1srs Citations

Structure of serum response factor core bound to DNA.

Nature 376 490-8 (1995)
Cited: 203 times
EuropePMC logo PMID: 7637780


The human serum response factor is a transcription factor belonging to the MADS domain protein family with members characterized from the plant and animal kingdoms. The X-ray crystal structure of the serum response factor core in a specific-recognition DNA complex shows that the functions of DNA binding, dimerization and accessory-factor interaction are compactly integrated into a novel protein unit. The intrinsic and induced conformation of the serum response element DNA is the principal DNA feature recognized in the specific complex.

Reviews - 1srs mentioned but not cited (2)

  1. Structural Basis for Plant MADS Transcription Factor Oligomerization. Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. Comput Struct Biotechnol J 17 946-953 (2019)
  2. A hitchhiker's guide to the MADS world of plants. Gramzow L, Theissen G. Genome Biol. 11 214 (2010)

Articles - 1srs mentioned but not cited (7)

  1. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies. Mahony S, Auron PE, Benos PV. PLoS Comput. Biol. 3 e61 (2007)
  2. The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex. Hassler M, Richmond TJ. EMBO J. 20 3018-3028 (2001)
  3. Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Hester CM, Lutkenhaus J. Proc. Natl. Acad. Sci. U.S.A. 104 20326-20331 (2007)
  4. Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. Huang K, Louis JM, Donaldson L, Lim FL, Sharrocks AD, Clore GM. EMBO J. 19 2615-2628 (2000)
  5. DNA Shape Features Improve Transcription Factor Binding Site Predictions In Vivo. Mathelier A, Xin B, Chiu TP, Yang L, Rohs R, Wasserman WW. Cell Syst 3 278-286.e4 (2016)
  6. Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Neuenfeldt A, Lorber B, Ennifar E, Gaudry A, Sauter C, Sissler M, Florentz C. Nucleic Acids Res. 41 2698-2708 (2013)
  7. Bragg-mirror-like circular dichroism in bio-inspired quadruple-gyroid 4srs nanostructures. Cumming BP, Schröder-Turk GE, Debbarma S, Gu M. Light Sci Appl 6 e16192 (2017)

Reviews citing this publication (33)

  1. Changing MADS-Box Transcription Factor Protein-Protein Interactions as a Mechanism for Generating Floral Morphological Diversity. Bartlett ME. Integr. Comp. Biol. 57 1312-1321 (2017)
  2. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. Dreni L, Zhang D. J. Exp. Bot. 67 1625-1638 (2016)
  3. Molecular mechanisms of floral organ specification by MADS domain proteins. Yan W, Chen D, Kaufmann K. Curr. Opin. Plant Biol. 29 154-162 (2016)
  4. Vascular Smooth Muscle Cells. Majesky MW. Arterioscler. Thromb. Vasc. Biol. 36 e82-6 (2016)
  5. The ins and outs of the rice AGAMOUS subfamily. Dreni L, Osnato M, Kater MM. Mol Plant 6 650-664 (2013)
  6. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Majesky MW, Dong XR, Regan JN, Hoglund VJ. Circ. Res. 108 365-377 (2011)
  7. Linking actin dynamics and gene transcription to drive cellular motile functions. Olson EN, Nordheim A. Nat. Rev. Mol. Cell Biol. 11 353-365 (2010)
  8. Regulation and function of SOC1, a flowering pathway integrator. Lee J, Lee I. J. Exp. Bot. 61 2247-2254 (2010)
  9. The effects of stretch on vascular smooth muscle cell phenotype in vitro. Halka AT, Turner NJ, Carter A, Ghosh J, Murphy MO, Kirton JP, Kielty CM, Walker MG. Cardiovasc. Pathol. 17 98-102 (2008)
  10. Developmental basis of vascular smooth muscle diversity. Majesky MW. Arterioscler. Thromb. Vasc. Biol. 27 1248-1258 (2007)
  11. Programming smooth muscle plasticity with chromatin dynamics. McDonald OG, Owens GK. Circ. Res. 100 1428-1441 (2007)
  12. trans meets cis in MADS science. de Folter S, Angenent GC. Trends Plant Sci. 11 224-231 (2006)
  13. Combinatorial control of gene expression. Reményi A, Schöler HR, Wilmanns M. Nat. Struct. Mol. Biol. 11 812-815 (2004)
  14. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  15. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Messenguy F, Dubois E. Gene 316 1-21 (2003)
