1t49 Citations

Allosteric inhibition of protein tyrosine phosphatase 1B.

Nat Struct Mol Biol 11 730-7 (2004)
Related entries: 1t48, 1t4j

Cited: 265 times
EuropePMC logo PMID: 15258570

Abstract

Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B. Crystal structures of PTP1B in complex with allosteric inhibitors reveal a novel site located approximately 20 A from the catalytic site. We show that allosteric inhibitors prevent formation of the active form of the enzyme by blocking mobility of the catalytic loop, thereby exploiting a general mechanism used by tyrosine phosphatases. Notably, these inhibitors exhibit selectivity for PTP1B and enhance insulin signaling in cells. Allosteric inhibition is a promising strategy for targeting PTP1B and constitutes a mechanism that may be applicable to other tyrosine phosphatases.

Reviews - 1t49 mentioned but not cited (5)

  1. Protein tyrosine phosphatases: structure, function, and implication in human disease. Tautz L, Critton DA, Grotegut S. Methods Mol Biol 1053 179-221 (2013)
  2. Cryptic binding sites on proteins: definition, detection, and druggability. Vajda S, Beglov D, Wakefield AE, Egbert M, Whitty A. Curr Opin Chem Biol 44 1-8 (2018)
  3. Harnessing Conformational Plasticity to Generate Designer Enzymes. Crean RM, Gardner JM, Kamerlin SCL. J Am Chem Soc 142 11324-11342 (2020)
  4. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Liu R, Mathieu C, Berthelet J, Zhang W, Dupret JM, Rodrigues Lima F. Int J Mol Sci 23 7027 (2022)
  5. Recent applications of computational methods to allosteric drug discovery. Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Front Mol Biosci 9 1070328 (2022)

Articles - 1t49 mentioned but not cited (36)

  1. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 e36307 (2018)
  2. Exploring the structural origins of cryptic sites on proteins. Beglov D, Hall DR, Wakefield AE, Luo L, Allen KN, Kozakov D, Whitty A, Vajda S. Proc Natl Acad Sci U S A 115 E3416-E3425 (2018)
  3. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems. Ghanakota P, Carlson HA. J Phys Chem B 120 8685-8695 (2016)
  4. Binding leverage as a molecular basis for allosteric regulation. Mitternacht S, Berezovsky IN. PLoS Comput Biol 7 e1002148 (2011)
  5. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study. Paudel P, Yu T, Seong SH, Kuk EB, Jung HA, Choi JS. Int J Mol Sci 19 E1542 (2018)
  6. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium. Ali MY, Kim DH, Seong SH, Kim HR, Jung HA, Choi JS. Mar Drugs 15 E368 (2017)
  7. Loop Dynamics and Enzyme Catalysis in Protein Tyrosine Phosphatases. Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. J Am Chem Soc 143 3830-3845 (2021)
  8. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B. Jin T, Yu H, Huang XF. Sci Rep 6 20766 (2016)
  9. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics. Smith RD, Carlson HA. J Chem Inf Model 61 1287-1299 (2021)
  10. Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography. Keedy DA. Acta Crystallogr D Struct Biol 75 123-137 (2019)
  11. Potential of Icariin Metabolites from Epimedium koreanum Nakai as Antidiabetic Therapeutic Agents. Kim DH, Jung HA, Sohn HS, Kim JW, Choi JS. Molecules 22 E986 (2017)
  12. Significance of endangered and threatened plant natural products in the control of human disease. Ibrahim MA, Na M, Oh J, Schinazi RF, McBrayer TR, Whitaker T, Doerksen RJ, Newman DJ, Zachos LG, Hamann MT. Proc Natl Acad Sci U S A 110 16832-16837 (2013)
  13. Anti-Diabetic Activity of 2,3,6-Tribromo-4,5-Dihydroxybenzyl Derivatives from Symphyocladia latiuscula through PTP1B Downregulation and α-Glucosidase Inhibition. Paudel P, Seong SH, Park HJ, Jung HA, Choi JS. Mar Drugs 17 E166 (2019)
  14. Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites. Mishra SK, Kandoi G, Jernigan RL. Proteins 87 850-868 (2019)
  15. Experimental and Computational Study to Reveal the Potential of Non-Polar Constituents from Hizikia fusiformis as Dual Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitors. Seong SH, Nguyen DH, Wagle A, Woo MH, Jung HA, Choi JS. Mar Drugs 17 E302 (2019)
  16. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches. Shinde RN, Kumar GS, Eqbal S, Sobhia ME. PLoS One 13 e0199020 (2018)
  17. What can we learn from the evolution of protein-ligand interactions to aid the design of new therapeutics? Higueruelo AP, Schreyer A, Bickerton GR, Blundell TL, Pitt WR. PLoS One 7 e51742 (2012)
  18. Flavonoids and Terpenoids with PTP-1B Inhibitory Properties from the Infusion of Salvia amarissima Ortega. Salinas-Arellano E, Pérez-Vásquez A, Rivero-Cruz I, Torres-Colin R, González-Andrade M, Rangel-Grimaldo M, Mata R. Molecules 25 E3530 (2020)
  19. Does Fermentation Really Increase the Phenolic Content in Cereals? A Study on Millet. Balli D, Bellumori M, Pucci L, Gabriele M, Longo V, Paoli P, Melani F, Mulinacci N, Innocenti M. Foods 9 E303 (2020)
  20. Rubrofusarin as a Dual Protein Tyrosine Phosphate 1B and Human Monoamine Oxidase-A Inhibitor: An in Vitro and in Silico Study. Paudel P, Seong SH, Jung HA, Choi JS. ACS Omega 4 11621-11630 (2019)
  21. A Computer-Driven Scaffold-Hopping Approach Generating New PTP1B Inhibitors from the Pyrrolo[1,2-a]quinoxaline Core. García-Marín J, Griera M, Alajarín R, Rodríguez-Puyol M, Rodríguez-Puyol D, Vaquero JJ. ChemMedChem 16 2895-2906 (2021)
  22. Indole- and Pyrazole-Glycyrrhetinic Acid Derivatives as PTP1B Inhibitors: Synthesis, In Vitro and In Silico Studies. De-la-Cruz-Martínez L, Duran-Becerra C, González-Andrade M, Páez-Franco JC, Germán-Acacio JM, Espinosa-Chávez J, Torres-Valencia JM, Pérez-Villanueva J, Palacios-Espinosa JF, Soria-Arteche O, Cortés-Benítez F. Molecules 26 4375 (2021)
  23. Inhibition Mechanism of Components Isolated from Morus alba Branches on Diabetes and Diabetic Complications via Experimental and Molecular Docking Analyses. Kwon RH, Thaku N, Timalsina B, Park SE, Choi JS, Jung HA. Antioxidants (Basel) 11 383 (2022)
  24. Inhibition of PTP1B by farnesylated 2-arylbenzofurans isolated from Morus alba root bark: unraveling the mechanism of inhibition based on in vitro and in silico studies. Ha MT, Shrestha S, Tran TH, Kim JA, Woo MH, Choi JS, Min BS. Arch Pharm Res 43 961-975 (2020)
