1t09 Citations

Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.

J Biol Chem 279 33946-57 (2004)
Cited: 246 times
EuropePMC logo PMID: 15173171

Abstract

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.

Reviews - 1t09 mentioned but not cited (4)

  1. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, Gilbert MR, Yang C. Br J Cancer 122 1580-1589 (2020)
  2. Impact of the Protein Data Bank on antineoplastic approvals. Westbrook JD, Soskind R, Hudson BP, Burley SK. Drug Discov Today 25 837-850 (2020)
  3. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. Chem Rev 123 5421-5458 (2023)
  4. Mutated Isocitrate Dehydrogenase (mIDH) as Target for PET Imaging in Gliomas. Neumaier F, Zlatopolskiy BD, Neumaier B. Molecules 28 2890 (2023)

Articles - 1t09 mentioned but not cited (19)

  1. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. Protein Sci 27 14-25 (2018)
  2. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. Deng G, Shen J, Yin M, McManus J, Mathieu M, Gee P, He T, Shi C, Bedel O, McLean LR, Le-Strat F, Zhang Y, Marquette JP, Gao Q, Zhang B, Rak A, Hoffmann D, Rooney E, Vassort A, Englaro W, Li Y, Patel V, Adrian F, Gross S, Wiederschain D, Cheng H, Licht S. J Biol Chem 290 762-774 (2015)
  3. Cancer missense mutations alter binding properties of proteins and their interaction networks. Nishi H, Tyagi M, Teng S, Shoemaker BA, Hashimoto K, Alexov E, Wuchty S, Panchenko AR. PLoS One 8 e66273 (2013)
  4. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction. Peng Y, Zhong C, Huang W, Ding J. Protein Sci 17 1542-1554 (2008)
  5. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Wang P, Lv C, Zhu G. Sci Rep 5 9150 (2015)
  6. Functional relevance of dynamic properties of Dimeric NADP-dependent Isocitrate Dehydrogenases. Vinekar R, Verma C, Ghosh I. BMC Bioinformatics 13 Suppl 17 S2 (2012)
  7. Insights into cancer severity from biomolecular interaction mechanisms. Raimondi F, Singh G, Betts MJ, Apic G, Vukotic R, Andreone P, Stein L, Russell RB, Russell RB. Sci Rep 6 34490 (2016)
  8. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase. Ma T, Peng Y, Huang W, Ding J. Sci Rep 7 40921 (2017)
  9. Characterization of cancer-associated IDH2 mutations that differ in tumorigenicity, chemosensitivity and 2-hydroxyglutarate production. Kotredes KP, Razmpour R, Lutton E, Alfonso-Prieto M, Ramirez SH, Gamero AM. Oncotarget 10 2675-2692 (2019)
  10. In vivo efficacy of mutant IDH1 inhibitor HMS-101 and structural resolution of distinct binding site. Chaturvedi A, Goparaju R, Gupta C, Weder J, Klünemann T, Araujo Cruz MM, Kloos A, Goerlich K, Schottmann R, Othman B, Struys EA, Bähre H, Grote-Koska D, Brand K, Ganser A, Preller M, Heuser M. Leukemia 34 416-426 (2020)
  11. Inhibitor potency varies widely among tumor-relevant human isocitrate dehydrogenase 1 mutants. Avellaneda Matteo D, Wells GA, Luna LA, Grunseth AJ, Zagnitko O, Scott DA, Hoang A, Luthra A, Swairjo MA, Schiffer JM, Sohl CD. Biochem J 475 3221-3238 (2018)
  12. An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Luna LA, Lesecq Z, White KA, Hoang A, Scott DA, Zagnitko O, Bobkov AA, Barber DL, Schiffer JM, Isom DG, Sohl CD. Biochem J 477 2999-3018 (2020)
  13. Structural and Functional analysis of Staphylococcus aureus NADP-dependent IDH and its comparison with Bacterial and Human NADPdependent IDH. Prasad UV, Swarupa V, Yeswanth S, Kumar PS, Kumar ES, Reddy KM, Kumar YN, Rani VJ, Chaudhary A, Sarma PV. Bioinformation 10 81-86 (2014)
  14. Biochemical Characterization and Crystal Structure of a Novel NAD+-Dependent Isocitrate Dehydrogenase from Phaeodactylum tricornutum. Huang SP, Zhou LC, Wen B, Wang P, Zhu GP. Int J Mol Sci 21 E5915 (2020)
  15. The complex structures of isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila suggest a new active site locking mechanism. Leiros HK, Fedøy AE, Leiros I, Steen IH. FEBS Open Bio 2 159-172 (2012)
  16. Water Networks and Correlated Motions in Mutant Isocitrate Dehydrogenase 1 (IDH1) Are Critical for Allosteric Inhibitor Binding and Activity. Chambers JM, Miller W, Quichocho G, Upadhye V, Matteo DA, Bobkov AA, Sohl CD, Schiffer JM. Biochemistry 59 479-490 (2020)
  17. Evaluating Mechanisms of IDH1 Regulation through Site-Specific Acetylation Mimics. Weeks J, Strom AI, Widjaja V, Alexander S, Pucher DK, Sohl CD. Biomolecules 11 740 (2021)
  18. Capturing the Dynamic Conformational Changes of Human Isocitrate Dehydrogenase 1 (IDH1) upon Ligand and Metal Binding Using Hydrogen-Deuterium Exchange Mass Spectrometry. Sabo KA, Albekioni E, Caliger D, Coleman NJ, Thornberg E, Avellaneda Matteo D, Komives EA, Silletti S, Sohl CD. Biochemistry 62 1145-1159 (2023)
  19. Glioma immunotherapy enhancement and CD8-specific sialic acid cleavage by isocitrate dehydrogenase (IDH)-1. Cordner R, Jhun M, Panwar A, Wang H, Gull N, Murali R, McAbee JH, Mardiros A, Sanchez-Takei A, Mazer MW, Fan X, Jouanneau E, Yu JS, Black KL, Wheeler CJ. Oncogene 42 2088-2098 (2023)


Reviews citing this publication (73)

  1. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Losman JA, Kaelin WG. Genes Dev 27 836-852 (2013)
  2. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. Reitman ZJ, Yan H. J Natl Cancer Inst 102 932-941 (2010)
  3. IDH1 and IDH2 mutations in gliomas. Cohen AL, Holmen SL, Colman H. Curr Neurol Neurosci Rep 13 345 (2013)
  4. IDH mutations in glioma and acute myeloid leukemia. Dang L, Jin S, Su SM. Trends Mol Med 16 387-397 (2010)