  16. Eukaryotic transcription factors. Warren AJ. Curr. Opin. Struct. Biol. 12 107-114 (2002)
  17. Transcription factor complexes. Burley SK, Kamada K. Curr. Opin. Struct. Biol. 12 225-230 (2002)
  18. Ca(2+)/CaM-dependent kinases: from activation to function. Hook SS, Means AR. Annu. Rev. Pharmacol. Toxicol. 41 471-505 (2001)
  19. A short history of MADS-box genes in plants. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H. Plant Mol. Biol. 42 115-149 (2000)
  20. Electrostatic mechanisms of DNA deformation. Williams LD, Maher LJ. Annu Rev Biophys Biomol Struct 29 497-521 (2000)
  21. Multiprotein-DNA complexes in transcriptional regulation. Wolberger C. Annu Rev Biophys Biomol Struct 28 29-56 (1999)
  22. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Liu L, White MJ, MacRae TH. Eur. J. Biochem. 262 247-257 (1999)
  23. Chromatin structure and analysis of mechanisms of activators and repressors. Simpson RT. Methods 15 283-294 (1998)
  24. Combinatorial transcription factors. Wolberger C. Curr. Opin. Genet. Dev. 8 552-559 (1998)
  25. Maintenance energy requirement: what is required for stasis survival of Escherichia coli? Nyström T, Gustavsson N. Biochim. Biophys. Acta 1365 225-231 (1998)
  26. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Black BL, Olson EN. Annu. Rev. Cell Dev. Biol. 14 167-196 (1998)
  27. DNA recognition and bending. Allemann RK, Egli M. Chem. Biol. 4 643-650 (1997)
  28. Eukaryotic transcription factor-DNA complexes. Patikoglou G, Burley SK. Annu Rev Biophys Biomol Struct 26 289-325 (1997)
  29. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Pfeifer GP. Photochem. Photobiol. 65 270-283 (1997)
  30. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Molkentin JD, Olson EN. Proc. Natl. Acad. Sci. U.S.A. 93 9366-9373 (1996)
  31. Protein interactions of homeodomain proteins. Vershon AK. Curr. Opin. Biotechnol. 7 392-396 (1996)
  32. Regulation of transcription by MAP kinase cascades. Treisman R. Curr. Opin. Cell Biol. 8 205-215 (1996)
  33. Journey to the surface of the cell: Fos regulation and the SRE. Treisman R. EMBO J. 14 4905-4913 (1995)

Articles citing this publication (161)

  1. An expansive human regulatory lexicon encoded in transcription factor footprints. Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT, Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E, Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G, Byron R, MacCoss MJ, Akey JM, Bender MA, Groudine M, Kaul R, Stamatoyannopoulos JA. Nature 489 83-90 (2012)
  2. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L. Plant Cell 15 1538-1551 (2003)
  3. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Theissen G, Kim JT, Saedler H. J. Mol. Evol. 43 484-516 (1996)
  4. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Riechmann JL, Krizek BA, Meyerowitz EM. Proc. Natl. Acad. Sci. U.S.A. 93 4793-4798 (1996)
  5. Serum response factor is essential for mesoderm formation during mouse embryogenesis. Arsenian S, Weinhold B, Oelgeschläger M, Rüther U, Nordheim A. EMBO J. 17 6289-6299 (1998)
  6. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U. Genes Dev. 17 1540-1553 (2003)
  7. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC. PLoS Biol. 7 e1000090 (2009)
  8. Defining the mammalian CArGome. Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ, Miano JM. Genome Res. 16 197-207 (2006)
  9. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Falvo JV, Thanos D, Maniatis T. Cell 83 1101-1111 (1995)
  10. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Chen CY, Schwartz RJ. Mol. Cell. Biol. 16 6372-6384 (1996)
  11. Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM. Plant Cell 16 1314-1326 (2004)
  12. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L. Plant Cell 14 2463-2479 (2002)
  13. Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex. Tan S, Richmond TJ. Nature 391 660-666 (1998)
  14. Multiple interactions amongst floral homeotic MADS box proteins. Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H. EMBO J. 15 4330-4343 (1996)
  15. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G. Plant Cell 12 871-884 (2000)