  25. Protein tyrosine phosphatase 1B targets PITX1/p120RasGAP thus showing therapeutic potential in colorectal carcinoma. Teng HW, Hung MH, Chen LJ, Chang MJ, Hsieh FS, Tsai MH, Huang JW, Lin CL, Tseng HW, Kuo ZK, Jiang JK, Yang SH, Shiau CW, Chen KF. Sci Rep 6 35308 (2016)
  26. Structural Bases for Hesperetin Derivatives: Inhibition of Protein Tyrosine Phosphatase 1B, Kinetics Mechanism and Molecular Docking Study. Ali MY, Jannat S, Jung HA, Choi JS. Molecules 26 7433 (2021)
  27. Structure-Based Analysis of Cryptic-Site Opening. Sun Z, Wakefield AE, Kolossvary I, Beglov D, Vajda S. Structure 28 223-235.e2 (2020)
  28. Insight into the PTP1B Inhibitory Activity of Arylbenzofurans: An In Vitro and In Silico Study. Shrestha S, Seong SH, Park SG, Min BS, Jung HA, Choi JS. Molecules 24 E2893 (2019)
  29. Protein tyrosine phosphatase 1B inhibitors from the fungus Malbranchea albolutea. Díaz-Rojas M, Raja H, González-Andrade M, Rivera-Chávez J, Rangel-Grimaldo M, Rivero-Cruz I, Mata R. Phytochemistry 184 112664 (2021)
  30. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Sharma S, Ebrahim A, Keedy DA. Acta Crystallogr F Struct Biol Commun 79 23-30 (2023)
  31. Synthesis, In Vitro Evaluation and Molecular Docking of the 5-Acetyl-2-aryl-6-hydroxybenzo[b]furans against Multiple Targets Linked to Type 2 Diabetes. Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S. Biomolecules 10 E418 (2020)
  32. The Effects of Persimmon (Diospyros kaki L.f.) Oligosaccharides on Features of the Metabolic Syndrome in Zebrafish. Nuankaew W, Lee HK, Nam YH, Shim JH, Kim NW, Shin SW, Kim MC, Shin SY, Hong BN, Dej-Adisai S, Kwak JH, Kang TH. Nutrients 14 3249 (2022)
  33. Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure-Activity Relationship. Rath P, Ranjan A, Ghosh A, Chauhan A, Gurnani M, Tuli HS, Habeeballah H, Alkhanani MF, Haque S, Dhama K, Verma NK, Jindal T. Molecules 27 2212 (2022)
  34. α-Glucosidase and PTP-1B Inhibitors from Malbranchea dendritica. Rebollar-Ramos D, Ovalle-Magallanes B, Palacios-Espinosa JF, Macías-Rubalcava ML, Raja HA, González-Andrade M, Mata R. ACS Omega 6 22969-22981 (2021)
  35. An Arylbenzofuran, Stilbene Dimers, and Prenylated Diels-Alder Adducts as Potent Diabetic Inhibitors from Morus bombycis Leaves. Ju SM, Ali MY, Ko SM, Ryu JH, Choi JS, Jung HA. Antioxidants (Basel) 12 837 (2023)
  36. research-article Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Woods VA, Abzalimov RR, Keedy DA. bioRxiv 2023.07.12.548582 (2023)


Reviews citing this publication (33)

  1. Protein tyrosine phosphatases: from genes, to function, to disease. Tonks NK. Nat Rev Mol Cell Biol 7 833-846 (2006)
  2. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. Tonks NK. FEBS J 280 346-378 (2013)
  3. Protein tyrosine phosphatase function: the substrate perspective. Tiganis T, Bennett AM. Biochem J 402 1-15 (2007)
  4. Protein tyrosine phosphatases as potential therapeutic targets. He RJ, Yu ZH, Zhang RY, Zhang ZY. Acta Pharmacol Sin 35 1227-1246 (2014)
  5. Rational approaches to improving selectivity in drug design. Huggins DJ, Sherman W, Tidor B. J Med Chem 55 1424-1444 (2012)
  6. The cell biology of Trypanosoma brucei differentiation. Fenn K, Matthews KR. Curr Opin Microbiol 10 539-546 (2007)
  7. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Antioxid Redox Signal 15 77-97 (2011)
  8. Targeting Tyrosine Phosphatases: Time to End the Stigma. Stanford SM, Bottini N. Trends Pharmacol Sci 38 524-540 (2017)
  9. Protein tyrosine phosphatases: structure-function relationships. Tabernero L, Aricescu AR, Jones EY, Szedlacsek SE. FEBS J 275 867-882 (2008)
  10. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Zhang ZY, Dodd GT, Tiganis T. Trends Pharmacol Sci 36 661-674 (2015)
  11. Lipid phosphatases as drug discovery targets for type 2 diabetes. Lazar DF, Saltiel AR. Nat Rev Drug Discov 5 333-342 (2006)
  12. The therapeutic potential of phosphatase inhibitors. Vintonyak VV, Antonchick AP, Rauh D, Waldmann H. Curr Opin Chem Biol 13 272-283 (2009)
  13. Harnessing allostery: a novel approach to drug discovery. Lu S, Li S, Zhang J. Med Res Rev 34 1242-1285 (2014)
  14. Allostery in enzyme catalysis. Lisi GP, Loria JP. Curr Opin Struct Biol 47 123-130 (2017)
  15. Role of protein tyrosine phosphatase 1B in cardiovascular diseases. Thiebaut PA, Besnier M, Gomez E, Richard V. J Mol Cell Cardiol 101 50-57 (2016)
  16. Natural compounds as a source of protein tyrosine phosphatase inhibitors: application to the rational design of small-molecule derivatives. Ferreira CV, Justo GZ, Souza AC, Queiroz KC, Zambuzzi WF, Aoyama H, Peppelenbosch MP. Biochimie 88 1859-1873 (2006)
  17. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of "Big Pharma" Drug Research? A Critical Review. Scior T, Guevara-Garcia JA, Do QT, Bernard P, Laufer S. Curr Med Chem 23 2874-2891 (2016)
  18. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I. Curr Med Chem 15 2536-2544 (2008)
  19. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Eleftheriou P, Geronikaki A, Petrou A. Curr Top Med Chem 19 246-263 (2019)
  20. Protein tyrosine phosphatase inhibitors: a patent review (2002 - 2011). Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Expert Opin Ther Pat 22 125-153 (2012)
  21. Protein tyrosine phosphatases in cell adhesion. Young KA, Biggins L, Sharpe HJ. Biochem J 478 1061-1083 (2021)
  22. Bidentate inhibitors of protein tyrosine phosphatases. Low JL, Chai CL, Yao SQ. Antioxid Redox Signal 20 2225-2250 (2014)
  23. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Tautz L, Senis YA, Oury C, Rahmouni S. Bioorg Med Chem 23 2786-2797 (2015)
  24. Structure and catalytic mechanism of human protein tyrosine phosphatome. Kim SJ, Ryu SE. BMB Rep 45 693-699 (2012)
  25. Non-peptidyl insulin mimetics as a potential antidiabetic agent. Nankar RP, Doble M. Drug Discov Today 18 748-755 (2013)
  26. Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs. Genovese M, Nesi I, Caselli A, Paoli P. Molecules 26 4818 (2021)
  27. Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Campos-Almazán MI, Hernández-Campos A, Castillo R, Sierra-Campos E, Valdez-Solana M, Avitia-Domínguez C, Téllez-Valencia A. Pharmaceuticals (Basel) 15 866 (2022)
  28. Loop dynamics and the evolution of enzyme activity. Corbella M, Pinto GP, Kamerlin SCL. Nat Rev Chem 7 536-547 (2023)
  29. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Cancers (Basel) 12 E2799 (2020)