  5. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Signal Transduct Target Ther 6 201 (2021)
  6. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Yen KE, Bittinger MA, Su SM, Fantin VR. Oncogene 29 6409-6417 (2010)
  7. Isocitrate dehydrogenase mutations in gliomas. Waitkus MS, Diplas BH, Yan H. Neuro Oncol 18 16-26 (2016)
  8. Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. Szopa W, Burley TA, Kramer-Marek G, Kaspera W. Biomed Res Int 2017 8013575 (2017)
  9. Mutant metabolic enzymes are at the origin of gliomas. Yan H, Bigner DD, Velculescu V, Parsons DW. Cancer Res 69 9157-9159 (2009)
  10. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Dang L, Su SM. Annu Rev Biochem 86 305-331 (2017)
  11. Molecular and Genomic Alterations in Glioblastoma Multiforme. Crespo I, Vital AL, Gonzalez-Tablas M, Patino Mdel C, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A, Tabernero MD. Am J Pathol 185 1820-1833 (2015)
  12. Update on molecular findings, management and outcome in low-grade gliomas. Bourne TD, Schiff D. Nat Rev Neurol 6 695-701 (2010)
  13. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Bastien JI, McNeill KA, Fine HA. Cancer 121 502-516 (2015)
  14. Metabolic consequences of oncogenic IDH mutations. Parker SJ, Metallo CM. Pharmacol Ther 152 54-62 (2015)
  15. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. Song Y, Wu F, Wu J. J Hematol Oncol 9 49 (2016)
  16. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Zhang C, Moore LM, Li X, Yung WK, Zhang W. Neuro Oncol 15 1114-1126 (2013)
  17. The implications of IDH mutations for cancer development and therapy. Pirozzi CJ, Yan H. Nat Rev Clin Oncol 18 645-661 (2021)
  18. Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B. Blood Rev 27 13-22 (2013)
  19. Molecular genetics of gliomas. Appin CL, Brat DJ. Cancer J 20 66-72 (2014)
  20. TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Lu X, Zhao BS, He C. Chem Rev 115 2225-2239 (2015)
  21. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease. Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH. Sci Adv 5 eaaw4543 (2019)
  22. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Zhou W, Wahl DR. Cancers (Basel) 11 E1231 (2019)
  23. Brain stem cells as the cell of origin in glioma. Modrek AS, Bayin NS, Placantonakis DG. World J Stem Cells 6 43-52 (2014)
  24. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Al-Khallaf H. Cell Biosci 7 37 (2017)
  25. Consequences of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH Proteins. Kaminska B, Czapski B, Guzik R, Król SK, Gielniewski B. Molecules 24 E968 (2019)
  26. IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Krell D, Mulholland P, Frampton AE, Krell J, Stebbing J, Bardella C. Future Oncol 9 1923-1935 (2013)
  27. 2-Hydroxyglutarate in Cancer Cells. Ježek P. Antioxid Redox Signal 33 903-926 (2020)
  28. TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Todisco S, Convertini P, Iacobazzi V, Infantino V. Cancers (Basel) 12 E68 (2019)
  29. Recent advances in diagnosis, molecular pathology and therapy of chronic myelomonocytic leukaemia. Bacher U, Haferlach T, Schnittger S, Kreipe H, Kröger N. Br J Haematol 153 149-167 (2011)
  30. The molecular basis and clinical significance of genetic mutations identified in myelodysplastic syndromes. Zhang L, Padron E, Lancet J. Leuk Res 39 6-17 (2015)
  31. Biochemical, Epigenetic, and Metabolic Approaches to Target IDH Mutations in Acute Myeloid Leukemia. Fathi AT, Wander SA, Faramand R, Emadi A. Semin Hematol 52 165-171 (2015)
  32. Control of the Antitumor Immune Response by Cancer Metabolism. Domblides C, Lartigue L, Faustin B. Cells 8 E104 (2019)
  33. IDH mutations in human glioma. Kim W, Liau LM. Neurosurg Clin N Am 23 471-480 (2012)
  34. Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis. Appin CL, Brat DJ. Adv Anat Pathol 22 50-58 (2015)
  35. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Gaster M, Nehlin JO, Minet AD. Arch Physiol Biochem 118 156-189 (2012)
  36. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Tilak M, Holborn J, New LA, Lalonde J, Jones N. Int J Mol Sci 22 1831 (2021)
  37. Targeting Telomerase and ATRX/DAXX Inducing Tumor Senescence and Apoptosis in the Malignant Glioma. Fan HC, Chen CM, Chi CS, Tsai JD, Chiang KL, Chang YK, Lin SZ, Harn HJ. Int J Mol Sci 20 E200 (2019)
  38. The role of mutation of metabolism-related genes in genomic hypermethylation. Waterfall JJ, Killian JK, Meltzer PS. Biochem Biophys Res Commun 455 16-23 (2014)
  39. Isocitrate Dehydrogenase Mutations in Glioma: Genetics, Biochemistry, and Clinical Indications. Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Biomedicines 8 E294 (2020)
  40. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Kayabolen A, Yilmaz E, Bagci-Onder T. Biomedicines 9 799 (2021)
  41. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. Hou HA, Tien HF. J Biomed Sci 27 81 (2020)
  42. Isocitrate dehydrogenase variants in cancer - Cellular consequences and therapeutic opportunities. Liu S, Cadoux-Hudson T, Schofield CJ. Curr Opin Chem Biol 57 122-134 (2020)
  43. Mitochondrial metabolic remodeling in response to genetic and environmental perturbations. Hollinshead KE, Tennant DA. Wiley Interdiscip Rev Syst Biol Med 8 272-285 (2016)
  44. Neomorphic mutations create therapeutic challenges in cancer. Takiar V, Ip CK, Gao M, Mills GB, Cheung LW. Oncogene 36 1607-1618 (2017)