  16. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. J. Clin. Invest. 116 36-48 (2006)
  17. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Riechmann JL, Wang M, Meyerowitz EM. Nucleic Acids Res. 24 3134-3141 (1996)
  18. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J. Mol. Biol. 301 597-624 (2000)
  19. Regulation of flowering in Arabidopsis by an FLC homologue. Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL. Plant Physiol. 126 122-132 (2001)
  20. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Lee J, Oh M, Park H, Lee I. Plant J. 55 832-843 (2008)
  21. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Yang Y, Fanning L, Jack T. Plant J. 33 47-59 (2003)
  22. The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Dodou E, Treisman R. Mol. Cell. Biol. 17 1848-1859 (1997)
  23. Cell-specific nuclear import of plasmid DNA. Vacik J, Dean BS, Zimmer WE, Dean DA. Gene Ther. 6 1006-1014 (1999)
  24. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Molkentin JD, Black BL, Martin JF, Olson EN. Mol. Cell. Biol. 16 2627-2636 (1996)
  25. AGL80 is required for central cell and endosperm development in Arabidopsis. Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN. Plant Cell 18 1862-1872 (2006)
  26. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T. Plant J. 55 212-223 (2008)
  27. Transcription factor families have much higher expansion rates in plants than in animals. Shiu SH, Shih MC, Li WH. Plant Physiol. 139 18-26 (2005)
  28. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H. Plant Cell 21 3008-3025 (2009)
  29. Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells. Schratt G, Weinhold B, Lundberg AS, Schuck S, Berger J, Schwarz H, Weinberg RA, Rüther U, Nordheim A. Mol. Cell. Biol. 21 2933-2943 (2001)
  30. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC. Plant Cell 12 183-198 (2000)
  31. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Martinez-Castilla LP, Alvarez-Buylla ER. Proc. Natl. Acad. Sci. U.S.A. 100 13407-13412 (2003)
  32. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ. J. Biol. Chem. 277 25775-25782 (2002)
  33. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H. Plant Cell 8 81-94 (1996)
  34. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF. Mol. Biol. Evol. 23 2245-2258 (2006)
  35. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  36. X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. Shatzky-Schwartz M, Arbuckle ND, Eisenstein M, Rabinovich D, Bareket-Samish A, Haran TE, Luisi BF, Shakked Z. J. Mol. Biol. 267 595-623 (1997)
  37. Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Niu Z, Iyer D, Conway SJ, Martin JF, Ivey K, Srivastava D, Nordheim A, Schwartz RJ. Proc. Natl. Acad. Sci. U.S.A. 105 17824-17829 (2008)
  38. Reconstitution of 'floral quartets' in vitro involving class B and class E floral homeotic proteins. Melzer R, Theissen G. Nucleic Acids Res. 37 2723-2736 (2009)
  39. Crystal structure of MEF2A core bound to DNA at 1.5 A resolution. Santelli E, Richmond TJ. J. Mol. Biol. 297 437-449 (2000)
  40. Developmental pattern of expression and genomic organization of the calponin-h1 gene. A contractile smooth muscle cell marker. Samaha FF, Ip HS, Morrisey EE, Seltzer J, Tang Z, Solway J, Parmacek MS. J. Biol. Chem. 271 395-403 (1996)
  41. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mo Y, Vaessen B, Johnston K, Marmorstein R. Mol. Cell 2 201-212 (1998)
  42. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Mizukami Y, Huang H, Tudor M, Hu Y, Ma H. Plant Cell 8 831-845 (1996)
  43. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2. Han A, Pan F, Stroud JC, Youn HD, Liu JO, Chen L. Nature 422 730-734 (2003)
  44. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Riechmann JL, Meyerowitz EM. Mol. Biol. Cell 8 1243-1259 (1997)
  45. MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNA-binding domain. Zaromytidou AI, Miralles F, Treisman R. Mol. Cell. Biol. 26 4134-4148 (2006)
  46. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ. Plant Physiol. 137 1037-1048 (2005)
