1t5x Citations

A polymorphic pocket at the P10 position contributes to peptide binding specificity in class II MHC proteins.

Chem Biol 11 1395-402 (2004)

Abstract

Peptides bind to class II major histocompatibility complex (MHC) proteins in an extended conformation. Pockets in the peptide binding site spaced to accommodate peptide side chains at the P1, P4, P6, and P9 positions have been previously characterized and help to explain the obtained peptide binding specificity. However, two peptides differing only at P10 have significantly different binding affinities for HLA-DR1. The structure of HLA-DR1 in complex with the tighter binding peptide shows that the peptide binds in the usual polyproline type II conformation, but with the P10 residue accommodated in a shallow pocket at the end of the binding groove. HLA-DR1 variants with polymorphic residues at these positions were produced and found to exhibit different side chain specificity at the P10 position. These results define a new specificity position in HLA-DR proteins.

Articles - 1t5x mentioned but not cited (13)

  1. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O. PLoS Comput Biol 4 e1000107 (2008)
  2. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Immunogenetics 67 641-650 (2015)
  3. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. PLoS One 7 e30483 (2012)
  4. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. Oyarzún P, Ellis JJ, Bodén M, Kobe B. BMC Bioinformatics 14 52 (2013)
  5. Identification of the rheumatoid arthritis shared epitope binding site on calreticulin. Ling S, Cheng A, Pumpens P, Michalak M, Holoshitz J. PLoS One 5 e11703 (2010)
  6. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles. Shen WJ, Zhang S, Wong HS. Proteome Sci 11 S15 (2013)
  7. Predicting MHC-II binding affinity using multiple instance regression. EL-Manzalawy Y, Dobbs D, Honavar V. IEEE/ACM Trans Comput Biol Bioinform 8 1067-1079 (2011)
  8. A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information. Li Z, Zhao Y, Pan G, Tang J, Guo F. Biomed Res Int 2016 3832176 (2016)
  9. Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders. Ochoa R, Laskowski RA, Thornton JM, Cossio P. Front Mol Biosci 8 636562 (2021)
  10. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)
  11. Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Front Immunol 13 1023558 (2022)
  12. PepFun: Open Source Protocols for Peptide-Related Computational Analysis. Ochoa R, Cossio P. Molecules 26 1664 (2021)
  13. Connection between MHC class II binding and aggregation propensity: The antigenic peptide 10 of Paracoccidioides brasiliensis as a benchmark study. Ochoa R, Cardim-Pires TR, Sant'Anna R, Cossio P, Foguel D. Comput Struct Biotechnol J 21 1746-1758 (2023)


Reviews citing this publication (2)

  1. Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Painter CA, Stern LJ. Immunol Rev 250 144-157 (2012)
  2. HLA-DR: molecular insights and vaccine design. Stern LJ, Calvo-Calle JM. Curr Pharm Des 15 3249-3261 (2009)

Articles citing this publication (28)