  45. To be Wild or Mutant: Role of Isocitrate Dehydrogenase 1 (IDH1) and 2-Hydroxy Glutarate (2-HG) in Gliomagenesis and Treatment Outcome in Glioma. Bhavya B, Anand CR, Madhusoodanan UK, Rajalakshmi P, Krishnakumar K, Easwer HV, Deepti AN, Gopala S. Cell Mol Neurobiol 40 53-63 (2020)
  46. Cancer genomics identifies determinants of tumor biology. Mardis ER. Genome Biol 11 211 (2010)
  47. Role of isocitrate dehydrogenase in glioma. Alexander BM, Mehta MP. Expert Rev Neurother 11 1399-1409 (2011)
  48. Isocitrate dehydrogenase 1 and 2 mutations in gliomas. Megova M, Drabek J, Koudelakova V, Trojanec R, Kalita O, Hajduch M. J Neurosci Res 92 1611-1620 (2014)
  49. Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directions. Upadhyay VA, Brunner AM, Fathi AT. Pharmacol Ther 177 123-128 (2017)
  50. IDH1 Targeting as a New Potential Option for Intrahepatic Cholangiocarcinoma Treatment-Current State and Future Perspectives. Crispo F, Pietrafesa M, Condelli V, Maddalena F, Bruno G, Piscazzi A, Sgambato A, Esposito F, Landriscina M. Molecules 25 E3754 (2020)
  51. Bridging Cancer Biology with the Clinic: Comprehending and Exploiting IDH Gene Mutations in Gliomas. Romanidou O, Kotoula V, Fountzilas G. Cancer Genomics Proteomics 15 421-436 (2018)
  52. Isocitrate Dehydrogenase Mutations in Myelodysplastic Syndromes and in Acute Myeloid Leukemias. Testa U, Castelli G, Pelosi E. Cancers (Basel) 12 E2427 (2020)
  53. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Hou HA, Tien HF. Expert Rev Hematol 9 447-469 (2016)
  54. Novel insights into the pathogenesis of gliomas based on large-scale molecular profiling approaches. Riemenschneider MJ, Reifenberger G. Curr Opin Neurol 22 619-624 (2009)
  55. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Int J Mol Sci 23 926 (2022)
  56. 2-hydroxyglutarate accumulation caused by IDH mutation is involved in the formation of malignant gliomas. Sonoda Y, Tominaga T. Expert Rev Neurother 10 487-489 (2010)
  57. Isocitrate dehydrogenase mutations: new opportunities for translational research. Keum YS, Choi BY. BMB Rep 48 266-270 (2015)
  58. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Roh J, Im M, Kang J, Youn B, Kim W. Anim Cells Syst (Seoul) 27 19-28 (2023)
  59. Metabolic Enzymes in Sarcomagenesis: Progress Toward Biology and Therapy. Li L, Eid JE, Paz AC, Trent JC. BioDrugs 31 379-392 (2017)
  60. Put in a "Ca2+ll" to Acute Myeloid Leukemia. Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Cells 11 543 (2022)
  61. An Insight into Cholangiocarcinoma and Recent Advances in its Treatment. Sahu R, Sharma P, Kumar A. J Gastrointest Cancer 54 213-226 (2023)
  62. The epigenetic-metabolic interplay in gliomagenesis. Phasaludeen B, Emerald BS, Ansari SA. Open Biol 12 210350 (2022)
  63. 6-Phosphogluconate dehydrogenase and its crystal structures. Hanau S, Helliwell JR. Acta Crystallogr F Struct Biol Commun 78 96-112 (2022)
  64. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. Raghavan B, Paulikat M, Ahmad K, Callea L, Rizzi A, Ippoliti E, Mandelli D, Bonati L, De Vivo M, Carloni P. J Chem Inf Model 63 3647-3658 (2023)
  65. Mutant IDH in Gliomas: Role in Cancer and Treatment Options. Solomou G, Finch A, Asghar A, Bardella C. Cancers (Basel) 15 2883 (2023)
  66. Redox Homeostasis and Beyond: The Role of Wild-Type Isocitrate Dehydrogenases for the Pathogenesis of Glioblastoma. Murnan KM, Horbinski C, Stegh AH. Antioxid Redox Signal 39 923-941 (2023)
  67. The epigenetic dysfunction underlying malignant glioma pathogenesis. Dharmaiah S, Huse JT. Lab Invest 102 682-690 (2022)
  68. Gene Mutations and Targeted Therapies of Myeloid Sarcoma. Fu L, Zhang Z, Chen Z, Fu J, Hong P, Feng W. Curr Treat Options Oncol 24 338-352 (2023)
  69. Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. Jadoon SS, Ilyas U, Zafar H, Paiva-Santos AC, Khan S, Khan SA, Ahmed T, Rasool Y, Altaf R, Raza F, Abbas M. J Oncol 2022 4022960 (2022)
  70. IDH2: A novel biomarker for environmental exposure in blood circulatory system disorders. Gong YQ, Wei S, Wei YY, Chen YL, Cui J, Yu YQ, Lin X, Yan HX, Qin H, Yi L. Oncol Lett 24 278 (2022)
  71. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Tarazi D, Maynes JT. Pharmaceutics 15 2225 (2023)
  72. Probing altered enzyme activity in the biochemical characterization of cancer. Adam MAA, Sohl CD. Biosci Rep 42 BSR20212002 (2022)
  73. The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Liu Y, Xu W, Li M, Yang Y, Sun D, Chen L, Li H, Chen L. Acta Pharm Sin B 13 1438-1466 (2023)

Articles citing this publication (150)

  1. An integrated genomic analysis of human glioblastoma multiforme. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. Science 321 1807-1812 (2008)
  2. IDH1 and IDH2 mutations in gliomas. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD. N Engl J Med 360 765-773 (2009)
  3. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM. Nature 462 739-744 (2009)
  4. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y. Science 324 261-265 (2009)
  5. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, Späth D, Kayser S, Zucknick M, Götze K, Horst HA, Germing U, Döhner H, Döhner K. J Clin Oncol 28 3636-3643 (2010)
  6. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mak TW. J Exp Med 207 339-344 (2010)
  7. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Ichimura K, Pearson DM, Kocialkowski S, Bäcklund LM, Chan R, Jones DT, Collins VP. Neuro Oncol 11 341-347 (2009)