  30. Protein tyrosine phosphatases in cardiac physiology and pathophysiology. Wade F, Belhaj K, Poizat C. Heart Fail Rev 23 261-272 (2018)
  31. Protein Tyrosine Phosphatases: A new paradigm in an old signaling system? Welsh CL, Pandey P, Ahuja LG. Adv Cancer Res 152 263-303 (2021)
  32. Inhibiting Protein Tyrosine Phosphatase 1B to Improve Regenerative Functions of Endothelial Cells. Wang Y, Yan F, Zhang W, Pang S, Jiang F. J Cardiovasc Pharmacol 71 59-64 (2018)
  33. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Maccari R, Ottanà R. Int J Mol Sci 24 9621 (2023)

Articles citing this publication (191)

  1. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss CM, Page R, Blackledge M, Muthuswamy SK, Peti W, Tonks NK. Nat Chem Biol 10 558-566 (2014)
  2. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE, Tonks NK, Mazar AP, Doñate F. Proc Natl Acad Sci U S A 105 7147-7152 (2008)
  3. Discovery of an allosteric site in the caspases. Hardy JA, Lam J, Nguyen JT, O'Brien T, Wells JA. Proc Natl Acad Sci U S A 101 12461-12466 (2004)
  4. Marburg virus evades interferon responses by a mechanism distinct from ebola virus. Valmas C, Grosch MN, Schümann M, Olejnik J, Martinez O, Best SM, Krähling V, Basler CF, Mühlberger E. PLoS Pathog 6 e1000721 (2010)
  5. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites. Cimermancic P, Weinkam P, Rettenmaier TJ, Bichmann L, Keedy DA, Woldeyes RA, Schneidman-Duhovny D, Demerdash ON, Mitchell JC, Wells JA, Fraser JS, Sali A. J Mol Biol 428 709-719 (2016)
  6. Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Bakan A, Nevins N, Lakdawala AS, Bahar I. J Chem Theory Comput 8 2435-2447 (2012)
  7. Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Chan KX, Mabbitt PD, Phua SY, Mueller JW, Nisar N, Gigolashvili T, Stroeher E, Grassl J, Arlt W, Estavillo GM, Jackson CJ, Pogson BJ. Proc Natl Acad Sci U S A 113 E4567-76 (2016)
  8. Protein tyrosine phosphatase TbPTP1: A molecular switch controlling life cycle differentiation in trypanosomes. Szöor B, Wilson J, McElhinney H, Tabernero L, Matthews KR. J Cell Biol 175 293-303 (2006)
  9. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. Brecher M, Li Z, Liu B, Zhang J, Koetzner CA, Alifarag A, Jones SA, Lin Q, Kramer LD, Li H. PLoS Pathog 13 e1006411 (2017)
  10. Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. Daily MD, Gray JJ. PLoS Comput Biol 5 e1000293 (2009)
  11. Oleanolic acid and its derivatives: new inhibitor of protein tyrosine phosphatase 1B with cellular activities. Zhang YN, Zhang W, Hong D, Shi L, Shen Q, Li JY, Li J, Hu LH. Bioorg Med Chem 16 8697-8705 (2008)
  12. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, Pawling J, Zhang W, Sinha A, Rose CM, Isasa M, Zhang S, Wu R, Virtanen C, Hitomi T, Habu T, Sidhu SS, Koizumi A, Wilkins SE, Kislinger T, Gygi SP, Schofield CJ, Dennis JW, Wouters BG, Neel BG. Nat Cell Biol 18 803-813 (2016)
  13. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Choy MS, Li Y, Machado LESF, Kunze MBA, Connors CR, Wei X, Lindorff-Larsen K, Page R, Peti W. Mol Cell 65 644-658.e5 (2017)
  14. Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages. Del Sol A, Araúzo-Bravo MJ, Amoros D, Nussinov R. Genome Biol 8 R92 (2007)
  15. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. Steegborn C, Litvin TN, Hess KC, Capper AB, Taussig R, Buck J, Levin LR, Wu H. J Biol Chem 280 31754-31759 (2005)
  16. Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. Swaney JS, Patel HH, Yokoyama U, Head BP, Roth DM, Insel PA. J Biol Chem 281 17173-17179 (2006)
  17. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Eswaran J, von Kries JP, Marsden B, Longman E, Debreczeni JE, Ugochukwu E, Turnbull A, Lee WH, Knapp S, Barr AJ. Biochem J 395 483-491 (2006)
  18. Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells. Dalton GD, Howlett AC. Br J Pharmacol 165 2497-2511 (2012)
  19. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. de Jong PR, Takahashi N, Harris AR, Lee J, Bertin S, Jeffries J, Jung M, Duong J, Triano AI, Lee J, Niv Y, Herdman DS, Taniguchi K, Kim CW, Dong H, Eckmann L, Stanford SM, Bottini N, Corr M, Raz E. J Clin Invest 124 3793-3806 (2014)
  20. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. Beresford NJ, Mulhearn D, Szczepankiewicz B, Liu G, Johnson ME, Fordham-Skelton A, Abad-Zapatero C, Cavet JS, Tabernero L. J Antimicrob Chemother 63 928-936 (2009)
  21. Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, Bastiaens PI. PLoS One 7 e36633 (2012)
  22. 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Maccari R, Paoli P, Ottanà R, Jacomelli M, Ciurleo R, Manao G, Steindl T, Langer T, Vigorita MG, Camici G. Bioorg Med Chem 15 5137-5149 (2007)
  23. A molecular dynamics study of WPD-loop flexibility in PTP1B. Kamerlin SC, Rucker R, Boresch S. Biochem Biophys Res Commun 356 1011-1016 (2007)
  24. Targeting inactive enzyme conformation: aryl diketoacid derivatives as a new class of PTP1B inhibitors. Liu S, Zeng LF, Wu L, Yu X, Xue T, Gunawan AM, Long YQ, Zhang ZY. J Am Chem Soc 130 17075-17084 (2008)
  25. Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cells. Stanford SM, Krishnamurthy D, Falk MD, Messina R, Debnath B, Li S, Liu T, Kazemi R, Dahl R, He Y, Yu X, Chan AC, Zhang ZY, Barrios AM, Woods VL, Neamati N, Bottini N. J Med Chem 54 1640-1654 (2011)
  26. The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone. Tadjuidje E, Wang TS, Pandey RN, Sumanas S, Lang RA, Hegde RS. PLoS One 7 e34806 (2012)
  27. Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. Ferrari E, Tinti M, Costa S, Corallino S, Nardozza AP, Chatraryamontri A, Ceol A, Cesareni G, Castagnoli L. J Biol Chem 286 4173-4185 (2011)
  28. Targeting PTPRZ inhibits stem cell-like properties and tumorigenicity in glioblastoma cells. Fujikawa A, Sugawara H, Tanaka T, Matsumoto M, Kuboyama K, Suzuki R, Tanga N, Ogata A, Masumura M, Noda M. Sci Rep 7 5609 (2017)
  29. Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Florez JC, Agapakis CM, Burtt NP, Sun M, Almgren P, Råstam L, Tuomi T, Gaudet D, Hudson TJ, Daly MJ, Ardlie KG, Hirschhorn JN, Groop L, Altshuler D. Diabetes 54 1884-1891 (2005)
  30. MAPK-specific tyrosine phosphatases: new targets for drug discovery? Barr AJ, Knapp S. Trends Pharmacol Sci 27 525-530 (2006)