  47. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y. Plant Physiol. 158 439-450 (2012)
  48. Srf(-/-) ES cells display non-cell-autonomous impairment in mesodermal differentiation. Weinhold B, Schratt G, Arsenian S, Berger J, Kamino K, Schwarz H, Rüther U, Nordheim A. EMBO J. 19 5835-5844 (2000)
  49. Dominant negative murine serum response factor: alternative splicing within the activation domain inhibits transactivation of serum response factor binding targets. Belaguli NS, Zhou W, Trinh TH, Majesky MW, Schwartz RJ. Mol. Cell. Biol. 19 4582-4591 (1999)
  50. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Winter KU, Saedler H, Theissen G. Plant J. 31 457-475 (2002)
  51. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. West AG, Causier BE, Davies B, Sharrocks AD. Nucleic Acids Res. 26 5277-5287 (1998)
  52. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene. Lee Y, Nadal-Ginard B, Mahdavi V, Izumo S. Mol. Cell. Biol. 17 2745-2755 (1997)
  53. Structure of the universal stress protein of Haemophilus influenzae. Sousa MC, McKay DB. Structure 9 1135-1141 (2001)
  54. Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S. EMBO J. 20 6612-6618 (2001)
  55. DNA-binding specificity of Mcm1: operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein. Acton TB, Zhong H, Vershon AK. Mol. Cell. Biol. 17 1881-1889 (1997)
  56. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, Dresselhaus T. Plant Physiol. 127 33-45 (2001)
  57. DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. West AG, Shore P, Sharrocks AD. Mol. Cell. Biol. 17 2876-2887 (1997)
  58. Determinants of DNA-binding specificity of ETS-domain transcription factors. Shore P, Whitmarsh AJ, Bhaskaran R, Davis RJ, Waltho JP, Sharrocks AD. Mol. Cell. Biol. 16 3338-3349 (1996)
  59. DNA bending by hexamethylene-tethered ammonium ions. Strauss JK, Roberts C, Nelson MG, Switzer C, Maher LJ. Proc. Natl. Acad. Sci. U.S.A. 93 9515-9520 (1996)
  60. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun. Leonard DA, Rajaram N, Kerppola TK. Proc. Natl. Acad. Sci. U.S.A. 94 4913-4918 (1997)
  61. Crystal structure of a ternary SAP-1/SRF/c-fos SRE DNA complex. Mo Y, Ho W, Johnston K, Marmorstein R. J. Mol. Biol. 314 495-506 (2001)
  62. Recruitment of the yeast MADS-box proteins, ArgRI and Mcm1 by the pleiotropic factor ArgRIII is required for their stability. El Bakkoury M, Dubois E, Messenguy F. Mol. Microbiol. 35 15-31 (2000)
  63. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Yoo SK, Wu X, Lee JS, Ahn JH. Plant J. 65 62-76 (2011)
  64. Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor. Kvint K, Hosbond C, Farewell A, Nybroe O, Nyström T. Mol. Microbiol. 35 435-443 (2000)
  65. On the origin of MADS-domain transcription factors. Gramzow L, Ritz MS, Theissen G. Trends Genet. 26 149-153 (2010)
  66. Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Scott SD, Joiner MC, Marples B. Gene Ther. 9 1396-1402 (2002)
  67. Serum response factor MADS box serine-162 phosphorylation switches proliferation and myogenic gene programs. Iyer D, Chang D, Marx J, Wei L, Olson EN, Parmacek MS, Balasubramanyam A, Schwartz RJ. Proc. Natl. Acad. Sci. U.S.A. 103 4516-4521 (2006)
  68. TATA box DNA deformation with and without the TATA box-binding protein. Davis NA, Majee SS, Kahn JD. J. Mol. Biol. 291 249-265 (1999)
  69. Activation of the serum response factor by p65/NF-kappaB. Franzoso G, Carlson L, Brown K, Daucher MB, Bressler P, Siebenlist U. EMBO J. 15 3403-3412 (1996)
  70. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations. Kuo MH, Nadeau ET, Grayhack EJ. Mol. Cell. Biol. 17 819-832 (1997)
  71. The yeast alpha2 and Mcm1 proteins interact through a region similar to a motif found in homeodomain proteins of higher eukaryotes. Mead J, Zhong H, Acton TB, Vershon AK. Mol. Cell. Biol. 16 2135-2143 (1996)
  72. Interactions of the Mcm1 MADS box protein with cofactors that regulate mating in yeast. Mead J, Bruning AR, Gill MK, Steiner AM, Acton TB, Vershon AK. Mol. Cell. Biol. 22 4607-4621 (2002)
