte M, Pérez B. Hum Mutat 31 1033-1042 (2010)
  36. Structural features of the regulatory ACT domain of phenylalanine hydroxylase. Carluccio C, Fraternali F, Salvatore F, Fornili A, Zagari A. PLoS One 8 e79482 (2013)
  37. The phylogeny of the aromatic amino acid hydroxylases revisited by characterizing phenylalanine hydroxylase from Dictyostelium discoideum. Siltberg-Liberles J, Steen IH, Svebak RM, Martinez A. Gene 427 86-92 (2008)
  38. Using change in plasma phenylalanine concentrations and ability to liberalize diet to classify responsiveness to tetrahydrobiopterin therapy in patients with phenylketonuria. Singh RH, Quirk ME. Mol Genet Metab 104 485-491 (2011)
  39. Characterization of wild-type and mutant forms of human tryptophan hydroxylase 2. Winge I, McKinney JA, Knappskog PM, Haavik J. J Neurochem 100 1648-1657 (2007)
  40. Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2. Calvo AC, Scherer T, Pey AL, Ying M, Winge I, McKinney J, Haavik J, Thöny B, Martinez A. J Neurochem 114 853-863 (2010)
  41. Biochemical characterization of mutant phenylalanine hydroxylase enzymes and correlation with clinical presentation in hyperphenylalaninaemic patients. Dobrowolski SF, Pey AL, Koch R, Levy H, Ellingson CC, Naylor EW, Martinez A. J Inherit Metab Dis 32 10-21 (2009)
  42. Molecular Genetics and Genotype-Based Estimation of BH4-Responsiveness in Serbian PKU Patients: Spotlight on Phenotypic Implications of p.L48S. Djordjevic M, Klaassen K, Sarajlija A, Tosic N, Zukic B, Kecman B, Ugrin M, Spasovski V, Pavlovic S, Stojiljkovic M. JIMD Rep 9 49-58 (2013)
  43. Molecular epidemiology and genotype-phenotype correlation in phenylketonuria patients from South Spain. Bueno MA, González-Lamuño D, Delgado-Pecellín C, Aldámiz-Echevarría L, Pérez B, Desviat LR, Couce ML. J Hum Genet 58 279-284 (2013)
  44. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Medina-Carmona E, Betancor-Fernández I, Santos J, Mesa-Torres N, Grottelli S, Batlle C, Naganathan AN, Oppici E, Cellini B, Ventura S, Salido E, Pey AL. Hum Mol Genet 28 1-15 (2019)
  45. New insights into tetrahydrobiopterin pharmacodynamics from Pah enu1/2, a mouse model for compound heterozygous tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Lagler FB, Gersting SW, Zsifkovits C, Steinbacher A, Eichinger A, Danecka MK, Staudigl M, Fingerhut R, Glossmann H, Muntau AC. Biochem Pharmacol 80 1563-1571 (2010)
  46. Superstoichiometric binding of L-Phe to phenylalanine hydroxylase from Caenorhabditis elegans: evolutionary implications. Flydal MI, Mohn TC, Pey AL, Siltberg-Liberles J, Teigen K, Martinez A. Amino Acids 39 1463-1475 (2010)
  47. Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations. Réblová K, Hrubá Z, Procházková D, Pazdírková R, Pouchlá S, Zeman J, Fajkusová L. Clin Chim Acta 419 1-10 (2013)
  48. Cystathionine beta-synthase mutants exhibit changes in protein unfolding: conformational analysis of misfolded variants in crude cell extracts. Hnízda A, Jurga V, Raková K, Kožich V. J Inherit Metab Dis 35 469-477 (2012)
  49. New era in treatment for phenylketonuria: Pharmacologic therapy with sapropterin dihydrochloride. Harding CO. Biologics 4 231-236 (2010)
