1tb6 Citations

Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin.

Nat Struct Mol Biol 11 857-62 (2004)
Cited: 207 times
EuropePMC logo PMID: 15311269

Abstract

The maintenance of normal blood flow depends completely on the inhibition of thrombin by antithrombin, a member of the serpin family. Antithrombin circulates at a high concentration, but only becomes capable of efficient thrombin inhibition on interaction with heparin or related glycosaminoglycans. The anticoagulant properties of therapeutic heparin are mediated by its interaction with antithrombin, although the structural basis for this interaction is unclear. Here we present the crystal structure at a resolution of 2.5 A of the ternary complex between antithrombin, thrombin and a heparin mimetic (SR123781). The structure reveals a template mechanism with antithrombin and thrombin bound to the same heparin chain. A notably close contact interface, comprised of extensive active site and exosite interactions, explains, in molecular detail, the basis of the antithrombotic properties of therapeutic heparin.

Reviews - 1tb6 mentioned but not cited (11)

  1. Demystifying heparan sulfate-protein interactions. Xu D, Esko JD. Annu Rev Biochem 83 129-157 (2014)
  2. An overview of the serpin superfamily. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. Genome Biol 7 216 (2006)
  3. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PG. Biochimie 92 1587-1596 (2010)
  4. Anticoagulant heparan sulfate: structural specificity and biosynthesis. Liu J, Pedersen LC. Appl Microbiol Biotechnol 74 263-272 (2007)
  5. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA. J Biol Chem 285 24307-24312 (2010)
  6. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  7. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Grover SP, Mackman N. Front Cardiovasc Med 9 878199 (2022)
  8. Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Int J Mol Sci 22 10803 (2021)
  9. Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience. Pérez S, de Sanctis D. Beilstein J Org Chem 13 1145-1167 (2017)
  10. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. Abdelfadiel EI, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. J Med Chem 66 4503-4531 (2023)
  11. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. Genes Dis 10 1402-1428 (2023)

Articles - 1tb6 mentioned but not cited (24)

  1. Structural space of protein-protein interfaces is degenerate, close to complete, and highly connected. Gao M, Skolnick J. Proc Natl Acad Sci U S A 107 22517-22522 (2010)
  2. Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). Raghuraman A, Mosier PD, Desai UR. J Med Chem 49 3553-3562 (2006)
  3. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. PLoS One 7 e48632 (2012)
  4. Toward a robust computational screening strategy for identifying glycosaminoglycan sequences that display high specificity for target proteins. Sankaranarayanan NV, Desai UR. Glycobiology 24 1323-1333 (2014)
  5. A Simple Method for Discovering Druggable, Specific Glycosaminoglycan-Protein Systems. Elucidation of Key Principles from Heparin/Heparan Sulfate-Binding Proteins. Sarkar A, Desai UR. PLoS One 10 e0141127 (2015)
  6. Understanding Dermatan Sulfate-Heparin Cofactor II Interaction through Virtual Library Screening. Raghuraman A, Mosier PD, Desai UR. ACS Med Chem Lett 1 281-285 (2010)
  7. Heparin dodecasaccharide containing two antithrombin-binding pentasaccharides: structural features and biological properties. Viskov C, Elli S, Urso E, Gaudesi D, Mourier P, Herman F, Boudier C, Casu B, Torri G, Guerrini M. J Biol Chem 288 25895-25907 (2013)
  8. Exploring functional roles of multibinding protein interfaces. Tyagi M, Shoemaker BA, Bryant SH, Panchenko AR. Protein Sci 18 1674-1683 (2009)
  9. Interaction of antithrombin with sulfated, low molecular weight lignins: opportunities for potent, selective modulation of antithrombin function. Henry BL, Connell J, Liang A, Krishnasamy C, Desai UR. J Biol Chem 284 20897-20908 (2009)
  10. Identification of the site of binding of sulfated, low molecular weight lignins on thrombin. Abdel Aziz MH, Mosier PD, Desai UR. Biochem Biophys Res Commun 413 348-352 (2011)
  11. Kinetic evidence that allosteric activation of antithrombin by heparin is mediated by two sequential conformational changes. Schedin-Weiss S, Richard B, Olson ST. Arch Biochem Biophys 504 169-176 (2010)
  12. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry. Zhang J, Loo RRO, Loo JA. J Am Soc Mass Spectrom 28 1815-1822 (2017)
  13. A computational modeling and molecular dynamics study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa). Chandrasekaran V, Lee CJ, Lin P, Duke RE, Pedersen LG. J Mol Model 15 897-911 (2009)