  8. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP, Frattini M, Molinari F, Knowles M, Cerrato A, Rodolfo M, Scarpa A, Felicioni L, Buttitta F, Malatesta S, Marchetti A, Bardelli A. Hum Mutat 30 7-11 (2009)
  9. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S. Cell 165 1698-1707 (2016)
  10. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI, Lee JY, Yoo NJ, Lee SH. Int J Cancer 125 353-355 (2009)
  11. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, Tigchelaar W, Troost D, Vandertop WP, Bardelli A, Van Noorden CJ. Acta Neuropathol 119 487-494 (2010)
  12. Letter Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B, Hunault-Berger M, Slama B, Vey N, Lacombe C, Solary E, Birnbaum D, Bernard OA, Fontenay M. Leukemia 24 1094-1096 (2010)
  13. article-commentary Metabolic enzymes as oncogenes or tumor suppressors. Thompson CB. N Engl J Med 360 813-815 (2009)
  14. Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O, Levine RL, Weinstock DM, Sharp KA, Thompson CB. Oncogene 31 2491-2498 (2012)
  15. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A. Leukemia 24 1146-1151 (2010)
  16. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. Leonardi R, Subramanian C, Jackowski S, Rock CO. J Biol Chem 287 14615-14620 (2012)
  17. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Sonoda Y, Kumabe T, Nakamura T, Saito R, Kanamori M, Yamashita Y, Suzuki H, Tominaga T. Cancer Sci 100 1996-1998 (2009)
  18. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Okoye-Okafor UC, Bartholdy B, Cartier J, Gao EN, Pietrak B, Rendina AR, Rominger C, Quinn C, Smallwood A, Wiggall KJ, Reif AJ, Schmidt SJ, Qi H, Zhao H, Joberty G, Faelth-Savitski M, Bantscheff M, Drewes G, Duraiswami C, Brady P, Groy A, Narayanagari SR, Antony-Debre I, Mitchell K, Wang HR, Kao YR, Christopeit M, Carvajal L, Barreyro L, Paietta E, Makishima H, Will B, Concha N, Adams ND, Schwartz B, McCabe MT, Maciejewski J, Verma A, Steidl U. Nat Chem Biol 11 878-886 (2015)
  19. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV. Exp Hematol 42 247-251 (2014)
  20. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Murugan AK, Bojdani E, Xing M. Biochem Biophys Res Commun 393 555-559 (2010)
  21. Driver mutations of cancer epigenomes. Roy DM, Walsh LA, Chan TA. Protein Cell 5 265-296 (2014)
  22. IDH1 and IDH2 mutation analysis in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. Lin J, Yao DM, Qian J, Chen Q, Qian W, Li Y, Yang J, Wang CZ, Chai HY, Qian Z, Xiao GF, Xu WR. Ann Hematol 91 519-525 (2012)
  23. Hallmarks of glioblastoma: a systematic review. Nørøxe DS, Poulsen HS, Lassen U. ESMO Open 1 e000144 (2016)
  24. Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H. Yang B, Zhong C, Peng Y, Lai Z, Ding J. Cell Res 20 1188-1200 (2010)
  25. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Hemerly JP, Bastos AU, Cerutti JM. Eur J Endocrinol 163 747-755 (2010)
  26. Mutant IDH1 Promotes Glioma Formation In Vivo. Philip B, Yu DX, Silvis MR, Shin CH, Robinson JP, Robinson GL, Welker AE, Angel SN, Tripp SR, Sonnen JA, VanBrocklin MW, Gibbons RJ, Looper RE, Colman H, Holmen SL. Cell Rep 23 1553-1564 (2018)
  27. LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect. Xiang S, Gu H, Jin L, Thorne RF, Zhang XD, Wu M. Proc Natl Acad Sci U S A 115 E1465-E1474 (2018)
  28. Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C. PLoS One 6 e19868 (2011)
  29. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S, Macdonald E, Vanderhyden B, Bachvarov D. Oncotarget 6 31522-31543 (2015)
  30. Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Rajendran V. Mol Biosyst 12 2276-2287 (2016)
  31. The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells. Smolková K, Ježek P. Int J Cell Biol 2012 273947 (2012)
  32. IDH1 mutations in gliomas: when an enzyme loses its grip. Frezza C, Tennant DA, Gottlieb E. Cancer Cell 17 7-9 (2010)
  33. Mutant IDH1-driven cellular transformation increases RAD51-mediated homologous recombination and temozolomide resistance. Ohba S, Mukherjee J, See WL, Pieper RO. Cancer Res 74 4836-4844 (2014)
  34. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. Fedøy AE, Yang N, Martinez A, Leiros HK, Steen IH. J Mol Biol 372 130-149 (2007)
  35. Crystallographic Investigation and Selective Inhibition of Mutant Isocitrate Dehydrogenase. Zheng B, Yao Y, Liu Z, Deng L, Anglin JL, Jiang H, Prasad BV, Song Y. ACS Med Chem Lett 4 542-546 (2013)
  36. The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas. Wang HY, Tang K, Liang TY, Zhang WZ, Li JY, Wang W, Hu HM, Li MY, Wang HQ, He XZ, Zhu ZY, Liu YW, Zhang SZ. J Exp Clin Cancer Res 35 86 (2016)
  37. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability. Karlström M, Stokke R, Steen IH, Birkeland NK, Ladenstein R. J Mol Biol 345 559-577 (2005)
  38. Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Zhang GF, Jensen MV, Gray SM, El K, Wang Y, Lu D, Becker TC, Campbell JE, Newgard CB. Cell Metab 33 804-817.e5 (2021)
  39. A pyrosequencing-based assay for the rapid detection of IDH1 mutations in clinical samples. Setty P, Hammes J, Rothämel T, Vladimirova V, Kramm CM, Pietsch T, Waha A. J Mol Diagn 12 750-756 (2010)
  40. SIRT3-Mediated Dimerization of IDH2 Directs Cancer Cell Metabolism and Tumor Growth. Zou X, Zhu Y, Park SH, Liu G, O'Brien J, Jiang H, Gius D. Cancer Res 77 3990-3999 (2017)
  41. The emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasms. Rakheja D, Medeiros LJ, Bevan S, Chen W. Front Oncol 3 169 (2013)