  1. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. Levisetti MG, Suri A, Petzold SJ, Unanue ER. J Immunol 178 6051-6057 (2007)
  2. Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. J Immunol 184 2492-2503 (2010)
  3. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Venkatraman P, Nguyen TT, Sainlos M, Bilsel O, Chitta S, Imperiali B, Stern LJ. Nat Chem Biol 3 222-228 (2007)
  4. Model for the peptide-free conformation of class II MHC proteins. Painter CA, Cruz A, López GE, Stern LJ, Zavala-Ruiz Z. PLoS One 3 e2403 (2008)
  5. Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population. Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. J Immunol 185 4189-4198 (2010)
  6. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA, Koning F. J Immunol 180 3268-3278 (2008)
  7. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. Calvo-Calle JM, Strug I, Nastke MD, Baker SP, Stern LJ. PLoS Pathog 3 1511-1529 (2007)
  8. Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores. Salomon J, Flower DR. BMC Bioinformatics 7 501 (2006)
  9. BoLA-DR peptide binding pockets are fundamental for foot-and-mouth disease virus vaccine design in cattle. Baxter R, Craigmile SC, Haley C, Douglas AJ, Williams JL, Glass EJ. Vaccine 28 28-37 (2009)
  10. Peptide-MHC class II complex stability governs CD4 T cell clonal selection. Baumgartner CK, Ferrante A, Nagaoka M, Gorski J, Malherbe LP. J Immunol 184 573-581 (2010)
  11. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. Li Y, Depontieu FR, Sidney J, Salay TM, Engelhard VH, Hunt DF, Sette A, Topalian SL, Mariuzza RA. J Mol Biol 399 596-603 (2010)
  12. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Logunova NN, Kriukova VV, Shelyakin PV, Egorov ES, Pereverzeva A, Bozhanova NG, Shugay M, Shcherbinin DS, Pogorelyy MV, Merzlyak EM, Zubov VN, Meiler J, Chudakov DM, Apt AS, Britanova OV. Proc Natl Acad Sci U S A 117 13659-13669 (2020)
  13. Repertoire-scale determination of class II MHC peptide binding via yeast display improves antigen prediction. Rappazzo CG, Huisman BD, Birnbaum ME. Nat Commun 11 4414 (2020)
  14. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. iScience 11 160-177 (2019)
  15. Gauche(+) side-chain orientation as a key factor in the search for an immunogenic peptide mixture leading to a complete fully protective vaccine. Bermúdez A, Calderon D, Moreno-Vranich A, Almonacid H, Patarroyo MA, Poloche A, Patarroyo ME. Vaccine 32 2117-2126 (2014)
  16. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Clement CC, Nanaware PP, Yamazaki T, Negroni MP, Ramesh K, Morozova K, Thangaswamy S, Graves A, Kim HJ, Li TW, Vigano' M, Soni RK, Gadina M, Tse HY, Galluzzi L, Roche PA, Denzin LK, Stern LJ, Santambrogio L. Immunity 54 721-736.e10 (2021)
  17. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design. Hossain MS, Azad AK, Chowdhury PA, Wakayama M. Biomed Res Int 2017 4826030 (2017)
  18. A Newly Recognized Pairing Mechanism of the α- and β-Chains of the Chicken Peptide-MHC Class II Complex. Zhang L, Li X, Ma L, Zhang B, Meng G, Xia C. J Immunol 204 1630-1640 (2020)
  19. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead. Jones TD, Hearn AR, Holgate RGE, Kozub D, Fogg MH, Carr FJ, Baker MP, Lacadena J, Gehlsen KR. Protein Eng Des Sel 29 531-540 (2016)
  20. The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek's disease virus peptides by using an unprecedented binding motif. Halabi S, Ghosh M, Stevanović S, Rammensee HG, Bertzbach LD, Kaufer BB, Moncrieffe MC, Kaspers B, Härtle S, Kaufman J. PLoS Biol 19 e3001057 (2021)
  21. A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding. Huisman BD, Dai Z, Gifford DK, Birnbaum ME. Elife 11 e78589 (2022)
  22. Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets. Parry CS. BMC Struct Biol 8 44 (2008)
  23. Amino acid signatures in the Ovar-DRB1 peptide-binding pockets are associated with Ovine Pulmonary Adenocarcinoma susceptibility/resistance. Larruskain A, Minguijón E, Garcia-Etxebarria K, Arostegui I, Moreno B, Juste RA, Jugo BM. Biochem Biophys Res Commun 428 463-468 (2012)
  24. Machine learning optimization of peptides for presentation by class II MHCs. Dai Z, Huisman BD, Zeng H, Carter B, Jain S, Birnbaum ME, Gifford DK. Bioinformatics 37 3160-3167 (2021)
  25. Tuning DO:DM Ratios Modulates MHC Class II Immunopeptidomes. Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Mol Cell Proteomics 21 100204 (2022)
  26. Impact of HLA-DR Antigen Binding Cleft Rigidity on T Cell Recognition. Szeto C, Bloom JI, Sloane H, Lobos CA, Fodor J, Jayasinghe D, Chatzileontiadou DSM, Grant EJ, Buckle AM, Gras S. Int J Mol Sci 21 E7081 (2020)
  27. Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients. Prasad N, Yadav B, Prakash S, Yadav D, Singh A, Gautam S, Bhadauria D, Kaul A, Patel MR, Behera MR, Kushwaha RS, Yachha M. Vaccines (Basel) 10 1840 (2022)
  28. Loading dynamics of one SARS-CoV-2-derived peptide into MHC-II revealed by kinetic models. Song K, Xu H, Da LT. Biophys J 122 1665-1677 (2023)