  14. Estimating glycosaminoglycan-protein interaction affinity: water dominates the specific antithrombin-heparin interaction. Sarkar A, Yu W, Desai UR, MacKerell AD, Mosier PD. Glycobiology 26 1041-1047 (2016)
  15. A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. Mol Biol Evol 38 2915-2929 (2021)
  16. Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling. Sankaranarayanan NV, Sarkar A, Desai UR, Mosier PD. Methods Mol Biol 1229 289-314 (2015)
  17. Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and beta-branching on the catalytic activity of blood coagulation factor XIa. Schmidt AE, Sun MF, Ogawa T, Bajaj SP, Gailani D. Biochemistry 47 1326-1335 (2008)
  18. Mass Spectrometry Reveals a Multifaceted Role of Glycosaminoglycan Chains in Factor Xa Inactivation by Antithrombin. Minsky BB, Abzalimov RR, Niu C, Zhao Y, Kirsch Z, Dubin PL, Savinov SN, Kaltashov IA. Biochemistry 57 4880-4890 (2018)
  19. Assisted assignment of ligands corresponding to unknown electron density. Binkowski TA, Cuff M, Nocek B, Chang C, Joachimiak A. J Struct Funct Genomics 11 21-30 (2010)
  20. Elucidating the specificity of non-heparin-based conformational activators of antithrombin for factor Xa inhibition. Rashid Q, Abid M, Jairajpuri MA. J Nat Sci Biol Med 5 36-42 (2014)
  21. Antibodies to FXa and thrombin in patients with SLE differentially regulate C3 and C5 cleavage. McDonnell T, Amarnani R, Spicer C, Jbari H, Pericleous C, Spiteri VA, Wincup C, Artim-Esen B, Mackie I, Botto M, Rahman A, Giles I. Lupus Sci Med 9 e000738 (2022)
  22. Heparin Blocks the Inhibition of Tissue Kallikrein 1 by Kallistatin through Electrostatic Repulsion. Ma L, Wu J, Zheng Y, Shu Z, Wei Z, Sun Y, Carrell RW, Zhou A. Biomolecules 10 E828 (2020)
  23. Antithrombin Therapy: Current State and Future Outlook. Rodgers GM, Mahajerin A. Clin Appl Thromb Hemost 29 10760296231205279 (2023)
  24. The N-terminal 1-16 peptide derived in vivo from protein seminal vesicle protein IV modulates alpha-thrombin activity: potential clinical implications. Lepretti M, Costantini S, Ammirato G, Giuberti G, Caraglia M, Facchiano AM, Metafora S, Stiuso P. Exp Mol Med 40 541-549 (2008)


Reviews citing this publication (48)

  1. The structure of glycosaminoglycans and their interactions with proteins. Gandhi NS, Mancera RL. Chem Biol Drug Des 72 455-482 (2008)
  2. New fundamentals in hemostasis. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. Physiol Rev 93 327-358 (2013)
  3. Structural insights into biological roles of protein-glycosaminoglycan interactions. Raman R, Sasisekharan V, Sasisekharan R. Chem Biol 12 267-277 (2005)
  4. Inherited antithrombin deficiency: a review. Patnaik MM, Moll S. Haemophilia 14 1229-1239 (2008)
  5. Glycomics approach to structure-function relationships of glycosaminoglycans. Sasisekharan R, Raman R, Prabhakar V. Annu Rev Biomed Eng 8 181-231 (2006)
  6. Thrombin. Di Cera E. Mol Aspects Med 29 203-254 (2008)
  7. Serpin structure, function and dysfunction. Huntington JA. J Thromb Haemost 9 Suppl 1 26-34 (2011)
  8. The central role of thrombin in hemostasis. Crawley JT, Zanardelli S, Chion CK, Lane DA. J Thromb Haemost 5 Suppl 1 95-101 (2007)
  9. Molecular recognition mechanisms of thrombin. Huntington JA. J Thromb Haemost 3 1861-1872 (2005)
  10. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Thacker BE, Xu D, Lawrence R, Esko JD. Matrix Biol 35 60-72 (2014)
  11. Molecular gymnastics: serpin structure, folding and misfolding. Whisstock JC, Bottomley SP. Curr Opin Struct Biol 16 761-768 (2006)
  12. Structural view of glycosaminoglycan-protein interactions. Imberty A, Lortat-Jacob H, Pérez S. Carbohydr Res 342 430-439 (2007)
  13. Shape-shifting serpins--advantages of a mobile mechanism. Huntington JA. Trends Biochem Sci 31 427-435 (2006)
  14. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. Pike RN, Buckle AM, le Bonniec BF, Church FC. FEBS J 272 4842-4851 (2005)
  15. Chemical approaches to define the structure-activity relationship of heparin-like glycosaminoglycans. Noti C, Seeberger PH. Chem Biol 12 731-756 (2005)
  16. Serpins in plants and green algae. Roberts TH, Hejgaard J. Funct Integr Genomics 8 1-27 (2008)
  17. A microscopic view on the renal endothelial glycocalyx. Dane MJ, van den Berg BM, Lee DH, Boels MG, Tiemeier GL, Avramut MC, van Zonneveld AJ, van der Vlag J, Vink H, Rabelink TJ. Am J Physiol Renal Physiol 308 F956-66 (2015)
  18. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Adv Healthc Mater 7 e1701461 (2018)
  19. Thrombin-cofactor interactions: structural insights into regulatory mechanisms. Adams TE, Huntington JA. Arterioscler Thromb Vasc Biol 26 1738-1745 (2006)