  50. The activity of wild type and mutant phenylalanine hydroxylase with respect to the C-oxidation of phenylalanine and the S-oxidation of S-carboxymethyl-L-cysteine. Steventon GB, Mitchell SC, Pérez B, Desviat LR, Ugarte M. Mol Genet Metab 96 27-31 (2009)
  51. The mechanism of BH4 -responsive hyperphenylalaninemia--as it occurs in the ENU1/2 genetic mouse model. Sarkissian CN, Ying M, Scherer T, Thöny B, Martinez A. Hum Mutat 33 1464-1473 (2012)
  52. Assessment of tetrahydrobiopterin (BH(4))-responsiveness and spontaneous phenylalanine reduction in a phenylalanine hydroxylase deficiency population. Tansek MZ, Groselj U, Murko S, Kobe H, Lampret BR, Battelino T. Mol Genet Metab 107 37-42 (2012)
  53. Chaperone-like therapy with tetrahydrobiopterin in clinical trials for phenylketonuria: is genotype a predictor of response? Sarkissian CN, Gamez A, Scott P, Dauvillier J, Dorenbaum A, Scriver CR, Stevens RC. JIMD Rep 5 59-70 (2012)
  54. Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria. Tao J, Li N, Jia H, Liu Z, Li X, Song J, Deng Y, Jin X, Zhu J. Pediatr Res 78 691-699 (2015)
  55. Evaluation of neonatal BH4 loading test in neonates screened for hyperphenylalaninemia. Feillet F, Chery C, Namour F, Kimmoun A, Favre E, Lorentz E, Battaglia-Hsu SF, Guéant JL. Early Hum Dev 84 561-567 (2008)
  56. Classifying tetrahydrobiopterin responsiveness in the hyperphenylalaninaemias. Langenbeck U. J Inherit Metab Dis 31 67-72 (2008)
  57. Mutations in the regulatory domain of phenylalanine hydroxylase and response to tetrahydrobiopterin. Wang L, Surendran S, Michals-Matalon K, Bhatia G, Tanskley S, Koch R, Grady J, Tyring SK, Stevens RC, Guttler F, Matalon R. Genet Test 11 174-178 (2007)
  58. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Ilgaz F, Marsaux C, Pinto A, Singh R, Rohde C, Karabulut E, Gökmen-Özel H, Kuhn M, MacDonald A. Nutrients 13 1040 (2021)
  59. BH4 responsiveness associated to a PKU mutation with decreased binding affinity for the cofactor. Aguado C, Pérez B, García MJ, Bélanger-Quintana A, Martínez-Pardo M, Ugarte M, Desviat LR. Clin Chim Acta 380 8-12 (2007)
  60. Identification of a hot-spot to enhance Candida rugosa lipase thermostability by rational design methods. Li G, Chen Y, Fang X, Su F, Xu L, Yan Y. RSC Adv 8 1948-1957 (2018)
  61. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. Pacheco-García JL, Cano-Muñoz M, Sánchez-Ramos I, Salido E, Pey AL. J Pers Med 10 E207 (2020)
  62. Structure of full-length wild-type human phenylalanine hydroxylase by small angle X-ray scattering reveals substrate-induced conformational stability. Tomé CS, Lopes RR, Sousa PMF, Amaro MP, Leandro J, Mertens HDT, Leandro P, Vicente JB. Sci Rep 9 13615 (2019)
  63. Tetrahydrobiopterin treatment reduces brain L-Phe but only partially improves serotonin in hyperphenylalaninemic ENU1/2 mice. Scherer T, Allegri G, Sarkissian CN, Ying M, Grisch-Chan HM, Rassi A, Winn SR, Harding CO, Martinez A, Thöny B. J Inherit Metab Dis 41 709-718 (2018)
  64. Unresponsiveness to tetrahydrobiopterin of phenylalanine hydroxylase deficiency. Ponzone A, Porta F, Mussa A, Alluto A, Ferraris S, Spada M. Metabolism 59 645-652 (2010)