  31. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. Cui DS, Beaumont V, Ginther PS, Lipchock JM, Loria JP. J Mol Biol 429 2360-2372 (2017)
  32. Structure-based design of protein tyrosine phosphatase-1B inhibitors. Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, Godfrey L, Kenny PW, Morley AD, Minshull CA, Pannifer AD, Read J, Rees A, Russell DJ, Toader D, Tucker J. Bioorg Med Chem Lett 15 2503-2507 (2005)
  33. Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. Rajala RV, Tanito M, Neel BG, Rajala A. J Biol Chem 285 8894-8904 (2010)
  34. Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Na M, Oh WK, Kim YH, Cai XF, Kim S, Kim BY, Ahn JS. Bioorg Med Chem Lett 16 3061-3064 (2006)
  35. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH, Chen KF. Hepatology 63 1528-1543 (2016)
  36. Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. Li S, Depetris RS, Barford D, Chernoff J, Hubbard SR. Structure 13 1643-1651 (2005)
  37. The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B. Li S, Zhang J, Lu S, Huang W, Geng L, Shen Q, Zhang J. PLoS One 9 e97668 (2014)
  38. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD, Jo S, Lakkaraju SK, Lind C, Yu W. Biochim Biophys Acta Gen Subj 1864 129519 (2020)
  39. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Chio CM, Lim CS, Bishop AC. Biochemistry 54 497-504 (2015)
  40. Unraveling hidden regulatory sites in structurally homologous metalloproteases. Udi Y, Fragai M, Grossman M, Mitternacht S, Arad-Yellin R, Calderone V, Melikian M, Toccafondi M, Berezovsky IN, Luchinat C, Sagi I. J Mol Biol 425 2330-2346 (2013)
  41. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Krishnan N, Bonham CA, Rus IA, Shrestha OK, Gauss CM, Haque A, Tocilj A, Joshua-Tor L, Tonks NK. Nat Commun 9 283 (2018)
  42. Site-specific incorporation of allosteric-inhibition sites in a protein tyrosine phosphatase. Zhang XY, Bishop AC. J Am Chem Soc 129 3812-3813 (2007)
  43. Using small molecules to target protein phosphatases. Vintonyak VV, Waldmann H, Rauh D. Bioorg Med Chem 19 2145-2155 (2011)
  44. A LC/QTOF-MS/MS application to investigate chemical compositions in a fraction with protein tyrosine phosphatase 1B inhibitory activity from Rosa rugosa flowers. Gu D, Yang Y, Bakri M, Chen Q, Xin X, Aisa HA. Phytochem Anal 24 661-670 (2013)
  45. A targeted molecular dynamics study of WPD loop movement in PTP1B. Kamerlin SC, Rucker R, Boresch S. Biochem Biophys Res Commun 345 1161-1166 (2006)
  46. Dynamics of the WPD loop of the Yersinia protein tyrosine phosphatase. Hu X, Stebbins CE. Biophys J 91 948-956 (2006)
  47. Hyrtiosal, a PTP1B inhibitor from the marine sponge Hyrtios erectus, shows extensive cellular effects on PI3K/AKT activation, glucose transport, and TGFbeta/Smad2 signaling. Sun T, Wang Q, Yu Z, Zhang Y, Guo Y, Chen K, Shen X, Jiang H. Chembiochem 8 187-193 (2007)
  48. Uncovering the Molecular Interactions in the Catalytic Loop That Modulate the Conformational Dynamics in Protein Tyrosine Phosphatase 1B. Cui DS, Lipchock JM, Brookner D, Loria JP. J Am Chem Soc 141 12634-12647 (2019)
  49. pTyr421 cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of non-receptor type 1 protein tyrosine phosphatase (PTPN1). Radhakrishnan VM, Kojs P, Young G, Ramalingam R, Jagadish B, Mash EA, Martinez JD, Ghishan FK, Kiela PR. PLoS One 9 e85796 (2014)
  50. CB₁ cannabinoid receptors promote maximal FAK catalytic activity by stimulating cooperative signaling between receptor tyrosine kinases and integrins in neuronal cells. Dalton GD, Peterson LJ, Howlett AC. Cell Signal 25 1665-1677 (2013)
  51. Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata. Quang TH, Ngan NT, Yoon CS, Cho KH, Kang DG, Lee HS, Kim YC, Oh H. Molecules 20 11173-11183 (2015)
  52. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ. J Ethnopharmacol 171 28-36 (2015)
  53. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B. Carmichael JC, Yokota H, Craven RC, Schmitt A, Wills JW. PLoS Pathog 14 e1007054 (2018)
  54. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases. Zhang Y, Li Y, Guo YW, Jiang HL, Shen X. Acta Pharmacol Sin 30 333-345 (2009)
  55. Characterization and inhibitor discovery of one novel malonyl-CoA: acyl carrier protein transacylase (MCAT) from Helicobacter pylori. Liu W, Han C, Hu L, Chen K, Shen X, Jiang H. FEBS Lett 580 697-702 (2006)
  56. Site-specific disulfide capture of agonist and antagonist peptides on the C5a receptor. Buck E, Bourne H, Wells JA. J Biol Chem 280 4009-4012 (2005)
  57. Structural and mutational studies of organophosphorus hydrolase reveal a cryptic and functional allosteric-binding site. Grimsley JK, Calamini B, Wild JR, Mesecar AD. Arch Biochem Biophys 442 169-179 (2005)
  58. Structure-activity relationships of benzbromarone metabolites and derivatives as EYA inhibitory anti-angiogenic agents. Pandey RN, Wang TS, Tadjuidje E, McDonald MG, Rettie AE, Hegde RS. PLoS One 8 e84582 (2013)
  59. Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives. Stuible M, Zhao L, Aubry I, Schmidt-Arras D, Böhmer FD, Li CJ, Tremblay ML. Chembiochem 8 179-186 (2007)
  60. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. Koh CY, Kim JE, Napoli AJ, Verlinde CL, Fan E, Buckner FS, Van Voorhis WC, Hol WG. Mol Biochem Parasitol 189 26-32 (2013)
  61. Alpha7 helix plays an important role in the conformational stability of PTP1B. Olmez EO, Alakent B. J Biomol Struct Dyn 28 675-693 (2011)
  62. Development of inhibitors of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) as candidates for CNS disorders. Pastor M, Fernández-Calle R, Di Geronimo B, Vicente-Rodríguez M, Zapico JM, Gramage E, Coderch C, Pérez-García C, Lasek AW, Puchades-Carrasco L, Pineda-Lucena A, de Pascual-Teresa B, Herradón G, Ramos A. Eur J Med Chem 144 318-329 (2018)
  63. Functional impact of PTP1B-mediated Src regulation on oxidative phosphorylation in rat brain mitochondria. Hébert Chatelain E, Dupuy JW, Letellier T, Dachary-Prigent J. Cell Mol Life Sci 68 2603-2613 (2011)
  64. Prolactin enhances insulin-like growth factor I receptor phosphorylation by decreasing its association with the tyrosine phosphatase SHP-2 in MCF-7 breast cancer cells. Carver KC, Piazza TM, Schuler LA. J Biol Chem 285 8003-8012 (2010)
  65. Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Seo C, Sohn JH, Ahn JS, Yim JH, Lee HK, Oh H. Bioorg Med Chem Lett 19 2801-2803 (2009)