  20. The link between vascular features and thrombosis. Esmon CT, Esmon NL. Annu Rev Physiol 73 503-514 (2011)
  21. Structure and interaction modes of thrombin. Bode W. Blood Cells Mol Dis 36 122-130 (2006)
  22. Exosite determinants of serpin specificity. Gettins PG, Olson ST. J Biol Chem 284 20441-20445 (2009)
  23. Thrombin inhibition by the serpins. Huntington JA. J Thromb Haemost 11 Suppl 1 254-264 (2013)
  24. Synthetic heparin derivatives as new anticoagulant drugs. de Kort M, Buijsman RC, van Boeckel CA. Drug Discov Today 10 769-779 (2005)
  25. Thrombin as procoagulant and anticoagulant. Di Cera E. J Thromb Haemost 5 Suppl 1 196-202 (2007)
  26. Glycosaminoglycan Neutralization in Coagulation Control. Sobczak AIS, Pitt SJ, Stewart AJ. Arterioscler Thromb Vasc Biol 38 1258-1270 (2018)
  27. Thrombin allostery. Di Cera E, Page MJ, Bah A, Bush-Pelc LA, Garvey LC. Phys Chem Chem Phys 9 1291-1306 (2007)
  28. Natural inhibitors of thrombin. Huntington JA. Thromb Haemost 111 583-589 (2014)
  29. Surface loops of trypsin-like serine proteases as determinants of function. Goettig P, Brandstetter H, Magdolen V. Biochimie 166 52-76 (2019)
  30. Serpins in T cell immunity. Bots M, Medema JP. J Leukoc Biol 84 1238-1247 (2008)
  31. Antithrombin deficiency and its laboratory diagnosis. Muszbek L, Bereczky Z, Kovács B, Komáromi I. Clin Chem Lab Med 48 Suppl 1 S67-78 (2010)
  32. A Systems View of the Heparan Sulfate Interactome. Gómez Toledo A, Sorrentino JT, Sandoval DR, Malmström J, Lewis NE, Esko JD. J Histochem Cytochem 69 105-119 (2021)
  33. NMR structural determination of unique invertebrate glycosaminoglycans endowed with medical properties. Pomin VH. Carbohydr Res 413 41-50 (2015)
  34. The structure of thrombin, a chameleon-like proteinase. Bode W. J Thromb Haemost 3 2379-2388 (2005)
  35. Serpin protease inhibitors in plant biology. Fluhr R, Lampl N, Roberts TH. Physiol Plant 145 95-102 (2012)
  36. Placental regulation of peptide hormone and growth factor activity by proMBP. Weyer K, Glerup S. Biol Reprod 84 1077-1086 (2011)
  37. Heparin: role in protein purification and substitution with animal-component free material. Bolten SN, Rinas U, Scheper T. Appl Microbiol Biotechnol 102 8647-8660 (2018)
  38. Influence of zinc on glycosaminoglycan neutralisation during coagulation. Sobczak AIS, Pitt SJ, Stewart AJ. Metallomics 10 1180-1190 (2018)
  39. Sulfated Non-Saccharide Glycosaminoglycan Mimetics as Novel Drug Discovery Platform for Various Pathologies. Afosah DK, Al-Horani RA. Curr Med Chem 27 3412-3447 (2020)
  40. Approaches to prevent bleeding associated with anticoagulants: current status and recent developments. Kalathottukaren MT, Haynes CA, Kizhakkedathu JN. Drug Deliv Transl Res 8 928-944 (2018)
  41. Dual and antagonic therapeutic effects of sulfated glycans. Pomin VH. Bioorg Med Chem 24 3965-3971 (2016)
  42. Factor XI Inhibitors for Prevention and Treatment of Venous Thromboembolism: A Review on the Rationale and Update on Current Evidence. Nopp S, Kraemmer D, Ay C. Front Cardiovasc Med 9 903029 (2022)
  43. Not Just Anticoagulation-New and Old Applications of Heparin. Zang L, Zhu H, Wang K, Liu Y, Yu F, Zhao W. Molecules 27 6968 (2022)
  44. An Overview of Antitumour Activity of Polysaccharides. Jin H, Li M, Tian F, Yu F, Zhao W. Molecules 27 8083 (2022)
  45. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C. Clin Transl Med 13 e1170 (2023)
  46. Sulfotyrosine residues: Interaction specificity determinants for extracellular protein-protein interactions. Stewart V, Ronald PC. J Biol Chem 298 102232 (2022)
  47. Drug Discovery Based on Fluorine-Containing Glycomimetics. Wei X, Wang P, Liu F, Ye X, Xiong D. Molecules 28 6641 (2023)
  48. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Li M, Pedersen LC, Xu D. Front Mol Biosci 10 1194293 (2023)

Articles citing this publication (124)

  1. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Günther A, Engelmann B, Preissner KT. Proc Natl Acad Sci U S A 104 6388-6393 (2007)
  2. Identification of proteoglycans as the APRIL-specific binding partners. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H, Rennert PD, Tschopp J, Schneider P. J Exp Med 201 1375-1383 (2005)
  3. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. Johnson DJ, Li W, Adams TE, Huntington JA. EMBO J 25 2029-2037 (2006)
  4. Crystal structure of thrombin bound to heparin. Carter WJ, Cama E, Huntington JA. J Biol Chem 280 2745-2749 (2005)
  5. The Rheumatoid Arthritis-Associated Citrullinome. Tilvawala R, Nguyen SH, Maurais AJ, Nemmara VV, Nagar M, Salinger AJ, Nagpal S, Weerapana E, Thompson PR. Cell Chem Biol 25 691-704.e6 (2018)