  42. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. Taylor AB, Hu G, Hart PJ, McAlister-Henn L. J Biol Chem 283 10872-10880 (2008)
  43. Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomas. Wang Y, Zhang T, Li S, Fan X, Ma J, Wang L, Jiang T. Eur J Neurol 22 348-354 (2015)
  44. Mutant IDH1 Expression Drives TERT Promoter Reactivation as Part of the Cellular Transformation Process. Ohba S, Mukherjee J, Johannessen TC, Mancini A, Chow TT, Wood M, Jones L, Mazor T, Marshall RE, Viswanath P, Walsh KM, Perry A, Bell RJ, Phillips JJ, Costello JF, Ronen SM, Pieper RO. Cancer Res 76 6680-6689 (2016)
  45. IDH1 and IDH2 mutations are frequent in Chinese patients with acute myeloid leukemia but rare in other types of hematological disorders. Zou Y, Zeng Y, Zhang DF, Zou SH, Cheng YF, Yao YG. Biochem Biophys Res Commun 402 378-383 (2010)
  46. Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency. Avellaneda Matteo D, Grunseth AJ, Gonzalez ER, Anselmo SL, Kennedy MA, Moman P, Scott DA, Hoang A, Sohl CD. J Biol Chem 292 7971-7983 (2017)
  47. IDH1/IDH2 but not TP53 mutations predict prognosis in Bulgarian glioblastoma patients. Stancheva G, Goranova T, Laleva M, Kamenova M, Mitkova A, Velinov N, Poptodorov G, Mitev V, Kaneva R, Gabrovsky N. Biomed Res Int 2014 654727 (2014)
  48. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease. Triplett JC, Zhang Z, Sultana R, Cai J, Klein JB, Büeler H, Butterfield DA. J Neurochem 133 750-765 (2015)
  49. Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-Thiohydantoin Compounds. Wu F, Jiang H, Zheng B, Kogiso M, Yao Y, Zhou C, Li XN, Song Y. J Med Chem 58 6899-6908 (2015)
  50. Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Lazovic J, Soto H, Piccioni D, Lou JR, Li S, Mirsadraei L, Yong W, Prins R, Liau LM, Ellingson BM, Cloughesy TF, Lai A, Pope WB. Neuro Oncol 14 1465-1472 (2012)
  51. Differential activity of NADPH-producing dehydrogenases renders rodents unsuitable models to study IDH1R132 mutation effects in human glioblastoma. Atai NA, Renkema-Mills NA, Bosman J, Schmidt N, Rijkeboer D, Tigchelaar W, Bosch KS, Troost D, Jonker A, Bleeker FE, Miletic H, Bjerkvig R, De Witt Hamer PC, Van Noorden CJ. J Histochem Cytochem 59 489-503 (2011)
  52. Inhibition of cancer-associated mutant isocitrate dehydrogenases: synthesis, structure-activity relationship, and selective antitumor activity. Liu Z, Yao Y, Kogiso M, Zheng B, Deng L, Qiu JJ, Dong S, Lv H, Gallo JM, Li XN, Song Y. J Med Chem 57 8307-8318 (2014)
  53. Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas. Kim JE, Cho HR, Xu WJ, Kim JY, Kim SK, Kim SK, Park SH, Kim H, Lee SH, Choi SH, Park S, Park CK. Oncotarget 6 20266-20277 (2015)
  54. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Clin Med Insights Oncol 5 265-314 (2011)
  55. The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. Karlström M, Steen IH, Madern D, Fedöy AE, Birkeland NK, Ladenstein R. FEBS J 273 2851-2868 (2006)
  56. The genomic architecture of mastitis resistance in dairy sheep. Banos G, Bramis G, Bush SJ, Clark EL, McCulloch MEB, Smith J, Schulze G, Arsenos G, Hume DA, Psifidi A. BMC Genomics 18 624 (2017)
  57. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase. Imabayashi F, Aich S, Prasad L, Delbaere LT. Proteins 63 100-112 (2006)
  58. Genetic dissection of leukemia-associated IDH1 and IDH2 mutants and D-2-hydroxyglutarate in Drosophila. Reitman ZJ, Sinenko SA, Spana EP, Yan H. Blood 125 336-345 (2015)
  59. Mutation and expression analysis of the IDH1, IDH2, DNMT3A, and MYD88 genes in colorectal cancer. Li WL, Xiao MS, Zhang DF, Yu D, Yang RX, Li XY, Yao YG. Gene 546 263-270 (2014)
  60. Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme. Stokke R, Madern D, Fedøy AE, Karlsen S, Birkeland NK, Steen IH. Arch Microbiol 187 361-370 (2007)
  61. Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Zhang B, Wang B, Wang P, Cao Z, Huang E, Hao J, Dean AM, Zhu G. Biochimie 91 1405-1410 (2009)
  62. IDH1 mutations in diffusely infiltrating astrocytomas: grade specificity, association with protein expression, and clinical relevance. Thota B, Shukla SK, Srividya MR, Shwetha SD, Arivazhagan A, Thennarasu K, Chickabasaviah YT, Hegde AS, Chandramouli BA, Somasundaram K, Santosh V. Am J Clin Pathol 138 177-184 (2012)
  63. Induced fit and the catalytic mechanism of isocitrate dehydrogenase. Gonçalves S, Miller SP, Carrondo MA, Dean AM, Matias PM. Biochemistry 51 7098-7115 (2012)
  64. An SOD mimic protects NADP+-dependent isocitrate dehydrogenase against oxidative inactivation. Batinic-Haberle I, Benov LT. Free Radic Res 42 618-624 (2008)
  65. Biochemical and molecular characterization of NAD(+)-dependent isocitrate dehydrogenase from the ethanologenic bacterium Zymomonas mobilis. Wang P, Jin M, Zhu G. FEMS Microbiol Lett 327 134-141 (2012)
  66. Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome. Liu L, Li T, Song G, He Q, Yin Y, Lu JY, Bi X, Wang K, Luo S, Chen YS, Yang Y, Sun BF, Yang YG, Wu J, Zhu H, Shen X. Nucleic Acids Res 47 2244-2262 (2019)
  67. Determination of phosphorylation sites for NADP-specific isocitrate dehydrogenase from mycobacterium tuberculosis. Vinekar R, Ghosh I. J Biomol Struct Dyn 26 741-754 (2009)
  68. Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis. Quartararo CE, Hazra S, Hadi T, Blanchard JS. Biochemistry 52 1765-1775 (2013)