  66. Oleanolic acid derivative NPLC441 potently stimulates glucose transport in 3T3-L1 adipocytes via a multi-target mechanism. Lin Z, Zhang Y, Zhang Y, Shen H, Hu L, Jiang H, Shen X. Biochem Pharmacol 76 1251-1262 (2008)
  67. Protein tyrosine phosphatase 1B inhibitory activity of amentoflavone and its cellular effect on tyrosine phosphorylation of insulin receptors. Na M, Kim KA, Oh H, Kim BY, Oh WK, Ahn JS. Biol Pharm Bull 30 379-381 (2007)
  68. IGF-1R modulation of acute GH-induced STAT5 signaling: role of protein tyrosine phosphatase activity. Gan Y, Zhang Y, Buckels A, Paterson AJ, Jiang J, Clemens TL, Zhang ZY, Du K, Chang Y, Frank SJ. Mol Endocrinol 27 1969-1979 (2013)
  69. Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans. Yang S, Na MK, Jang JP, Kim KA, Kim BY, Sung NJ, Oh WK, Ahn JS. Phytother Res 20 680-682 (2006)
  70. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling. Bharatham K, Bharatham N, Kwon YJ, Lee KW. J Comput Aided Mol Des 22 925-933 (2008)
  71. Rhododendric acid A, a new ursane-type PTP1B inhibitor from the endangered plant Rhododendron brachycarpum G. Don. Choi YH, Zhou W, Oh J, Choe S, Kim DW, Lee SH, Na M. Bioorg Med Chem Lett 22 6116-6119 (2012)
  72. Binding and discerning interactions of PTP1B allosteric inhibitors: novel insights from molecular dynamics simulations. Shinde RN, Sobhia ME. J Mol Graph Model 45 98-110 (2013)
  73. Chemical Constituents of Euonymus alatus (Thunb.) Sieb. and Their PTP1B and α-Glucosidase Inhibitory Activities. Jeong SY, Nguyen PH, Zhao BT, Ali MY, Choi JS, Min BS, Woo MH. Phytother Res 29 1540-1548 (2015)
  74. Druggability analysis and classification of protein tyrosine phosphatase active sites. Ghattas MA, Raslan N, Sadeq A, Al Sorkhy M, Atatreh N. Drug Des Devel Ther 10 3197-3209 (2016)
  75. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory ( Cichorium intybus) salad leaves. Muthusamy VS, Saravanababu C, Ramanathan M, Bharathi Raja R, Sudhagar S, Anand S, Lakshmi BS. Br J Nutr 104 813-823 (2010)
  76. Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Mechchate H, Es-Safi I, Mohamed Al Kamaly O, Bousta D. Molecules 26 1932 (2021)
  77. PTPσ inhibitors promote hematopoietic stem cell regeneration. Zhang Y, Roos M, Himburg H, Termini CM, Quarmyne M, Li M, Zhao L, Kan J, Fang T, Yan X, Pohl K, Diers E, Jin Gim H, Damoiseaux R, Whitelegge J, McBride W, Jung ME, Chute JP. Nat Commun 10 3667 (2019)
  78. Cosolvent Analysis Toolkit (CAT): a robust hotspot identification platform for cosolvent simulations of proteins to expand the druggable proteome. Sabanés Zariquiey F, de Souza JV, Bronowska AK. Sci Rep 9 19118 (2019)
  79. High-Throughput Screening (HTS) by NMR Guided Identification of Novel Agents Targeting the Protein Docking Domain of YopH. Bottini A, Wu B, Barile E, De SK, Leone M, Pellecchia M. ChemMedChem 11 919-927 (2016)
  80. In vitro effects of cinnamic acid derivatives on protein tyrosine phosphatase 1B. Adisakwattana S, Pongsuwan J, Wungcharoen C, Yibchok-anun S. J Enzyme Inhib Med Chem 28 1067-1072 (2013)
  81. (+)-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice. Zhang Y, Zhang H, Yao XG, Shen H, Chen J, Li C, Chen L, Zheng M, Ye J, Hu L, Shen X, Jiang H. PLoS One 7 e31811 (2012)
  82. Potent and selective inhibition of T-cell protein tyrosine phosphatase (TCPTP) by a dinuclear copper(II) complex. Yuan C, Zhu M, Wang Q, Lu L, Xing S, Fu X, Jiang Z, Zhang S, Li Z, Li Z, Zhu R, Ma L, Xu L. Chem Commun (Camb) 48 1153-1155 (2012)
  83. Synthesis of triazole-linked beta-C-glycosyl dimers as inhibitors of PTP1B. Lin L, Shen Q, Chen GR, Xie J. Bioorg Med Chem 16 9757-9763 (2008)
  84. The role of the C-terminal domain of protein tyrosine phosphatase-1B in phosphatase activity and substrate binding. Picha KM, Patel SS, Mandiyan S, Koehn J, Wennogle LP. J Biol Chem 282 2911-2917 (2007)
  85. Toward an understanding of the sequence and structural basis of allosteric proteins. Li X, Chen Y, Lu S, Huang Z, Liu X, Wang Q, Shi T, Zhang J. J Mol Graph Model 40 30-39 (2013)
  86. Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential. Qurtam AA, Mechchate H, Es-Safi I, Al-Zharani M, Nasr FA, Noman OM, Aleissa M, Imtara H, Aleissa AM, Bouhrim M, Alqahtani AS. Pharmaceutics 13 1818 (2021)
  87. Compromised E-cadherin adhesion and epithelial barrier function with activation of G protein-coupled receptors is rescued by Y-to-F mutations in beta-catenin. Winter MC, Shasby S, Shasby DM. Am J Physiol Lung Cell Mol Physiol 294 L442-8 (2008)
  88. Conserved conformational dynamics determine enzyme activity. Torgeson KR, Clarkson MW, Granata D, Lindorff-Larsen K, Page R, Peti W. Sci Adv 8 eabo5546 (2022)
  89. Cooperative dynamics across distinct structural elements regulate PTP1B activity. Torgeson KR, Clarkson MW, Kumar GS, Page R, Peti W. J Biol Chem 295 13829-13837 (2020)
  90. Methylenedisalicylic acid derivatives: new PTP1B inhibitors that confer resistance to diet-induced obesity. Shrestha S, Bhattarai BR, Chang KJ, Lee KH, Cho H. Bioorg Med Chem Lett 17 2760-2764 (2007)
  91. Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity. Jeon YM, Lee S, Kim S, Kwon Y, Kim K, Chung CG, Lee S, Lee SB, Kim HJ. Mol Cells 40 280-290 (2017)
  92. PTP1B inhibitory effects of tridepside and related metabolites isolated from the Antarctic lichen Umbilicaria antarctica. Seo C, Choi YH, Ahn JS, Yim JH, Lee HK, Oh H. J Enzyme Inhib Med Chem 24 1133-1137 (2009)
  93. Small molecule receptor protein tyrosine phosphatase γ (RPTPγ) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. Sheriff S, Beno BR, Zhai W, Kostich WA, McDonnell PA, Kish K, Goldfarb V, Gao M, Kiefer SE, Yanchunas J, Huang Y, Shi S, Zhu S, Dzierba C, Bronson J, Macor JE, Appiah KK, Westphal RS, O'Connell J, Gerritz SW. J Med Chem 54 6548-6562 (2011)
  94. Sustained high protein-tyrosine phosphatase 1B activity in the sperm of obese males impairs the sperm acrosome reaction. Shi L, Zhang Q, Xu B, Jiang X, Dai Y, Zhang CY, Zen K. J Biol Chem 289 8432-8441 (2014)
  95. Synthesis, in vitro and computational studies of protein tyrosine phosphatase 1B inhibition of a small library of 2-arylsulfonylaminobenzothiazoles with antihyperglycemic activity. Navarrete-Vazquez G, Paoli P, León-Rivera I, Villalobos-Molina R, Medina-Franco JL, Ortiz-Andrade R, Estrada-Soto S, Estrada-Soto S, Camici G, Diaz-Coutiño D, Gallardo-Ortiz I, Martinez-Mayorga K, Moreno-Díaz H. Bioorg Med Chem 17 3332-3341 (2009)