  6. Crystal structure of an RNA aptamer bound to thrombin. Long SB, Long MB, White RR, Sullenger BA. RNA 14 2504-2512 (2008)
  7. MASP-1, a promiscuous complement protease: structure of its catalytic region reveals the basis of its broad specificity. Dobó J, Harmat V, Beinrohr L, Sebestyén E, Závodszky P, Gál P. J Immunol 183 1207-1214 (2009)
  8. The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity. Dementiev A, Petitou M, Herbert JM, Gettins PG. Nat Struct Mol Biol 11 863-867 (2004)
  9. Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. Xu D, Fuster MM, Lawrence R, Esko JD. J Biol Chem 286 737-745 (2011)
  10. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs KH, Than ME. Proc Natl Acad Sci U S A 107 5381-5386 (2010)
  11. Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Johnson DJ, Langdown J, Huntington JA. Proc Natl Acad Sci U S A 107 645-650 (2010)
  12. Thrombosis from a prothrombin mutation conveying antithrombin resistance. Miyawaki Y, Suzuki A, Fujita J, Maki A, Okuyama E, Murata M, Takagi A, Murate T, Kunishima S, Sakai M, Okamoto K, Matsushita T, Naoe T, Saito H, Kojima T. N Engl J Med 366 2390-2396 (2012)
  13. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. Wu M, Wen D, Gao N, Xiao C, Yang L, Xu L, Lian W, Peng W, Jiang J, Zhao J. Eur J Med Chem 92 257-269 (2015)
  14. Structural insight into distinct mechanisms of protease inhibition by antibodies. Wu Y, Eigenbrot C, Liang WC, Stawicki S, Shia S, Fan B, Ganesan R, Lipari MT, Kirchhofer D. Proc Natl Acad Sci U S A 104 19784-19789 (2007)
  15. Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction. Evidence for very high affinity induced by an unusual glucuronic acid residue. Guerrini M, Guglieri S, Casu B, Torri G, Mourier P, Boudier C, Viskov C. J Biol Chem 283 26662-26675 (2008)
  16. Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. Frese MA, Milz F, Dick M, Lamanna WC, Dierks T. J Biol Chem 284 28033-28044 (2009)
  17. Carbohydrate post-glycosylational modifications. Yu H, Chen X. Org Biomol Chem 5 865-872 (2007)
  18. Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. Johnson DJ, Langdown J, Li W, Luis SA, Baglin TP, Huntington JA. J Biol Chem 281 35478-35486 (2006)
  19. Crystal structure of wild-type human thrombin in the Na+-free state. Johnson DJ, Adams TE, Li W, Huntington JA. Biochem J 392 21-28 (2005)
  20. Structural basis for recognition of urokinase-type plasminogen activator by plasminogen activator inhibitor-1. Lin Z, Jiang L, Yuan C, Jensen JK, Zhang X, Luo Z, Furie BC, Furie B, Andreasen PA, Huang M. J Biol Chem 286 7027-7032 (2011)
  21. Directing neuronal signaling through cell-surface glycan engineering. Pulsipher A, Griffin ME, Stone SE, Brown JM, Hsieh-Wilson LC. J Am Chem Soc 136 6794-6797 (2014)
  22. Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-A structure of the heparin-bridged complex. Li W, Adams TE, Nangalia J, Esmon CT, Huntington JA. Proc Natl Acad Sci U S A 105 4661-4666 (2008)
  23. The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin. Langdown J, Belzar KJ, Savory WJ, Baglin TP, Huntington JA. J Mol Biol 386 1278-1289 (2009)
  24. Heparin enhances serpin inhibition of the cysteine protease cathepsin L. Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM. J Biol Chem 285 3722-3729 (2010)
  25. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. J Biol Chem 291 20539-20550 (2016)
  26. Residues Tyr253 and Glu255 in strand 3 of beta-sheet C of antithrombin are key determinants of an exosite made accessible by heparin activation to promote rapid inhibition of factors Xa and IXa. Izaguirre G, Olson ST. J Biol Chem 281 13424-13432 (2006)
  27. Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. Xu Y, Pempe EH, Liu J. J Biol Chem 287 29054-29061 (2012)
  28. Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity. Bekhouche M, Kronenberg D, Vadon-Le Goff S, Bijakowski C, Lim NH, Font B, Kessler E, Colige A, Nagase H, Murphy G, Hulmes DJ, Moali C. J Biol Chem 285 15950-15959 (2010)
  29. Tailored glycopolymers as anticoagulant heparin mimetics. Oh YI, Sheng GJ, Chang SK, Hsieh-Wilson LC. Angew Chem Int Ed Engl 52 11796-11799 (2013)
  30. Insights into the induced fit mechanism in antithrombin-heparin interaction using molecular dynamics simulations. Verli H, Guimarães JA. J Mol Graph Model 24 203-212 (2005)
  31. Crystal Structure of the Michaelis Complex between Tissue-type Plasminogen Activator and Plasminogen Activators Inhibitor-1. Gong L, Liu M, Zeng T, Shi X, Yuan C, Andreasen PA, Huang M. J Biol Chem 290 25795-25804 (2015)
  32. New Prothrombin Mutation (Arg596Trp, Prothrombin Padua 2) Associated With Venous Thromboembolism. Bulato C, Radu CM, Campello E, Gavasso S, Spiezia L, Tormene D, Simioni P. Arterioscler Thromb Vasc Biol 36 1022-1029 (2016)