  69. Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Prasad UV, Vasu D, Kumar YN, Kumar PS, Yeswanth S, Swarupa V, Phaneendra BV, Chaudhary A, Sarma PV. Appl Biochem Biotechnol 169 862-869 (2013)
  70. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase. Yates SP, Edwards TE, Bryan CM, Stein AJ, Van Voorhis WC, Myler PJ, Stewart LJ, Zheng J, Jia Z. Biochemistry 50 8103-8106 (2011)
  71. Structure and quantum chemical analysis of NAD+-dependent isocitrate dehydrogenase: hydride transfer and co-factor specificity. Imada K, Tamura T, Takenaka R, Kobayashi I, Namba K, Inagaki K. Proteins 70 63-71 (2008)
  72. Studies on the regulatory mechanism of isocitrate dehydrogenase 2 using acetylation mimics. Xu Y, Liu L, Nakamura A, Someya S, Miyakawa T, Tanokura M. Sci Rep 7 9785 (2017)
  73. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2. Liu Z, Yu W, Nomura CT, Li J, Chen S, Yang Y, Wang Q. Appl Microbiol Biotechnol 102 6935-6946 (2018)
  74. Insights into the inhibitory mechanisms of NADH on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase. Liu Y, Hu L, Ma T, Yang J, Ding J. Sci Rep 8 3146 (2018)
  75. Lack of evidence for substrate channeling or flux between wildtype and mutant isocitrate dehydrogenase to produce the oncometabolite 2-hydroxyglutarate. Dexter JP, Ward PS, Dasgupta T, Hosios AM, Gunawardena J, Vander Heiden MG. J Biol Chem 293 20051-20061 (2018)
  76. Structures of the substrate-free and product-bound forms of HmuO, a heme oxygenase from corynebacterium diphtheriae: x-ray crystallography and molecular dynamics investigation. Unno M, Ardèvol A, Rovira C, Ikeda-Saito M. J Biol Chem 288 34443-34458 (2013)
  77. Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers. Stokke R, Karlström M, Yang N, Leiros I, Ladenstein R, Birkeland NK, Steen IH. Extremophiles 11 481-493 (2007)
  78. Wild‑type IDH1 affects cell migration by modulating the PI3K/AKT/mTOR pathway in primary glioblastoma cells. Shen X, Wu S, Zhang J, Li M, Xu F, Wang A, Lei Y, Zhu G. Mol Med Rep 22 1949-1957 (2020)
  79. Dual compartmental localization and function of mammalian NADP+-specific isocitrate dehydrogenase in yeast. Lu Q, Minard KI, McAlister-Henn L. Arch Biochem Biophys 472 17-25 (2008)
  80. Evolutionary history of a dispersal-associated locus across sympatric and allopatric divergent populations of a wing-polymorphic beetle across Atlantic Europe. Van Belleghem SM, Roelofs D, Hendrickx F. Mol Ecol 24 890-908 (2015)
  81. Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Wang A, Cao ZY, Wang P, Liu AM, Pan W, Wang J, Zhu GP. Mol Biol Rep 38 3717-3724 (2011)
  82. NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation. Li X, Wang P, Ge Y, Wang W, Abbas A, Zhu G. Appl Biochem Biotechnol 171 403-416 (2013)
  83. Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Liu S, Abboud MI, John T, Mikhailov V, Hvinden I, Walsby-Tickle J, Liu X, Pettinati I, Cadoux-Hudson T, McCullagh JSO, Schofield CJ. Commun Biol 4 1243 (2021)
  84. A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71. Wu MC, Tian CQ, Cheng HM, Xu L, Wang P, Zhu GP. PLoS One 10 e0125229 (2015)
  85. An olive oil phenolic is a new chemotype of mutant isocitrate dehydrogenase 1 (IDH1) inhibitors. Verdura S, Cuyàs E, Lozano-Sánchez J, Bastidas-Velez C, Llorach-Parés L, Fernández-Arroyo S, Hernández-Aguilera A, Joven J, Nonell-Canals A, Bosch-Barrera J, Martin-Castillo B, Vellon L, Sanchez-Martinez M, Segura-Carretero A, Menendez JA. Carcinogenesis 40 27-40 (2019)
  86. Thr373, Asp375, and Lys260 are in the coenzyme site of porcine NADP-dependent isocitrate dehydrogenase. Lee P, Colman RF. Arch Biochem Biophys 450 183-190 (2006)
  87. Biochemical characterization of NADP⁺-dependent isocitrate dehydrogenase from Microcystis aeruginosa PCC7806. Jin MM, Wang P, Li X, Zhao XY, Xu L, Song P, Zhu GP. Mol Biol Rep 40 2995-3002 (2013)
  88. Computational tools for the interactive exploration of proteomic and structural data. Morris JH, Meng EC, Ferrin TE. Mol Cell Proteomics 9 1703-1715 (2010)
  89. Cytosolic Isocitrate Dehydrogenase from Arabidopsis thaliana Is Regulated by Glutathionylation. Niazi AK, Bariat L, Riondet C, Carapito C, Mhamdi A, Noctor G, Reichheld JP. Antioxidants (Basel) 8 E16 (2019)
  90. Enzyme redesign guided by cancer-derived IDH1 mutations. Reitman ZJ, Choi BD, Spasojevic I, Bigner DD, Sampson JH, Yan H. Nat Chem Biol 8 887-889 (2012)
  91. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102. Wang P, Song P, Jin M, Zhu G. PLoS One 8 e58918 (2013)
  92. Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors. Reinbold R, Hvinden IC, Rabe P, Herold RA, Finch A, Wood J, Morgan M, Staudt M, Clifton IJ, Armstrong FA, McCullagh JSO, Redmond J, Bardella C, Abboud MI, Schofield CJ. Nat Commun 13 4785 (2022)
  93. Structure and allosteric regulation of human NAD-dependent isocitrate dehydrogenase. Sun P, Liu Y, Ma T, Ding J. Cell Discov 6 94 (2020)
  94. Analysis of isocitrate dehydrogenase 1 mutation in 97 patients with glioma. Zhou YX, Wang JX, Feng M, Sun CM, Sun T, Chen GL, Du ZW. J Mol Neurosci 47 442-447 (2012)
  95. Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Kingsbury JM, Shamaprasad N, Billmyre RB, Heitman J, Cardenas ME. Hum Mol Genet 25 3524-3538 (2016)
  96. Favorable role of IDH1/2 mutations aided with MGMT promoter gene methylation in the outcome of patients with malignant glioma. Pandith AA, Qasim I, Baba SM, Koul A, Zahoor W, Afroze D, Lateef A, Manzoor U, Bhat IA, Sanadhya D, Bhat AR, Ramzan AU, Mohammad F, Anwar I. Future Sci OA 7 FSO663 (2020)