  96. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor. Kuban-Jankowska A, Sahu KK, Gorska M, Tuszynski JA, Wozniak M. Oncotarget 7 2229-2238 (2016)
  97. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells. Hilmarsdottir B, Briem E, Halldorsson S, Kricker J, Ingthorsson S, Gustafsdottir S, Mælandsmo GM, Magnusson MK, Gudjonsson T. Cell Death Dis 8 e2769 (2017)
  98. Ohioensins F and G: protein tyrosine phosphatase 1B inhibitory benzonaphthoxanthenones from the Antarctic moss Polytrichastrum alpinum. Seo C, Choi YH, Sohn JH, Ahn JS, Yim JH, Lee HK, Oh H. Bioorg Med Chem Lett 18 772-775 (2008)
  99. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. Eleftheriou P, Petrou A, Geronikaki A, Liaras K, Dirnali S, Anna M. SAR QSAR Environ Res 26 557-576 (2015)
  100. RPTPα phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. Wen Y, Yang S, Wakabayashi K, Svensson MND, Stanford SM, Santelli E, Bottini N. J Biol Chem 295 4923-4936 (2020)
  101. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases. Chio CM, Yu X, Bishop AC. Bioorg Med Chem 23 2828-2838 (2015)
  102. Biochemical characterization of a protein tyrosine phosphatase from Trypanosoma cruzi involved in metacyclogenesis and cell invasion. Gallo G, Ramos TC, Tavares F, Rocha AA, Machi E, Schenkman S, Bahia D, Pesquero JB, Würtele M. Biochem Biophys Res Commun 408 427-431 (2011)
  103. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid. Lipchock JM, Hendrickson HP, Douglas BB, Bird KE, Ginther PS, Rivalta I, Ten NS, Batista VS, Loria JP. Biochemistry 56 96-106 (2017)
  104. Design, synthesis and insulin-sensitising effects of novel PTP1B inhibitors. Tang YB, Lu D, Chen Z, Hu C, Yang Y, Tian JY, Ye F, Wu L, Zhang ZY, Xiao Z. Bioorg Med Chem Lett 23 2313-2318 (2013)
  105. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling. Erbe DV, Klaman LD, Wilson DP, Wan ZK, Kirincich SJ, Will S, Xu X, Kung L, Wang S, Tam S, Lee J, Tobin JF. Diabetes Obes Metab 11 579-588 (2009)
  106. Protein tyrosine phosphatase 1B inhibitory activity of 24-norursane triterpenes isolated from Weigela subsessilis. Na M, Thuong PT, Hwang IH, Bae K, Kim BY, Osada H, Ahn JS. Phytother Res 24 1716-1719 (2010)
  107. The Allosteric Site on SHP2's Protein Tyrosine Phosphatase Domain is Targetable with Druglike Small Molecules. Marsh-Armstrong B, Fajnzylber JM, Korntner S, Plaman BA, Bishop AC. ACS Omega 3 15763-15770 (2018)
  108. The mode of action of the Protein tyrosine phosphatase 1B inhibitor Ertiprotafib. Kumar GS, Page R, Peti W. PLoS One 15 e0240044 (2020)
  109. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Eur J Med Chem 122 756-769 (2016)
  110. Kinetics and molecular docking studies of pimarane-type diterpenes as protein tyrosine phosphatase (PTP1B) inhibitors from Aralia continentalis roots. Jung HA, Cho YS, Oh SH, Lee S, Min BS, Moon KH, Choi JS. Arch Pharm Res 36 957-965 (2013)
  111. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases. Madan LL, Veeranna S, Shameer K, Reddy CC, Sowdhamini R, Gopal B. PLoS One 6 e24766 (2011)
  112. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Elife 12 e84632 (2023)
  113. Steroid effects on ZAP-70 and SYK in relation to apoptosis in poor prognosis chronic lymphocytic leukemia. Boelens J, Lust S, Van Bockstaele F, Van Gele M, Janssens A, Derycke L, Vanhoecke B, Philippé J, Bracke M, Offner F. Leuk Res 33 1335-1343 (2009)
  114. Synthesis of (glycopyranosyl-triazolyl)-purines and their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B). Luo L, He XP, Shen Q, Li JY, Shi XX, Xie J, Li J, Chen GR. Chem Biodivers 8 2035-2044 (2011)
  115. VSpipe, an Integrated Resource for Virtual Screening and Hit Selection: Applications to Protein Tyrosine Phospahatase Inhibition. Álvarez-Carretero S, Pavlopoulou N, Adams J, Gilsenan J, Tabernero L. Molecules 23 E353 (2018)
  116. Complement-mediated glomerular injury is reduced by inhibition of protein-tyrosine phosphatase 1B. Nezvitsky L, Tremblay ML, Takano T, Papillon J, Cybulsky AV. Am J Physiol Renal Physiol 307 F634-47 (2014)
  117. Discovery of 4-[(5-arylidene-4-oxothiazolidin-3-yl)methyl]benzoic acid derivatives active as novel potent allosteric inhibitors of protein tyrosine phosphatase 1B: In silico studies and in vitro evaluation as insulinomimetic and anti-inflammatory agents. Ottanà R, Paoli P, Naß A, Lori G, Cardile V, Adornato I, Rotondo A, Graziano ACE, Wolber G, Maccari R. Eur J Med Chem 127 840-858 (2017)
  118. In silico modeling of protein tyrosine phosphatase 1B inhibitors with cellular activity. Hu X. Bioorg Med Chem Lett 16 6321-6327 (2006)
  119. Native SAD phasing at room temperature. Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Acta Crystallogr D Struct Biol 78 986-996 (2022)
  120. Selective Inhibition of PTP1B by Vitalboside A from Syzygium cumini Enhances Insulin Sensitivity and Attenuates Lipid Accumulation Via Partial Agonism to PPARγ: In Vitro and In Silico Investigation. Thiyagarajan G, Muthukumaran P, Sarath Kumar B, Muthusamy VS, Lakshmi BS. Chem Biol Drug Des 88 302-312 (2016)
  121. Target-specific control of lymphoid-specific protein tyrosine phosphatase (Lyp) activity. Walton ZE, Bishop AC. Bioorg Med Chem 18 4884-4891 (2010)
  122. Dual Targeting of PTP1B and Aldose Reductase with Marine Drug Phosphoeleganin: A Promising Strategy for Treatment of Type 2 Diabetes. Genovese M, Imperatore C, Casertano M, Aiello A, Balestri F, Piazza L, Menna M, Del Corso A, Paoli P. Mar Drugs 19 535 (2021)
  123. Flavonoids as potent allosteric inhibitors of protein tyrosine phosphatase 1B: molecular dynamics simulation and free energy calculation. Zargari F, Lotfi M, Shahraki O, Nikfarjam Z, Shahraki J. J Biomol Struct Dyn 36 4126-4142 (2018)
  124. Insulin-Mimetic Dihydroxanthyletin-Type Coumarins from Angelica decursiva with Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Activities and Docking Studies of Their Molecular Mechanisms. Ali MY, Jannat S, Jung HA, Choi JS. Antioxidants (Basel) 10 292 (2021)
  125. New diterpene furanoids from the Antarctic lichen Huea sp. Cui Y, Yim JH, Lee DS, Kim YC, Oh H. Bioorg Med Chem Lett 22 7393-7396 (2012)
  126. Phosphatase inhibitors with anti-angiogenic effect in vitro. Sylvest L, Bendiksen CD, Houen G. APMIS 118 49-59 (2010)