  33. Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain. Tan K, Duquette M, Liu JH, Shanmugasundaram K, Joachimiak A, Gallagher JT, Rigby AC, Wang JH, Lawler J. J Biol Chem 283 3932-3941 (2008)
  34. Crystal structures of protease nexin-1 in complex with heparin and thrombin suggest a 2-step recognition mechanism. Li W, Huntington JA. Blood 120 459-467 (2012)
  35. Thrombin generation assay and viscoelastic coagulation monitors demonstrate differences in the mode of thrombin inhibition between unfractionated heparin and bivalirudin. Tanaka KA, Szlam F, Sun HY, Taketomi T, Levy JH. Anesth Analg 105 933-9, table of contents (2007)
  36. Pentosan polysulfate increases affinity between ADAMTS-5 and TIMP-3 through formation of an electrostatically driven trimolecular complex. Troeberg L, Mulloy B, Ghosh P, Lee MH, Murphy G, Nagase H. Biochem J 443 307-315 (2012)
  37. Molecular basis of thrombomodulin activation of slow thrombin. Adams TE, Li W, Huntington JA. J Thromb Haemost 7 1688-1695 (2009)
  38. On designing non-saccharide, allosteric activators of antithrombin. Raghuraman A, Liang A, Krishnasamy C, Lauck T, Gunnarsson GT, Desai UR. Eur J Med Chem 44 2626-2631 (2009)
  39. Structural and functional characterization of a highly specific serpin in the insect innate immunity. Park SH, Jiang R, Piao S, Zhang B, Kim EH, Kwon HM, Jin XL, Lee BL, Ha NC. J Biol Chem 286 1567-1575 (2011)
  40. Allosterism-based simultaneous, dual anticoagulant and antiplatelet action: allosteric inhibitor targeting the glycoprotein Ibα-binding and heparin-binding site of thrombin. Mehta AY, Mohammed BM, Martin EJ, Brophy DF, Gailani D, Desai UR. J Thromb Haemost 14 828-838 (2016)
  41. Anticoagulant activity of a unique sulfated pyranosic (1->3)-β-L-arabinan through direct interaction with thrombin. Fernández PV, Quintana I, Cerezo AS, Caramelo JJ, Pol-Fachin L, Verli H, Estevez JM, Ciancia M. J Biol Chem 288 223-233 (2013)
  42. MEK-ERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt. Yoshikawa T, Mizuno A, Yasumuro H, Inami W, Vergara MN, Del Rio-Tsonis K, Chiba C. Pigment Cell Melanoma Res 25 66-82 (2012)
  43. NMR characterization of the binding properties and conformation of glycosaminoglycans interacting with interleukin-10. Künze G, Gehrcke JP, Pisabarro MT, Huster D. Glycobiology 24 1036-1049 (2014)
  44. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. Izaguirre G, Aguila S, Qi L, Swanson R, Roth R, Rezaie AR, Gettins PG, Olson ST. J Biol Chem 289 34049-34064 (2014)
  45. SERS detection of thrombin by protein recognition using functionalized gold nanoparticles. Bizzarri AR, Cannistraro S. Nanomedicine 3 306-310 (2007)
  46. 3D structure of a heparin mimetic analogue of a FGF-1 activator. A NMR and molecular modelling study. Muñoz-García JC, Solera C, Carrero P, de Paz JL, Angulo J, Nieto PM. Org Biomol Chem 11 8269-8275 (2013)
  47. Analysis of protein missense alterations by combining sequence- and structure-based methods. Gyulkhandanyan A, Rezaie AR, Roumenina L, Lagarde N, Fremeaux-Bacchi V, Miteva MA, Villoutreix BO. Mol Genet Genomic Med 8 e1166 (2020)
  48. Structure-function analysis of grass clip serine protease involved in Drosophila Toll pathway activation. Kellenberger C, Leone P, Coquet L, Jouenne T, Reichhart JM, Roussel A. J Biol Chem 286 12300-12307 (2011)
  49. Alpha-1-proteinase inhibitor is a heparin binding serpin: molecular interactions with the Lys rich cluster of helix-F domain. Gupta VK, Gowda LR. Biochimie 90 749-761 (2008)
  50. Diversity-oriented chemical modification of heparin: Identification of charge-reduced N-acyl heparin derivatives having increased selectivity for heparin-binding proteins. Huang L, Kerns RJ. Bioorg Med Chem 14 2300-2313 (2006)
  51. Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data. Whitmore EK, Vesenka G, Sihler H, Guvench O. Biomolecules 10 E537 (2020)
  52. Shed syndecan-1 restricts neutrophil elastase from alpha1-antitrypsin in neutrophilic airway inflammation. Chan SC, Leung VO, Ip MS, Shum DK. Am J Respir Cell Mol Biol 41 620-628 (2009)
  53. Engineering functional antithrombin exosites in alpha1-proteinase inhibitor that specifically promote the inhibition of factor Xa and factor IXa. Izaguirre G, Rezaie AR, Olson ST. J Biol Chem 284 1550-1558 (2009)
  54. Thrombin-activated thrombelastography for evaluation of thrombin interaction with thrombin inhibitors. Taketomi T, Szlam F, Vinten-Johansen J, Levy JH, Tanaka KA. Blood Coagul Fibrinolysis 18 761-767 (2007)
  55. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Wu J, Zhang C, Mei X, Li Y, Xing XH. Carbohydr Polym 101 484-492 (2014)