  65. An oxygraphic method for determining kinetic properties and catalytic mechanism of aromatic amino acid hydroxylases. Fossbakk A, Haavik J. Anal Biochem 343 100-105 (2005)
  66. Tetrahydrobiopterin for patients with phenylketonuria. Pey AL, Martinez A. Lancet 370 462-463 (2007)
  67. The Pah-R261Q mouse reveals oxidative stress associated with amyloid-like hepatic aggregation of mutant phenylalanine hydroxylase. Aubi O, Prestegård KS, Jung-Kc K, Shi TS, Ying M, Grindheim AK, Scherer T, Ulvik A, McCann A, Spriet E, Thöny B, Martinez A. Nat Commun 12 2073 (2021)
  68. [Tetrahydrobiopterin therapy for hyperphenylalaninemia due to phenylalanine hydroxylase deficiency. When and how?]. Baldellou Vázquez A, Salazar García-Blanco MI, Ruiz-Echarri Zalaya MP, Campos Calleja C, Ruiz Desviat L, Ugarte Pérez M. An Pediatr (Barc) 64 146-152 (2006)
  69. Deubiquitinase USP19 enhances phenylalanine hydroxylase protein stability and its enzymatic activity. Sarodaya N, Tyagi A, Kim HJ, Colaco JC, Kang JS, Kim WJ, Kim KS, Ramakrishna S. Cell Biol Toxicol 39 2295-2310 (2023)
  70. Development of the US English version of the phenylketonuria - quality of life (PKU-QOL) questionnaire. Jurecki E, Cunningham A, Birardi V, Gagol G, Acquadro C. Health Qual Life Outcomes 15 46 (2017)
  71. In silico thermodynamics stability change analysis involved in BH4 responsive mutations in phenylalanine hydroxylase: QM/MM and MD simulations analysis. Chadha N, Tiwari AK, Kumar V, Milton MD, Mishra AK. J Biomol Struct Dyn 33 573-583 (2015)
  72. Secondary BH4 deficiency links protein homeostasis to regulation of phenylalanine metabolism. Eichinger A, Danecka MK, Möglich T, Borsch J, Woidy M, Büttner L, Muntau AC, Gersting SW. Hum Mol Genet 27 1732-1742 (2018)
  73. The Missense p.S231F phenylalanine hydroxylase gene mutation causes complete loss of enzymatic activity in vitro. Stojiljkovic M, Pérez B, Desviat LR, Aguado C, Ugarte M, Pavlovic S. Protein J 28 294-299 (2009)
  74. Clinical therapeutics for phenylketonuria. Kochhar JS, Chan SY, Ong PS, Kang L. Drug Deliv Transl Res 2 223-237 (2012)
  75. Deubiquitinase USP19 extends the residual enzymatic activity of phenylalanine hydroxylase variants. Sarodaya N, Tyagi A, Kim HJ, Kang JS, Singh V, Hong SH, Kim WJ, Kim KS, Ramakrishna S. Sci Rep 12 14243 (2022)
  76. Unravelling the Complex Denaturant and Thermal-Induced Unfolding Equilibria of Human Phenylalanine Hydroxylase. Conde-Giménez M, Sancho J. Int J Mol Sci 22 6539 (2021)
  77. In silico analyses of the effects of a point mutation and a pharmacological chaperone on the thermal fluctuation of phenylalanine hydroxylase. Hayakawa D, Hayakawa D, Yamaotsu N, Nakagome I, Ozawa SI, Yoshida T, Hirono S. Biophys Chem 228 47-54 (2017)
  78. Manipulation of a cation-π sandwich reveals conformational flexibility in phenylalanine hydroxylase. Arturo EC, Merkel GW, Hansen MR, Lisowski S, Almeida D, Gupta K, Jaffe EK. Biochimie 183 63-77 (2021)
  79. Thermodynamics of iron, tetrahydrobiopterin, and phenylalanine binding to phenylalanine hydroxylase from Chromobacterium violaceum. Li M, Subedi BP, Fitzpatrick PF, Emerson JP. Arch Biochem Biophys 729 109378 (2022)
  80. [BH4 in the management of phenylketonuria]. Feillet F. Arch Pediatr 15 606-607 (2008)