  127. Protein tyrosine phosphatase 1B regulates TGF beta 1-induced Smad2 activation through PI3 kinase-dependent pathway. Sun T, Ye F, Ding H, Chen K, Jiang H, Shen X. Cytokine 35 88-94 (2006)
  128. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. Liang S, Tran E, Du X, Dong J, Sudholz H, Chen H, Qu Z, Huntington ND, Babon JJ, Kershaw NJ, Zhang ZY, Baell JB, Wiede F, Tiganis T. Nat Commun 14 4524 (2023)
  129. Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Hjortness MK, Riccardi L, Hongdusit A, Ruppe S, Zhao M, Kim EY, Zwart PH, Sankaran B, Arthanari H, Sousa MC, De Vivo M, Fox JM. Biochemistry 57 5886-5896 (2018)
  130. Allosteric sites can be identified based on the residue-residue interaction energy difference. Ma X, Qi Y, Lai L. Proteins 83 1375-1384 (2015)
  131. Letter Discovery and Validation of the Binding Poses of Allosteric Fragment Hits to Protein Tyrosine Phosphatase 1b: From Molecular Dynamics Simulations to X-ray Crystallography. Greisman JB, Willmore L, Yeh CY, Giordanetto F, Shahamadtar S, Nisonoff H, Maragakis P, Shaw DE. J Chem Inf Model 63 2644-2650 (2023)
  132. In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves. Mechchate H, Es-Safi I, Bourhia M, Kyrylchuk A, El Moussaoui A, Conte R, Ullah R, Ezzeldin E, Mostafa GA, Grafov A, Bekkari H, Bousta D. Molecules 25 E5073 (2020)
  133. Knowledge-based characterization of similarity relationships in the human protein-tyrosine phosphatase family for rational inhibitor design. Vidović D, Schürer SC. J Med Chem 52 6649-6659 (2009)
  134. Massive sequence perturbation of the Raf ras binding domain reveals relationships between sequence conservation, secondary structure propensity, hydrophobic core organization and stability. Campbell-Valois FX, Tarassov K, Michnick SW. J Mol Biol 362 151-171 (2006)
  135. Pancreatic Protein Tyrosine Phosphatase 1B Deficiency Exacerbates Acute Pancreatitis in Mice. Bettaieb A, Koike S, Chahed S, Bachaalany S, Griffey S, Sastre J, Haj FG. Am J Pathol 186 2043-2054 (2016)
  136. Quinoxalinylurea derivatives as a novel class of JSP-1 inhibitors. Zhang L, Qiu B, Xiong B, Li X, Li J, Wang X, Li J, Shen J. Bioorg Med Chem Lett 17 2118-2122 (2007)
  137. Rationalizing protein-ligand interactions for PTP1B inhibitors using computational methods. Ajmani S, Karanam S, Kulkarni SA. Chem Biol Drug Des 74 582-595 (2009)
  138. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Beaumont VA, Reiss K, Qu Z, Allen B, Batista VS, Loria JP. Biochemistry 59 1896-1908 (2020)
  139. Allosteric Inhibition of PTP1B by a Nonpolar Terpenoid. Friedman AJ, Liechty ET, Kramer L, Sarkar A, Fox JM, Shirts MR. J Phys Chem B 126 8427-8438 (2022)
  140. Characterization of active compounds from Gracilaria lemaneiformis inhibiting the protein tyrosine phosphatase 1B activity. Guo X, Gu D, Wang M, Huang Y, Li H, Dong Y, Tian J, Wang Y, Yang Y. Food Funct 8 3271-3275 (2017)
  141. Dynamic profile analysis to characterize dynamics-driven allosteric sites in enzymes. Taguchi J, Kitao A. Biophys Physicobiol 13 117-126 (2016)
  142. Frequency response of a protein to local conformational perturbations. Eren D, Alakent B. PLoS Comput Biol 9 e1003238 (2013)
  143. Glucose Uptake Stimulatory and PTP1B Inhibitory Activities of Pimarane Diterpenes from Orthosiphon stamineus Benth. Nguyen PH, Tuan HN, Hoang DT, Vu QT, Pham MQ, Tran MH, To DC. Biomolecules 9 E859 (2019)
  144. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y, Wang J, Fang H, Sun J, Yu X. J Biol Chem 294 8653-8663 (2019)
  145. Identifying Human PTP1B Enzyme Inhibitors from Marine Natural Products: Perspectives for Developing of Novel Insulin-Mimetic Drugs. Casertano M, Genovese M, Piazza L, Balestri F, Del Corso A, Vito A, Paoli P, Santi A, Imperatore C, Menna M. Pharmaceuticals (Basel) 15 325 (2022)
  146. In silico investigations on the binding efficacy and allosteric mechanism of six different natural product compounds towards PTP1B inhibition through docking and molecular dynamics simulations. SarathKumar B, Lakshmi BS. J Mol Model 25 272 (2019)
  147. Novel benzamido derivatives as PTP1B inhibitors with anti-hyperglycemic and lipid-lowering efficacy. Tang Y, Zhang X, Chen Z, Yin W, Nan G, Tian J, Ye F, Xiao Z. Acta Pharm Sin B 8 919-932 (2018)
  148. Using protein-ligand docking to assess the chemical tractability of inhibiting a protein target. Ward RA. J Mol Model 16 1833-1843 (2010)
  149. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Jung HJ, Seong SH, Ali MY, Min BS, Jung HA, Choi JS. Arch Pharm Res 40 1403-1413 (2017)
  150. An enzyme-linked immunosorbent assay to measure insulin receptor dephosphorylation by PTP1B. Zhang YL, Tam M, Kirincich S, Wan ZK, Wilson D, Wu JJ, Lee J, Tobin JF, Erbe DV. Anal Biochem 365 174-184 (2007)
  151. Computational Insight into Protein Tyrosine Phosphatase 1B Inhibition: A Case Study of the Combined Ligand- and Structure-Based Approach. Zhang X, Jiang H, Li W, Wang J, Cheng M. Comput Math Methods Med 2017 4245613 (2017)
  152. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B. Ozcan A, Olmez EO, Alakent B. Proteins 81 788-804 (2013)
  153. Enzyme occupancy measurement of intracellular protein tyrosine phosphatase 1B using photoaffinity probes. Skorey K, Waddleton D, Therien M, Leriche T. Anal Biochem 349 49-61 (2006)
  154. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. Qin N, Sasaki T, Li W, Wang J, Zhang X, Li D, Li Z, Cheng M, Hua H, Koike K. J Enzyme Inhib Med Chem 33 1283-1291 (2018)
  155. Increasing the Level of IRS-1 and Insulin Pathway Sensitivity by Natural Product Carainterol A. Ma K, Miao Y, Gao Y, Tian J, Gao L, Ye D, Qin X. Molecules 21 E1303 (2016)
  156. Protein phosphatase 1b in the solitary tract nucleus is necessary for normal baroreflex function. Arnold AC, Nautiyal M, Diz DI. J Cardiovasc Pharmacol 59 472-478 (2012)
  157. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Kumar AP, Nguyen MN, Verma C, Lukman S. Proteins 86 301-321 (2018)
  158. A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis. Adams J, Thornton BP, Tabernero L. Int J Mol Sci 22 12206 (2021)
  159. Allosteric inhibition induces an open WPD-loop: a new avenue towards glioblastoma therapy. Agoni C, Ramharack P, Soliman MES. RSC Adv 8 40187-40197 (2018)