  56. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Ustyuzhanina NE, Bilan MI, Gerbst AG, Ushakova NA, Tsvetkova EA, Dmitrenok AS, Usov AI, Nifantiev NE. Carbohydr Polym 136 826-833 (2016)
  57. Acquired deficit of antithrombin and role of supplementation in septic patients during continuous veno-venous hemofiltration. Lafargue M, Joannes-Boyau O, Honoré PM, Gauche B, Grand H, Fleureau C, Rozé H, Janvier G. ASAIO J 54 124-128 (2008)
  58. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Whitmore EK, Martin D, Guvench O. Int J Mol Sci 21 E7699 (2020)
  59. High-resolution probing heparan sulfate-antithrombin interaction on a single endothelial cell surface: single-molecule AFM studies. Guo C, Fan X, Qiu H, Xiao W, Wang L, Xu B. Phys Chem Chem Phys 17 13301-13306 (2015)
  60. The effect of human bone marrow stroma-derived heparan sulfate on the ex vivo expansion of human cord blood hematopoietic stem cells. Bramono DS, Rider DA, Murali S, Nurcombe V, Cool SM. Pharm Res 28 1385-1394 (2011)
  61. The effects of vasoactive agents, platelet agonists and anticoagulation on thrombelastography. Kawasaki J, Katori N, Taketomi T, Terui K, Tanaka KA. Acta Anaesthesiol Scand 51 1237-1244 (2007)
  62. Approaches to selective peptidic inhibitors of factor Xa. Bromfield KM, Quinsey NS, Duggan PJ, Pike RN. Chem Biol Drug Des 68 11-19 (2006)
  63. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin. Richard B, Swanson R, Schedin-Weiss S, Ramirez B, Izaguirre G, Gettins PG, Olson ST. J Biol Chem 283 14417-14429 (2008)
  64. Covalent Binding of Heparin to Functionalized PET Materials for Improved Haemocompatibility. Kolar M, Mozetič M, Stana-Kleinschek K, Fröhlich M, Turk B, Vesel A. Materials (Basel) 8 1526-1544 (2015)
  65. Staphylococcus aureus coagulases are exploitable yet stable public goods in clinically relevant conditions. Trivedi U, Madsen JS, Everett J, Fell C, Russel J, Haaber J, Crosby HA, Horswill AR, Burmølle M, Rumbaugh KP, Sørensen SJ. Proc Natl Acad Sci U S A 115 E11771-E11779 (2018)
  66. Capillary electrophoretic study of small, highly sulfated, non-sugar molecules interacting with antithrombin. Liang A, Raghuraman A, Desai UR. Electrophoresis 30 1544-1551 (2009)
  67. Heparin Binds Lamprey Angiotensinogen and Promotes Thrombin Inhibition through a Template Mechanism. Wei H, Cai H, Wu J, Wei Z, Zhang F, Huang X, Ma L, Feng L, Zhang R, Wang Y, Ragg H, Zheng Y, Zhou A. J Biol Chem 291 24900-24911 (2016)
  68. Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery. Fulcher YG, Sanganna Gari RR, Frey NC, Zhang F, Linhardt RJ, King GM, Van Doren SR. ACS Chem Biol 9 957-966 (2014)
  69. Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers. Huntington JA, Whisstock JC. Biol Chem 391 973-982 (2010)
  70. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. Xiao J, Salsbury FR. J Biomol Struct Dyn 35 3354-3369 (2017)
  71. Structural glycobiology of heparin dynamics on the exosite 2 of coagulation cascade proteases: Implications for glycosaminoglycans antithrombotic activity. Pol-Fachin L, Verli H. Glycobiology 24 97-105 (2014)
  72. Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. Song X, Ji H, Li Y, Xiong Y, Qiu L, Zhong R, Tian M, Kizhakkedathu JN, Su B, Wei Q, Zhao W, Zhao C. Nat Biomed Eng 5 1143-1156 (2021)
  73. A curved host and second guest cooperatively inhibit the dynamic motion of corannulene. Yang Y, Ronson TK, Lu Z, Zheng J, Vanthuyne N, Martinez A, Nitschke JR. Nat Commun 12 4079 (2021)
  74. An analysis approach to identify specific functional sites in orthologous proteins using sequence and structural information: application to neuroserpin reveals regions that differentially regulate inhibitory activity. Lee TW, Yang AS, Brittain T, Birch NP. Proteins 83 135-152 (2015)
  75. Essential thrombin residues for inhibition by protein C inhibitor with the cofactors heparin and thrombomodulin. Fortenberry YM, Whinna HC, Cooper ST, Myles T, Leung LL, Church FC. J Thromb Haemost 5 1486-1492 (2007)
  76. Heparin alters viral serpin, serp-1, anti-thrombolytic activity to anti-thrombotic activity. Li X, Schneider H, Peters A, Macaulay C, King E, Sun Y, Liu L, Dai E, Davids JA, McFadden G, Lucas A. Open Biochem J 2 6-15 (2008)
  77. Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II. Sutherland JS, Bhakta V, Sheffield WP. Thromb Res 117 447-461 (2006)
  78. Zymogen activation of neurotrypsin and neurotrypsin-dependent agrin cleavage on the cell surface are enhanced by glycosaminoglycans. Gisler C, Lüscher D, Schätzle P, Dürr S, Baici A, Galliciotti G, Reif R, Bolliger MF, Kunz B, Sonderegger P. Biochem J 453 83-100 (2013)
  79. Change of viscoelastic property and morphology of fibrin affected by antithrombin III and heparin: QCM-Z and AFM study. Jung H, Tae G, Kim YH, Johannsmann D. Colloids Surf B Biointerfaces 68 111-119 (2009)