  73. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH. Planta 223 882-890 (2006)
  74. Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Flück M, Booth FW, Waxham MN. Biochem. Biophys. Res. Commun. 270 488-494 (2000)
  75. Distinct enhancers regulate skeletal and cardiac muscle-specific expression programs of the cardiac alpha-actin gene in Xenopus embryos. Latinkić BV, Cooper B, Towers N, Sparrow D, Kotecha S, Mohun TJ. Dev. Biol. 245 57-70 (2002)
  76. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. Wang S, Lu G, Hou Z, Luo Z, Wang T, Li H, Zhang J, Ye Z. J. Exp. Bot. 65 3005-3014 (2014)
  77. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Liu C, Zhang J, Zhang N, Shan H, Su K, Zhang J, Meng Z, Kong H, Chen Z. Mol. Biol. Evol. 27 1598-1611 (2010)
  78. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Novellasdemunt L, Bultot L, Manzano A, Ventura F, Rosa JL, Vertommen D, Rider MH, Navarro-Sabate À, Bartrons R. Biochem. J. 452 531-543 (2013)
  79. Thermodynamics of sequence-specific protein-DNA interactions. Härd T, Lundbäck T. Biophys. Chem. 62 121-139 (1996)
  80. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Shima Y, Kitagawa M, Fujisawa M, Nakano T, Kato H, Kimbara J, Kasumi T, Ito Y. Plant Mol. Biol. 82 427-438 (2013)
  81. Molecular determinants of the cell-cycle regulated Mcm1p-Fkh2p transcription factor complex. Boros J, Lim FL, Darieva Z, Pic-Taylor A, Harman R, Morgan BA, Sharrocks AD. Nucleic Acids Res. 31 2279-2288 (2003)
  82. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. Glasfeld A, Koehler AN, Schumacher MA, Brennan RG. J. Mol. Biol. 291 347-361 (1999)
  83. MADS-box transcription factors adopt alternative mechanisms for bending DNA. West AG, Sharrocks AD. J. Mol. Biol. 286 1311-1323 (1999)
  84. Classification of protein-DNA complexes based on structural descriptors. Prabakaran P, Siebers JG, Ahmad S, Gromiha MM, Singarayan MG, Sarai A. Structure 14 1355-1367 (2006)
  85. Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C. Plant Cell 26 3603-3615 (2014)
  86. Coexpression of proteins in bacteria using T7-based expression plasmids: expression of heteromeric cell-cycle and transcriptional regulatory complexes. Johnston K, Clements A, Venkataramani RN, Trievel RC, Marmorstein R. Protein Expr. Purif. 20 435-443 (2000)
  87. Protein kinase C delta blocks immediate-early gene expression in senescent cells by inactivating serum response factor. Wheaton K, Riabowol K. Mol. Cell. Biol. 24 7298-7311 (2004)
  88. GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana B(sister) MADS box gene ABS (TT16) that has undergone neofunctionalization. Erdmann R, Gramzow L, Melzer R, Theissen G, Becker A. Plant J. 63 914-924 (2010)
  89. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Xu Z, Zhang Q, Sun L, Du D, Cheng T, Pan H, Yang W, Wang J. Mol. Genet. Genomics 289 903-920 (2014)
  90. Sequence analysis of eukaryotic developmental proteins: ancient and novel domains. Mushegian AR, Koonin EV. Genetics 144 817-828 (1996)
  91. Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter. Galvagni F, Lestingi M, Cartocci E, Oliviero S. Mol. Cell. Biol. 17 1731-1743 (1997)
  92. Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: general methods and principles for protein/DNA cocrystallization. Tan S, Hunziker Y, Pellegrini L, Richmond TJ. J. Mol. Biol. 297 947-959 (2000)
  93. Comment DNA-binding proteins. Inside the MADS box. Treisman R. Nature 376 468-469 (1995)
  94. Mcm1p-induced DNA bending regulates the formation of ternary transcription factor complexes. Lim FL, Hayes A, West AG, Pic-Taylor A, Darieva Z, Morgan BA, Oliver SG, Sharrocks AD. Mol. Cell. Biol. 23 450-461 (2003)
  95. Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer. Xiong J, Sun WJ, Wang WF, Liao ZK, Zhou FX, Kong HY, Xu Y, Xie CH, Zhou YF. Cancer 118 536-548 (2012)
  96. Alpha1-induced DNA bending is required for transcriptional activation by the Mcm1-alpha1 complex. Carr EA, Mead J, Vershon AK. Nucleic Acids Res. 32 2298-2305 (2004)