  97. Location of the coenzyme binding site in the porcine mitochondrial NADP-dependent isocitrate dehydrogenase. Huang YC, Colman RF. J Biol Chem 280 30349-30353 (2005)
  98. Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes. Morgan PE, Sheahan PJ, Pattison DI, Davies MJ. Free Radic Biol Med 61 229-242 (2013)
  99. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables. Ayoub HM, McDonald MR, Sullivan JA, Tsao R, Meckling KA. Nutrients 10 E456 (2018)
  100. Dietary Effect on the Proteome of the Common Octopus (Octopus vulgaris) Paralarvae. Varó I, Cardenete G, Hontoria F, Monroig Ó, Iglesias J, Otero JJ, Almansa E, Navarro JC. Front Physiol 8 309 (2017)
  101. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Zhao X, Wang P, Zhu G, Wang B, Zhu G. Appl Biochem Biotechnol 172 487-496 (2014)
  102. Identification of CRYAB+ KCNN3+ SOX9+ Astrocyte-Like and EGFR+ PDGFRA+ OLIG1+ Oligodendrocyte-Like Tumoral Cells in Diffuse IDH1-Mutant Gliomas and Implication of NOTCH1 Signalling in Their Genesis. Augustus M, Pineau D, Aimond F, Azar S, Lecca D, Scamps F, Muxel S, Darlix A, Ritchie W, Gozé C, Rigau V, Duffau H, Hugnot JP. Cancers (Basel) 13 2107 (2021)
  103. Identification of a new selective chemical inhibitor of mutant isocitrate dehydrogenase-1. Kim HJ, Choi BY, Keum YS. J Cancer Prev 20 78-83 (2015)
  104. In vitro visualization and characterization of wild type and mutant IDH homo- and heterodimers using Bimolecular Fluorescence Complementation. Robinson GL, Philip B, Guthrie MR, Cox JE, Robinson JP, VanBrocklin MW, Holmen SL. Cancer Res Front 2 311-329 (2016)
  105. Metabolomics of Glioma. Feng S, Liu Y. Adv Exp Med Biol 1280 261-276 (2021)
  106. Absence of IDH mutation in colorectal cancers with microsatellite instability. Tougeron D, Guilloteau K, Karayan-Tapon L. Dig Liver Dis 48 681-683 (2016)
  107. Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases. Kalinina OV, Gelfand MS. Proteins 64 1001-1009 (2006)
  108. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum. Huang SP, Cheng HM, Wang P, Zhu GP. Int J Mol Sci 17 296 (2016)
  109. Clinicopathological features and molecular analysis of primary glioblastomas in Moroccan patients. Hilmani S, Abidi O, Benrahma H, Karkouri M, Sahraoui S, El Azhari A, Barakat A. J Mol Neurosci 49 567-573 (2013)
  110. Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033. Zhang BB, Wang P, Wang A, Wang WC, Tang WG, Zhu GP. Mol Biol Rep 40 1615-1623 (2013)
  111. Molecular basis for the function of the αβ heterodimer of human NAD-dependent isocitrate dehydrogenase. Sun P, Ma T, Zhang T, Zhu H, Zhang J, Liu Y, Ding J. J Biol Chem 294 16214-16227 (2019)
  112. Structure of Thermus thermophilus homoisocitrate dehydrogenase in complex with a designed inhibitor. Nango E, Yamamoto T, Kumasaka T, Eguchi T. J Biochem 150 607-614 (2011)
  113. The Landscape of the Anti-Kinase Activity of the IDH1 Inhibitors. Malarz K, Mularski J, Pacholczyk M, Musiol R. Cancers (Basel) 12 E536 (2020)
  114. Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa. Lv P, Tang W, Wang P, Cao Z, Zhu G. Biotechnol Appl Biochem 65 230-237 (2018)
  115. Evaluation of Magnetonanoparticles Conjugated with New Angiogenesis Peptides in Intracranial Glioma Tumors by MRI. de Oliveira EA, Lazovic J, Guo L, Soto H, Faintuch BL, Akhtari M, Pope W. Appl Biochem Biotechnol 183 265-279 (2017)
  116. Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Wang X, Inaoka DK, Shiba T, Balogun EO, Allmann S, Watanabe YI, Boshart M, Kita K, Harada S. Protein Expr Purif 138 56-62 (2017)
  117. Genetic characterization of skull base chondrosarcomas. Kanamori H, Kitamura Y, Kimura T, Yoshida K, Sasaki H. J Neurosurg 123 1036-1041 (2015)
  118. IDH1/2 Mutations in Patients With Diffuse Gliomas: A Single Centre Retrospective Massively Parallel Sequencing Analysis. Sporikova Z, Slavkovsky R, Tuckova L, Kalita O, Megova Houdova M, Ehrmann J, Hajduch M, Hrabalek L, Vaverka M. Appl Immunohistochem Mol Morphol 30 178-183 (2022)
  119. NADP+-dependent cytosolic isocitrate dehydrogenase provides NADPH in the presence of cadmium due to the moderate chelating effect of glutathione. Cho HJ, Cho HY, Park JW, Kwon OS, Lee HS, Huh TL, Kang BS. J Biol Inorg Chem 23 849-860 (2018)
  120. Optimization of 3-Pyrimidin-4-yl-oxazolidin-2-ones as Orally Bioavailable and Brain Penetrant Mutant IDH1 Inhibitors. Zhao Q, Manning JR, Sutton J, Costales A, Sendzik M, Shafer CM, Levell JR, Liu G, Caferro T, Cho YS, Palermo M, Chenail G, Dooley J, Villalba B, Farsidjani A, Chen J, Dodd S, Gould T, Liang G, Slocum K, Pu M, Firestone B, Growney J, Heimbach T, Pagliarini R. ACS Med Chem Lett 9 746-751 (2018)
  121. Structure of a highly NADP+-specific isocitrate dehydrogenase. Sidhu NS, Delbaere LT, Sheldrick GM. Acta Crystallogr D Biol Crystallogr 67 856-869 (2011)
  122. Validation of a multi-omics strategy for prioritizing personalized candidate driver genes Liang L, Song L, Yang Y, Tian L, Li X, Wu S, Huang W, Ren H, Tang N, Ding K. Oncotarget 7 38440-38450 (2016)
  123. Expression patterns of members of the isocitrate dehydrogenase gene family in murine inner ear. Kim YR, Kim KH, Lee S, Oh SK, Park JW, Lee KY, Baek JI, Kim UK. Biotech Histochem 92 536-544 (2017)
  124. Identifying the genes regulated by IDH1 via gene-chip in glioma cell U87. Ren J, Lou M, Shi J, Xue Y, Cui D. Int J Clin Exp Med 8 18090-18098 (2015)