  80. Conformational Plasticity in Glycomimetics: Fluorocarbamethyl-L-idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Unione L, Xu B, Díaz D, Martín-Santamaría S, Poveda A, Sardinha J, Rauter AP, Blériot Y, Zhang Y, Cañada FJ, Sollogoub M, Jiménez-Barbero J. Chemistry 21 10513-10521 (2015)
  81. Missense mutations in the gene encoding prothrombin corresponding to Arg596 cause antithrombin resistance and thrombomodulin resistance. Takagi Y, Murata M, Kozuka T, Nakata Y, Hasebe R, Tamura S, Takagi A, Matsushita T, Saito H, Kojima T. Thromb Haemost 116 1022-1031 (2016)
  82. The superiority of anti-FXa assay over anti-FIIa assay in detecting heparin-binding site antithrombin deficiency. Kovács B, Bereczky Z, Oláh Z, Gindele R, Kerényi A, Selmeczi A, Boda Z, Muszbek L. Am J Clin Pathol 140 675-679 (2013)
  83. In vitro exploration of latent prothrombin mutants conveying antithrombin resistance. Tamura S, Murata-Kawakami M, Takagi Y, Suzuki S, Katsumi A, Takagi A, Kojima T. Thromb Res 159 33-38 (2017)
  84. Molecular basis of antithrombin deficiency in four Japanese patients with antithrombin gene abnormalities including two novel mutations. Kyotani M, Okumura K, Takagi A, Murate T, Yamamoto K, Matsushita T, Sugimura M, Kanayama N, Kobayashi T, Saito H, Kojima T. Am J Hematol 82 702-705 (2007)
  85. Activation and activity of glycosylated KLKs 3, 4 and 11. Guo S, Briza P, Magdolen V, Brandstetter H, Goettig P. Biol Chem 399 1009-1022 (2018)
  86. Dynamic properties of the native free antithrombin from molecular dynamics simulations: computational evidence for solvent- exposed Arg393 side chain. Tóth L, Fekete A, Balogh G, Bereczky Z, Komáromi I. J Biomol Struct Dyn 33 2023-2036 (2015)
  87. Enhanced Photoacoustic Detection of Heparin in Whole Blood via Melanin Nanocapsules Carrying Molecular Agents. Yim W, Takemura K, Zhou J, Zhou J, Jin Z, Borum RM, Xu M, Cheng Y, He T, Penny W, Miller BR, Jokerst JV. ACS Nano 16 683-693 (2022)
  88. Letter Multiple inhibitory kinetics reveal an allosteric interplay among thrombin functional sites. Zavyalova E, Kopylov A. Thromb Res 135 212-216 (2015)
  89. No interactions between heparin and atacicept, an antagonist of B cell survival cytokines. Kowalczyk-Quintas C, Willen D, Willen L, Golob M, Schuepbach-Mallepell S, Peter B, Eslami M, Vigolo M, Broly H, Samy E, Yalkinoglu Ö, Schneider P. Br J Pharmacol 176 4019-4033 (2019)
  90. Congress Serpins 2005 - fun between the beta-sheets. Meeting report based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia). Whisstock JC, Bottomley SP, Bird PI, Pike RN, Coughlin P. FEBS J 272 4868-4873 (2005)
  91. Specific volume and compressibility of human serum albumin-polyanion complexes. Hianik T, Poniková S, Bágel'ová J, Antalík M. Bioorg Med Chem Lett 16 274-279 (2006)
  92. Structural effects of a covalent linkage between antithrombin and heparin: covalent N-terminus attachment of heparin enhances the maintenance of antithrombin's activated state. Mewhort-Buist TA, Junop M, Berry LR, Chindemi P, Chan AK. J Biochem 140 175-184 (2006)
  93. rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii. Aounallah H, Fessel MR, Goldfeder MB, Carvalho E, Bensaoud C, Chudzinski-Tavassi AM, Bouattour A, M'ghirbi Y, Faria F. Toxins (Basel) 13 913 (2021)
  94. Active but inoperable thrombin is accumulated in a plasma protein layer surrounding Streptococcus pyogenes. Naudin C, Hurley SM, Malmström E, Plug T, Shannon O, Meijers JC, Mörgelin M, Björck L, Herwald H. Thromb Haemost 114 717-726 (2015)
  95. An antithrombin-heparin complex increases the anticoagulant activity of fibrin clots. Smith LJ, Mewhort-Buist TA, Berry LR, Chan AK. Res Lett Biochem 2008 639829 (2008)
  96. Crystallization and crystallographic studies of kallistatin. Lin F, Zhou A, Wei Z. Acta Crystallogr F Struct Biol Commun 71 1135-1138 (2015)
  97. Early Changes in the Antithrombin and Thrombin-Antithrombin Complex in Patients With Paroxysmal Atrial Fibrillation. Negreva M, Georgiev S, Prodanova K, Nikolova J. Cardiol Res 7 89-94 (2016)
  98. Fluorescent reporters of thrombin, heparin cofactor II, and heparin binding in a ternary complex. Verhamme IM. Anal Biochem 421 489-498 (2012)
  99. Heparin stimulates biofilm formation of Escherichia coli strain Nissle 1917. Wu D, Li X, Yu Y, Gong B, Zhou X. Biotechnol Lett 43 235-246 (2021)
  100. Identification and function probing of an antithrombin IIIβ conformation-specific antibody. Jin Y, Yegneswaran S, Gu JM, Gritzan U, Schönfeld DL, Paz P, Patel C, Dittmer F, Strerath M, Bringmann P, Kauser K, Myles T, Murphy JE, Hermiston TW. J Thromb Haemost 14 356-365 (2016)