  160. Anti-insulin resistance effect of constituents from Senna siamea on zebrafish model, its molecular docking, and structure-activity relationships. Nuankaew W, Heemman A, Wattanapiromsakul C, Shim JH, Kim NW, Yasmin T, Jeong SY, Nam YH, Hong BN, Dej-Adisai S, Kang TH. J Nat Med 75 520-531 (2021)
  161. Cinnamaldehyde and Curcumin Prime Akt2 for Insulin-Stimulated Activation. Urasaki Y, Le TT. Nutrients 14 3301 (2022)
  162. Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells. Stanley WJ, Trivedi PM, Sutherland AP, Thomas HE, Gurzov EN. J Mol Endocrinol 59 325-337 (2017)
  163. Identification of a benzo imidazole thiazole derivative as the specific irreversible inhibitor of protein tyrosine phosphatase. Ge L, Li KS, Li MM, Xiao P, Hou XB, Chen X, Liu HD, Lin A, Yu X, Ren GJ, Fang H, Sun JP. Bioorg Med Chem Lett 26 4795-4798 (2016)
  164. Identification of novel, less toxic PTP-LAR inhibitors using in silico strategies: pharmacophore modeling, SADMET-based virtual screening and docking. Ajay D, Sobhia ME. J Mol Model 18 187-201 (2012)
  165. Structural flexibility and interactions of PTP1B's S-loop. Wang JF, Gong K, Wei DQ, Li YX. Interdiscip Sci 1 214-219 (2009)
  166. The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases. Kuban-Jankowska A, Gorska M, Jaremko L, Jaremko M, Tuszynski JA, Wozniak M. Biometals 28 975-986 (2015)
  167. Theoretical study on the allosteric regulation of an oligomeric protease from Pyrococcus horikoshii by Cl- Ion. Zhan D, Sun J, Feng Y, Han W. Molecules 19 1828-1842 (2014)
  168. Two new botcinin derivatives encountered in the studies of secondary metabolites from the marine-derived fungus Botryotinia sp. SF-5275. Kim MY, Sohn JH, Jang JH, Ahn JS, Oh H. J Antibiot (Tokyo) 65 161-164 (2012)
  169. A Conserved Local Structural Motif Controls the Kinetics of PTP1B Catalysis. Yeh CY, Izaguirre JA, Greisman JB, Willmore L, Maragakis P, Shaw DE. J Chem Inf Model 63 4115-4124 (2023)
  170. An Isoform-Selective PTP1B Inhibitor Derived from Nitrogen-Atom Augmentation of Radicicol. Shi T, Wijeratne EMK, Solano C, Ambrose AJ, Ross AB, Norwood C, Orido CK, Grigoryan T, Tillotson J, Kang M, Luo G, Keegan BM, Hu W, Hu W, Blagg BSJ, Zhang DD, Gunatilaka AAL, Chapman E. Biochemistry 58 3225-3231 (2019)
  171. Analysis of neutral mutational drift in an allosteric enzyme. Liechty ET, Hren A, Kramer L, Donovan G, Friedman AJ, Shirts MR, Fox JM. Protein Sci 32 e4719 (2023)
  172. Crystal structure of the catalytic domain of human RPTPH. Kim M, Ryu SE. Acta Crystallogr F Struct Biol Commun 78 265-269 (2022)
  173. Discovery of inhibitors targeting protein tyrosine phosphatase 1B using a combined virtual screening approach. Zhao D, Sun L, Zhong S. Mol Divers 26 2159-2174 (2022)
  174. Docking Assisted Prediction and Biological Evaluation of Sideritis L. Components with PTP1b Inhibitory Action and Probable Anti-Diabetic Properties. Eleftheriou P, Therianou E, Lazari D, Dirnali S, Micha A. Curr Top Med Chem 19 383-392 (2019)
  175. High-resolution double vision of the allosteric phosphatase PTP1B. Sharma S, Skaist Mehlman T, Sagabala RS, Boivin B, Keedy DA. Acta Crystallogr F Struct Biol Commun 80 1-12 (2024)
  176. Inhibition of SHP2 and SHP1 Protein Tyrosine Phosphatase Activity by Chemically Induced Dimerization. Buck SJS, Plaman BA, Bishop AC. ACS Omega 7 14180-14188 (2022)
  177. Investigating mammalian tyrosine phosphatase inhibitors as potential 'piggyback' leads to target Trypanosoma brucei transmission. Ruberto I, Szoor B, Clark R, Matthews KR. Chem Biol Drug Des 81 291-301 (2013)
  178. Comment Oxygenases get to grips with polypeptides. Bugg TD. Structure 17 913-914 (2009)
  179. PAIN-less identification and evaluation of small molecule inhibitors against protein tyrosine phosphatase 1B. Nasiri HR, Mracek P, Grimm SK, Gastaldello J, Kolodzik A, Ullmann D. Medchemcomm 8 1220-1224 (2017)
  180. Protein tyrosine phosphatase 1B inhibitors from a marine-derived fungal strain aspergillus sp. SF-5929. Kim DC, Minh Ha T, Sohn JH, Yim JH, Oh H. Nat Prod Res 34 675-682 (2020)
  181. Substrate Activation of the Low-Molecular Weight Protein Tyrosine Phosphatase from Mycobacterium tuberculosis. Stefan A, Dal Piaz F, Girella A, Hochkoeppler A. Biochemistry 59 1137-1148 (2020)
  182. A PTP1B-Cdk3 Signaling Axis Promotes Cell Cycle Progression of Human Glioblastoma Cells through an Rb-E2F Dependent Pathway. Villamar-Cruz O, Loza-Mejía MA, Vivar-Sierra A, Saldivar-Cerón HI, Patiño-López G, Olguín JE, Terrazas LI, Armas-López L, Ávila-Moreno F, Saha S, Chernoff J, Camacho-Arroyo I, Arias-Romero LE. Mol Cell Biol 43 631-649 (2023)
  183. Biophysical Rationale for the Selective Inhibition of PTP1B over TCPTP by Nonpolar Terpenoids. Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. J Phys Chem B 127 8305-8316 (2023)
  184. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Hardie A, Cossins BP, Lovera S, Michel J. Commun Chem 6 125 (2023)
  185. Dexamethasone acutely suppresses the anabolic SNAT2/SLC38A2 amino acid transporter protein in L6-G8C5 rat skeletal muscle cells. Blbas S, Watson E, Butler H, Brown J, Herbert TP, Stover CM, Bevington A, Abbasian N. FASEB Bioadv 3 36-48 (2021)
  186. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP. Genovese M, Luti S, Pardella E, Vivoli-Vega M, Pazzagli L, Parri M, Caselli A, Cirri P, Paoli P. Eur J Nutr 61 1905-1918 (2022)
  187. Enzyme mechanistic studies of NMA1982, a protein tyrosine phosphatase and potential virulence factor in Neisseria meningitidis. Wu S, Coureuil M, Nassif X, Tautz L. Sci Rep 13 22015 (2023)
  188. Macromolecular crowding amplifies allosteric regulation of T-cell protein tyrosine phosphatase. Tun MT, Yang S, Forti FL, Santelli E, Bottini N. J Biol Chem 298 102655 (2022)
  189. Myeloid PTP1B deficiency protects against atherosclerosis by improving cholesterol homeostasis through an AMPK-dependent mechanism. Oliver H, Ruta D, Thompson D, Kamli-Salino S, Philip S, Wilson HM, Mody N, Delibegovic M. J Transl Med 21 715 (2023)
  190. Targeting Nonconserved and Pathogenic Cysteines of Protein Tyrosine Phosphatases with Small Molecules. Bishop AC, Serbina A. Methods Mol Biol 2743 271-283 (2024)
  191. The crystal structure of the catalytic domain of the chick retinal neurite inhibitor-receptor protein tyrosine phosphatase CRYP-2/cPTPRO. Girish TS, Gopal B. Proteins 68 1011-1015 (2007)