  125. Minimally-Myelosuppressive Asparaginase-Containing Induction Regimen for Treatment of a Jehovah's Witness with mutant IDH1/NPM1/NRAS Acute Myeloid Leukemia. Emadi A, Bade NA, Stevenson B, Singh Z. Pharmaceuticals (Basel) 9 E12 (2016)
  126. Mutation of IDH1 aggravates the fatty acid‑induced oxidative stress in HCT116 cells by affecting the mitochondrial respiratory chain. Li S, Sun C, Gu Y, Gao X, Zhao Y, Yuan Y, Zhang F, Hu P, Liang W, Cao K, Zhang J, Wang Z, Ye J. Mol Med Rep 19 2509-2518 (2019)
  127. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain. Kumar SM, Pampa KJ, Manjula M, Abdoh MM, Kunishima N, Lokanath NK. Biochem Biophys Res Commun 449 107-113 (2014)
  128. Discovery of a novel class of pyridine derivatives that selectively inhibits mutant isocitrate dehydrogenase 2. Wang F, Li Z, Zhang T, Yan G, Hu M, Zhao L, Zhao Y, Chen Y. Chem Biol Drug Des 91 1087-1093 (2018)
  129. HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, Zhu H, Guo R, Sun L, Wu Y, Qin J, Sun B, Li D, Luo HR, Liu M, Xuan C, Zhou J. EMBO Rep 24 e56009 (2023)
  130. IDH1 fine-tunes cap-dependent translation initiation. Liu L, Lu JY, Li F, Xing X, Li T, Yang X, Shen X. J Mol Cell Biol 11 816-828 (2019)
  131. Isocitrate dehydrogenase 1 mutation subtypes at site 132 and their translational potential in glioma. Lu VM, McDonald KL. CNS Oncol 7 41-50 (2018)
  132. Low expression of isocitrate dehydrogenase 1 (IDH1) R132H is associated with advanced pathological features in laryngeal squamous cell carcinoma. Shayanfar N, Zare-Mirzaie A, Mohammadpour M, Jafari E, Mehrtash A, Emtiazi N, Tajik F. J Cancer Res Clin Oncol 149 4253-4267 (2023)
  133. Low pH Facilitates Heterodimerization of Mutant Isocitrate Dehydrogenase IDH1-R132H and Promotes Production of 2-Hydroxyglutarate. Sesanto R, Kuehn JF, Barber DL, White KA. Biochemistry 60 1983-1994 (2021)
  134. Novel Insights for Inhibiting Mutant Heterodimer IDH1wt-R132H in Cancer: An In-Silico Approach. Juritz EI, Bascur JP, Almonacid DE, González-Nilo FD. Mol Diagn Ther 22 369-380 (2018)
  135. Single arginine mutation in two yeast isocitrate dehydrogenases: biochemical characterization and functional implication. Song P, Wei H, Cao Z, Wang P, Zhu G. PLoS One 9 e115025 (2014)
  136. Targeted rescue of cancer-associated IDH1 mutant activity using an engineered synthetic antibody. Rizk SS, Mukherjee S, Koide A, Koide S, Kossiakoff AA. Sci Rep 7 556 (2017)
  137. The Long Non-Coding RNA IDH1-AS1 Promotes Prostate Cancer Progression by Enhancing IDH1 Enzyme Activity. Wu S, Ding L, Xu H, Gao J, Shao Y, Zhang S, Wei Z. Onco Targets Ther 13 7897-7906 (2020)
  138. A Case of Metastatic Biliary Tract Cancer Diagnosed Through Identification of an IDH1 Mutation. Kamath SD, Lin X, Kalyan A. Oncologist 24 151-156 (2019)
  139. Modified expression of cytoplasmic isocitrate dehydrogenase electrophoretic isoforms in seminal plasma of men with sertoli-cell-only syndrome and seminoma. Starita-Geribaldi M, Samson M, Guigonis JM, Pointis G, Fenichel P. Mol Carcinog 47 410-414 (2008)
  140. NADP(H)-dependent biocatalysis without adding NADP(H). Herold RA, Reinbold R, Schofield CJ, Armstrong FA. Proc Natl Acad Sci U S A 120 e2214123120 (2023)
  141. Natural and synthetic 2-oxoglutarate derivatives are substrates for oncogenic variants of human isocitrate dehydrogenase 1 and 2. Liu X, Reinbold R, Liu S, Herold RA, Rabe P, Duclos S, Yadav RB, Abboud MI, Thieffine S, Armstrong FA, Brewitz L, Schofield CJ. J Biol Chem 299 102873 (2023)
  142. Point mutation (R153H or R153C) in Escherichia coli isocitrate dehydrogenase: Biochemical characterization and functional implication. Song P, Li S, Wu Y, Lv C, Wang P, Zhu G. J Basic Microbiol 57 41-49 (2017)
  143. Comparing Transcriptomes Reveals Key Metabolic Mechanisms in Superior Growth Performance Nile Tilapia (Oreochromis niloticus). Chen B, Xiao W, Zou Z, Zhu J, Li D, Yu J, Yang H. Front Genet 13 879570 (2022)
  144. Differentiating Inhibition Selectivity and Binding Affinity of Isocitrate Dehydrogenase 1 Variant Inhibitors. Liu S, Abboud M, Mikhailov V, Liu X, Reinbold R, Schofield CJ. J Med Chem 66 5279-5288 (2023)
  145. Discovery of novel IDH1-R132C inhibitors through structure-based virtual screening. Hu C, Zeng Z, Ma D, Yin Z, Zhao S, Chen T, Tang L, Zuo S. Front Pharmacol 13 982375 (2022)
  146. IDH1/MDH1 deacetylation promotes acute liver failure by regulating NETosis. Wang Y, Shi C, Guo J, Zhang D, Zhang Y, Zhang L, Gong Z. Cell Mol Biol Lett 29 8 (2024)
  147. Identification of ferroptosis-related molecular clusters and genes for diabetic osteoporosis based on the machine learning. Wang X, Meng L, Zhang J, Zhao Z, Zou L, Jia Z, Han X, Zhao L, Song M, Zong J, Wang S, Qu X, Lu M. Front Endocrinol (Lausanne) 14 1189513 (2023)
  148. Isocitrate Dehydrogenase Mutations Are Associated with Different Expression and DNA Methylation Patterns of OLIG2 in Adult Gliomas. Mo H, Magaki S, Deisch JK, Raghavan R. J Neuropathol Exp Neurol 81 707-716 (2022)
  149. Purification and characterization of NADP-isocitrate dehydrogenase from skeletal muscle of Urocitellus richardsonii. MacLean IA, Varma A, Storey KB. Mol Cell Biochem 478 415-426 (2023)
  150. Structures of a constitutively active mutant of human IDH3 reveal new insights into the mechanisms of allosteric activation and the catalytic reaction. Chen X, Sun P, Liu Y, Shen S, Ma T, Ding J. J Biol Chem 298 102695 (2022)