  101. Investigation of the heparin-thrombin interaction by dynamic force spectroscopy. Wang C, Jin Y, Desai UR, Yadavalli VK. Biochim Biophys Acta 1850 1099-1106 (2015)
  102. Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides. Zhu S, Li J, Loka RS, Song Z, Vlodavsky I, Zhang K, Nguyen HM. J Med Chem 63 4227-4255 (2020)
  103. Structure and function of fibrinogen BβN-domains. Medved L, Yakovlev S. Ukr Biochem J 92 22-32 (2020)
  104. A novel variation of SERPINC1 caused deep venous thrombosis in a Chinese family: A case report. Peng Y, Wang T, Zheng Y, Lian A, Zhang D, Xiong Z, Hu Z, Xia K, Shu C. Medicine (Baltimore) 98 e13999 (2019)
  105. Effects of Heparin and Bivalirudin on Thrombin-Induced Platelet Activation: Differential Modulation of PAR Signaling Drives Divergent Prothrombotic Responses. Lund M, Macwan AS, Tunströmer K, Lindahl TL, Boknäs N. Front Cardiovasc Med 8 717835 (2021)
  106. Energetics of hydrogen bond switch, residue burial and cavity analysis reveals molecular basis of improved heparin binding to antithrombin. Singh P, Singh K, Jairajpuri MA. J Biomol Struct Dyn 29 339-350 (2011)
  107. Extended Physicochemical Characterization of the Synthetic Anticoagulant Pentasaccharide Fondaparinux Sodium by Quantitative NMR and Single Crystal X-ray Analysis. Wildt W, Kooijman H, Funke C, Üstün B, Leika A, Lunenburg M, Kaspersen F, Kellenbach E. Molecules 22 E1362 (2017)
  108. Inhibition of platelet-surface-bound proteins during coagulation under flow II: Antithrombin and heparin. Miyazawa K, Fogelson AL, Leiderman K. Biophys J 122 230-240 (2023)
  109. Size matters. Gruber A, Tucker EI. Blood 118 6481-6482 (2011)
  110. Synthesis of N-heteroaroyl aminosaccharide derivatives as fibroblast growth factor 2 signaling modulators. Dong J, Yao S, Zhou X, Zhang L, Xu Y. Chem Pharm Bull (Tokyo) 58 1210-1215 (2010)
  111. Ixodes scapularis nymph saliva protein blocks host inflammation and complement-mediated killing of Lyme disease agent, Borrelia burgdorferi. Bencosme-Cuevas E, Kim TK, Nguyen TT, Berry J, Li J, Adams LG, Smith LA, Batool SA, Swale DR, Kaufmann SHE, Jones-Hall Y, Mulenga A. Front Cell Infect Microbiol 13 1253670 (2023)
  112. Assessing Genetic Algorithm-Based Docking Protocols for Prediction of Heparin Oligosaccharide Binding Geometries onto Proteins. Holmes SG, Desai UR. Biomolecules 13 1633 (2023)
  113. Cell adhesion and proliferation are reduced on stainless steel coated with polysaccharide-based polymeric formulations. Vicario PP, Lu Z, Grigorian I, Wang Z, Schottman T. J Biomed Mater Res B Appl Biomater 89 114-121 (2009)
  114. Characterization of Protein Z-Dependent Protease Inhibitor/Antithrombin Chimeras Provides Insight into the Serpin Specificity of Coagulation Proteases. Yang L, Rezaie AR. ACS Omega 2 3276-3283 (2017)
  115. Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function. Sankaranarayanan NV, Desai U. Methods Mol Biol 2303 513-537 (2022)
  116. Conformational transition of the Ixodes ricinus salivary serpin Iripin-4. Kascakova B, Kotal J, Havlickova P, Vopatkova V, Prudnikova T, Grinkevich P, Kuty M, Chmelar J, Kuta Smatanova I. Acta Crystallogr D Struct Biol 79 409-419 (2023)
  117. Crude Heparin Preparations Unveil the Presence of Structurally Diverse Oversulfated Contaminants. Mendes A, Meneghetti MCZ, Palladino MV, Justo GZ, Sassaki GL, Fareed J, Lima MA, Nader HB. Molecules 24 E2988 (2019)
  118. DNA accelerates the protease inhibition of a bacterial serpin chloropin. Xu J, Ye W, Yang TT, Yan T, Cai H, Zhou A, Yang Y. Front Mol Biosci 10 1157186 (2023)
  119. Hedgehogs like it sweet, too. Beenken A, Mohammadi M. Proc Natl Acad Sci U S A 103 17069-17070 (2006)
  120. Identification and characterization of a novel variant in C-terminal region of Antithrombin (Ala427Thr) associated with type II AT deficiency leading to polymer formation. Bhakuni T, Sharma A, Biswas A, Bano S, Mahapatra M, Saxena R, Jairajpuri MA. J Thromb Thrombolysis 50 678-685 (2020)
  121. Mutation of the H-helix in antithrombin decreases heparin stimulation of protease inhibition. Gonzales PR, Walston TD, Camacho LO, Kielar DM, Church FC, Rezaie AR, Cooper ST. Biochim Biophys Acta 1774 1431-1437 (2007)
  122. Polyphosphate scores a hat trick in regulating host defense mechanisms. Mutch NJ. J Thromb Haemost 10 1142-1144 (2012)
  123. Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation. Xu T, Ji H, Xu L, Cheng S, Liu X, Li Y, Zhong R, Zhao W, Kizhakkedathu JN, Zhao C. Nat Commun 14 4875 (2023)
  124. The Interaction of Factor Xa and IXa with Non-Activated Antithrombin in Michaelis Complex: Insights from Enhanced-Sampling Molecular Dynamics Simulations. Balogh G, Bereczky Z. Biomolecules 13 795 (2023)