  97. Structural determinants of DNA recognition by plant MADS-domain transcription factors. Muiño JM, Smaczniak C, Angenent GC, Kaufmann K, van Dijk AD. Nucleic Acids Res. 42 2138-2146 (2014)
  98. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana. Roy Choudhury S, Roy S, Nag A, Singh SK, Sengupta DN. PLoS ONE 7 e44361 (2012)
  99. Effects of phosphate neutralization on the shape of the AP-1 transcription factor binding site in duplex DNA. Tomky LA, Strauss-Soukup JK, Maher LJ. Nucleic Acids Res. 26 2298-2305 (1998)
  100. SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons. Li CL, Sathyamurthy A, Oldenborg A, Tank D, Ramanan N. J. Neurosci. 34 4027-4042 (2014)
  101. Scanning mutagenesis of Mcm1: residues required for DNA binding, DNA bending, and transcriptional activation by a MADS-box protein. Acton TB, Mead J, Steiner AM, Vershon AK. Mol. Cell. Biol. 20 1-11 (2000)
  102. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway. René C, Taulan M, Iral F, Doudement J, L'Honoré A, Gerbon C, Demaille J, Claustres M, Romey MC. Nucleic Acids Res. 33 5271-5290 (2005)
  103. Effect of base composition on DNA bending by phosphate neutralization. Strauss-Soukup JK, Rodrigues PD, Maher LJ. Biophys. Chem. 72 297-306 (1998)
  104. Myocardin. a novel potentiator of SRF-mediated transcription in cardiac muscle. Hauschka SD. Mol. Cell 8 1-2 (2001)
  105. The mechanism of complex formation between Fli-1 and SRF transcription factors. Dalgleish P, Sharrocks AD. Nucleic Acids Res. 28 560-569 (2000)
  106. Dual Specificity Phosphatase 5, a Specific Negative Regulator of ERK Signaling, Is Induced by Serum Response Factor and Elk-1 Transcription Factor. Buffet C, Catelli MG, Hecale-Perlemoine K, Bricaire L, Garcia C, Gallet-Dierick A, Rodriguez S, Cormier F, Groussin L. PLoS ONE 10 e0145484 (2015)
  107. Changes in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer. Williams SL, Parkhurst LK, Parkhurst LJ. Nucleic Acids Res. 34 1028-1035 (2006)
  108. High affinity binding of MEF-2C correlates with DNA bending. Meierhans D, Sieber M, Allemann RK. Nucleic Acids Res. 25 4537-4544 (1997)
  109. Identification of genes dependent on the MADS box transcription factor SrfA in Dictyostelium discoideum development. Escalante R, Iranfar N, Sastre L, Loomis WF. Eukaryotic Cell 3 564-566 (2004)
  110. Physical and functional interactions between the prostate suppressor homeoprotein NKX3.1 and serum response factor. Ju JH, Maeng JS, Zemedkun M, Ahronovitz N, Mack JW, Ferretti JA, Gelmann EP, Gruschus JM. J. Mol. Biol. 360 989-999 (2006)
  111. Protein and DNA contact surfaces that mediate the selective action of the Phox1 homeodomain at the c-fos serum response element. Simon KJ, Grueneberg DA, Gilman M. Mol. Cell. Biol. 17 6653-6662 (1997)
  112. Dictyostelium discoideum developmentally regulated genes whose expression is dependent on MADS box transcription factor SrfA. Escalante R, Moreno N, Sastre L. Eukaryotic Cell 2 1327-1335 (2003)
  113. PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression. Blaker AL, Taylor JM, Mack CP. Arterioscler. Thromb. Vasc. Biol. 29 2153-2160 (2009)
  114. Solution structures of the trihelix DNA-binding domains of the wild-type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Nagata T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M. Proteins 78 3033-3047 (2010)
  115. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. J. Mol. Biol. 341 73-91 (2004)
  116. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Na X, Jian B, Yao W, Wu C, Hou W, Jiang B, Bi Y, Han T. Plant Cell Rep. 32 1219-1229 (2013)
  117. Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites. Wu W, Huang X, Cheng J, Li Z, de Folter S, Huang Z, Jiang X, Pang H, Tao S. Mol. Biol. Evol. 28 501-511 (2011)
  118. Continuous-time modeling of cell fate determination in Arabidopsis flowers. van Mourik S, van Dijk AD, de Gee M, Immink RG, Kaufmann K, Angenent GC, van Ham RC, Molenaar J. BMC Syst Biol 4 101 (2010)
  119. Swapping functional specificity of a MADS box protein: residues required for Arg80 regulation of arginine metabolism. Jamai A, Dubois E, Vershon AK, Messenguy F. Mol. Cell. Biol. 22 5741-5752 (2002)
  120. The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development. Bartlett ME, Williams SK, Taylor Z, DeBlasio S, Goldshmidt A, Hall DH, Schmidt RJ, Jackson DP, Whipple CJ. Plant Cell 27 3081-3098 (2015)
  121. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions. Bartlett M, Thompson B, Brabazon H, Del Gizzi R, Zhang T, Whipple C. Mol. Biol. Evol. 33 1486-1501 (2016)
  122. Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Li C, Wang Y, Xu L, Nie S, Chen Y, Liang D, Sun X, Karanja BK, Luo X, Liu L. Front Plant Sci 7 1390 (2016)
  123. Symmetry and chirality in topoisomerase II-DNA crossover recognition. Timsit Y, Duplantier B, Jannink G, Sikorav JL. J. Mol. Biol. 284 1289-1299 (1998)
  124. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes. Smaczniak C, Muiño JM, Chen D, Angenent GC, Kaufmann K. Plant Cell 29 1822-1835 (2017)
  125. The essential transcription factor Reb1p interacts with the CLB2 UAS outside of the G2/M control region. Van Slyke C, Grayhack EJ. Nucleic Acids Res. 31 4597-4607 (2003)
  126. C-->G base mutations in the CArG box of c-fos serum response element alter its bending flexibility. Consequences for core-SRF recognition. Stepanek J, Vincent M, Turpin PY, Paulin D, Fermandjian S, Alpert B, Zentz C. FEBS J. 274 2333-2348 (2007)
  127. Mechanism of binding of serum response factor to serum response element. Huet A, Parlakian A, Arnaud MC, Glandières JM, Valat P, Fermandjian S, Paulin D, Alpert B, Zentz C. FEBS J. 272 3105-3119 (2005)
  128. A novel class of supercoil-independent nuclease hypersensitive site is comprised of alternative DNA structures that flank eukaryotic genes. Vernick KD, McCutchan TF. J. Mol. Biol. 279 737-751 (1998)
  129. Genome-wide identification, characterization of the MADS-box gene family in Chinese jujube and their involvement in flower development. Zhang L, Zhao J, Feng C, Liu M, Wang J, Hu Y. Sci Rep 7 1025 (2017)
  130. Characteristics of the CArG-SRF binding context in mammalian genomes. Wu W, Shen X, Tao S. Mamm. Genome 21 104-113 (2010)
  131. Fibroblast growth factor receptor 3 gene: regulation by serum response factor. Reinhold MI, McEwen DG, Naski MC. Mol Endocrinol 18 241-251 (2004)
  132. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization. Koshimizu S, Kofuji R, Sasaki-Sekimoto Y, Kikkawa M, Shimojima M, Ohta H, Shigenobu S, Kabeya Y, Hiwatashi Y, Tamada Y, Murata T, Murata T, Hasebe M. Nat Plants 4 36-45 (2018)
  133. Structural and functional analysis of domains mediating interaction between the bagpipe homologue, Nkx3.1 and serum response factor. Zhang Y, Fillmore RA, Zimmer WE. Exp. Biol. Med. (Maywood) 233 297-309 (2008)
  134. Monitoring the interaction between DNA and a transcription factor (MEF2A) using fluorescence correlation spectroscopy. Octobre G, Lemercier C, Khochbin S, Robert-Nicoud M, Souchier C. C. R. Biol. 328 1033-1040 (2005)
  135. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network. Alhindi T, Zhang Z, Ruelens P, Coenen H, Degroote H, Iraci N, Geuten K. Sci Rep 7 44948 (2017)
  136. Raman spectroscopy of proteins and nucleoproteins. Nemecek D, Stepanek J, Thomas GJ. Curr Protoc Protein Sci Chapter 17 Unit17.8 (2013)
  137. Structural and dynamic changes of the serum response element and the core domain of serum response factor induced by their association. Stepánek J, Kopecký V, Mezzetti A, Turpin PY, Paulin D, Alpert B, Zentz C. Biochem. Biophys. Res. Commun. 391 203-208 (2010)
  138. The SOS screen in Arabidopsis: a search for functions involved in DNA metabolism. Siaud N, Dubois E, Massot S, Richaud A, Dray E, Collier J, Doutriaux MP. DNA Repair (Amst.) 9 567-578 (2010)
  139. The superwoman1-cleistogamy2 mutant is a novel resource for gene containment in rice. Lombardo F, Kuroki M, Yao SG, Shimizu H, Ikegaya T, Kimizu M, Ohmori S, Akiyama T, Hayashi T, Yamaguchi T, Koike S, Yatou O, Yoshida H. Plant Biotechnol. J. 15 97-106 (2017)
  140. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. Meng N, Wei Y, Gao Y, Yu K, Cheng J, Li XY, Duan CQ, Pan QH. Front Plant Sci 11 483 (2020)
  141. Conserved and variable correlated mutations in the plant MADS protein network. van Dijk AD, van Ham RC. BMC Genomics 11 607 (2010)
  142. Interaction of NF-Y with the 3'-flanking DNA sequence of the CCAAT box. Sugiura N, Takishima K. FEBS Lett. 537 58-62 (2003)
  143. MADS-box genes and crop domestication: the jack of all traits. Schilling S, Pan S, Kennedy A, Melzer R. J. Exp. Bot. 69 1447-1469 (2018)
  144. The smooth muscle gamma-actin gene is androgen responsive in prostate epithelia. Filmore RA, Dean DA, Zimmer WE. Gene Expr. 10 201-211 (2002)
  145. Characterization of the 'Oat-Like Rice' Caused by a Novel Allele OsMADS1Olr Reveals Vital Importance of OsMADS1 in Regulating Grain Shape in Oryza sativa L. Li P, Li H, Liu Z, Zhuang Y, Wei M, Gu Y, Liu Y, Sun X, Tang Y, Yue L, Lu L, Luo D, Huang W, Tu S, Wang S. Rice (N Y) 13 73 (2020)
  146. DNA Electric Charge Oscillations Govern Protein-DNA Recognition. Štěpánek J, Kopecký V, Turpin PY, Li Z, Alpert B, Zentz C. PLoS ONE 10 e0124444 (2015)
  147. Nuclear import of serum response factor in airway smooth muscle. McConville JF, Fernandes DJ, Churchill J, Dewundara S, Kogut P, Shah S, Fuchs G, Kedainis D, Bellam SK, Patel NM, McCauley J, Dulin NO, Gupta MP, Adam S, Yoneda Y, Camoretti-Mercado B, Solway J. Am. J. Respir. Cell Mol. Biol. 45 453-458 (2011)
  148. Substitution pattern of the CArG element in human and mouse genomes. Shen X, Mao H, Miao S. Genome 54 144-150 (2011)
  149. A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software. Mylona A, Carr S, Aller P, Moraes I, Treisman R, Evans G, Foadi J. Crystals (Basel) 7 242 (2017)
  150. Characterizing the involvement of FaMADS9 in the regulation of strawberry fruit receptacle development. Vallarino JG, Merchante C, Sánchez-Sevilla JF, de Luis Balaguer MA, Pott DM, Ariza MT, Casañal A, Posé D, Vioque A, Amaya I, Willmitzer L, Solano R, Sozzani R, Fernie AR, Botella MA, Giovannoni JJ, Valpuesta V, Osorio S. Plant Biotechnol J 18 929-943 (2020)
  151. DNA-binding properties of the MADS-domain transcription factor SEPALLATA3 and mutant variants characterized by SELEX-seq. Käppel S, Eggeling R, Rümpler F, Groth M, Melzer R, Theißen G. Plant Mol Biol 105 543-557 (2021)
  152. Evolution and Diversification of FRUITFULL Genes in Solanaceae. Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Front Plant Sci 10 43 (2019)
  153. Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm. Dong Q, Wang F, Kong J, Xu Q, Li T, Chen L, Chen H, Jiang H, Li C, Cheng B. Sci Rep 9 3253 (2019)
  154. Comment Heart failure research continues to reveal the flaws in nature's unintelligent design. Sawyer DB. Circulation 112 2891-2893 (2005)
  155. High level expression in soluble form, one step purification, and characterization of the DNA binding domain of MEF-2C. Meierhans D, Allemann RK. Protein Expr. Purif. 11 297-303 (1997)
  156. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.). Zhang X, Wang Q, Yang S, Lin S, Bao M, Bendahmane M, Wu Q, Wang C, Fu X. Genes (Basel) 9 (2018)
  157. Identification and characterization of the MADS-box genes highly expressed in the laticifer cells of Hevea brasiliensis. Wang Y, Zhan DF, Li HL, Guo D, Zhu JH, Peng SQ. Sci Rep 9 12673 (2019)
  158. PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity. de Bruijn S, Zhao T, Muiño JM, Schranz EM, Angenent GC, Kaufmann K. BMC Plant Biol. 18 368 (2018)
  159. Regulation of fiber-specific actin expression by the Drosophila SRF ortholog Blistered. DeAguero AA, Castillo L, Oas ST, Kiani K, Bryantsev AL, Cripps RM. Development 146 (2019)
  160. The floral homeotic protein SEPALLATA3 recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS-domain. Käppel S, Melzer R, Rümpler F, Gafert C, Theißen G. Plant J. 95 341-357 (2018)
  161. Transactivation domains are not functionally conserved between vertebrate and invertebrate serum response factors. Avila S, Casero MC, Fernandez-Cantón R, Sastre L. Eur. J. Biochem. 269 3669-3677 (2002)