1so2 Citations

Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity.

Abstract

Phosphodiesterases (PDEs) are enzymes that modulate cyclic nucleotide signaling and as such are clinical targets for a range of disorders including congestive heart failure, erectile dysfunction, and inflammation. The PDE3 family comprises two highly homologous subtypes expressed in different tissues, and inhibitors of this family have been shown to increase lipolysis in adipocytes. A specific PDE3B (the lipocyte-localized subtype) inhibitor would be a very useful tool to evaluate the effects of PDE3 inhibition on lipolysis and metabolic rate and might become a novel tool for treatment of obesity. We report here the three-dimensional structures of the catalytic domain of human PDE3B in complex with a generic PDE inhibitor and a novel PDE3 selective inhibitor. These structures explain the dual cAMP/cGMP binding capabilities of PDE3, provide the molecular basis for inhibitor specificity, and can supply a valid platform for the design of improved compounds.

Reviews - 1so2 mentioned but not cited (1)

Articles - 1so2 mentioned but not cited (16)

  1. Copper regulates cyclic-AMP-dependent lipolysis. Krishnamoorthy L, Krishnamoorthy L, Cotruvo JA, Chan J, Kaluarachchi H, Muchenditsi A, Pendyala VS, Jia S, Aron AT, Ackerman CM, Wal MN, Guan T, Smaga LP, Farhi SL, New EJ, Lutsenko S, Chang CJ. Nat Chem Biol 12 586-592 (2016)
  2. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Tinsley HN, Gary BD, Keeton AB, Zhang W, Abadi AH, Reynolds RC, Piazza GA. Mol Cancer Ther 8 3331-3340 (2009)
  3. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  4. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology. Lim H, He D, Qiu Y, Krawczuk P, Sun X, Xie L. PLoS Comput Biol 15 e1006619 (2019)
  5. Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase. Garvie CW, Wu X, Papanastasiou M, Lee S, Fuller J, Schnitzler GR, Horner SW, Baker A, Zhang T, Mullahoo JP, Westlake L, Hoyt SH, Toetzl M, Ranaghan MJ, de Waal L, McGaunn J, Kaplan B, Piccioni F, Yang X, Lange M, Tersteegen A, Raymond D, Lewis TA, Carr SA, Cherniack AD, Lemke CT, Meyerson M, Greulich H. Nat Commun 12 4375 (2021)
  6. The HD-Domain Metalloprotein Superfamily: An Apparent Common Protein Scaffold with Diverse Chemistries. Langton M, Sun S, Ueda C, Markey M, Chen J, Paddy I, Jiang P, Chin N, Milne A, Pandelia ME. Catalysts 10 1191 (2020)
  7. A new structure-based QSAR method affords both descriptive and predictive models for phosphodiesterase-4 inhibitors. Dong X, Zheng W. Curr Chem Genomics 2 29-39 (2008)
  8. Computational and Experimental Assessments of Magnolol as a Neuroprotective Agent and Utilization of UiO-66(Zr) as Its Drug Delivery System. Santos J, Quimque MT, Liman RA, Agbay JC, Macabeo APG, Corpuz MJ, Wang YM, Lu TT, Lin CH, Villaflores OB. ACS Omega 6 24382-24396 (2021)
  9. Identification of a PDE4-Specific Pocket for the Design of Selective Inhibitors. Feng X, Wang H, Ye M, Xu XT, Xu Y, Yang W, Zhang HT, Song G, Ke H. Biochemistry 57 4518-4525 (2018)
  10. Docking and quantitative structure-activity relationship of bi-cyclic heteroaromatic pyridazinone and pyrazolone derivatives as phosphodiesterase 3A (PDE3A) inhibitors. Muñoz-Gutiérrez C, Cáceres-Rojas D, Adasme-Carreño F, Palomo I, Fuentes E, Caballero J. PLoS One 12 e0189213 (2017)
  11. A new nonhydrolyzable reactive cGMP analogue, (Rp)-guanosine-3',5'-cyclic-S-(4-bromo-2,3-dioxobutyl)monophosphorothioate, which targets the cGMP binding site of human platelet PDE3A. Hung SH, Liu AH, Pixley RA, Francis P, Williams LD, Matsko CM, Barnes KD, Sivendran S, Colman RF, Colman RW. Bioorg Chem 36 141-147 (2008)
  12. Development of a Rapid Mass Spectrometric Determination of AMP and Cyclic AMP for PDE3 Activity Study: Application and Computational Analysis for Evaluating the Effect of a Novel 2-oxo-1,2-dihydropyridine-3-carbonitrile Derivative as PDE-3 Inhibitor. Cicalini I, De Filippis B, Gambacorta N, Di Michele A, Valentinuzzi S, Ammazzalorso A, Della Valle A, Amoroso R, Nicolotti O, Del Boccio P, Giampietro L. Molecules 25 E1817 (2020)
  13. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  14. cUMP hydrolysis by PDE3B. Ostermeyer J, Golly F, Kaever V, Dove S, Seifert R, Schneider EH. Naunyn Schmiedebergs Arch Pharmacol 391 891-905 (2018)
  15. Molecular Iodine-Catalyzed Synthesis of Imidazo[1,2-a]Pyridines: Screening of Their In Silico Selectivity, Binding Affinity to Biological Targets, and Density Functional Theory Studies Insight. Geedkar D, Kumar A, Sharma P. ACS Omega 7 22421-22439 (2022)
  16. New Prospective Phosphodiesterase Inhibitors: Phosphorylated Oxazole Derivatives in Treatment of Hypertension. Nizhenkovska IV, Matskevych KV, Golovchenko OI, Golovchenko OV, Kustovska AD, Van M. Adv Pharm Bull 13 399-407 (2023)


Reviews citing this publication (8)

Articles citing this publication (35)

  1. Structural basis for the activity of drugs that inhibit phosphodiesterases. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Structure 12 2233-2247 (2004)
  2. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. Proc Natl Acad Sci U S A 106 18225-18230 (2009)
  3. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H. J Biol Chem 281 21469-21479 (2006)
  4. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Rao FV, Andersen OA, Vora KA, Demartino JA, van Aalten DM. Chem Biol 12 973-980 (2005)
  5. Structural insight into substrate specificity of phosphodiesterase 10. Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H. Proc Natl Acad Sci U S A 104 5782-5787 (2007)
  6. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428. Pozuelo Rubio M, Campbell DG, Morrice NA, Mackintosh C. Biochem J 392 163-172 (2005)
  7. Structural basis for the catalytic mechanism of human phosphodiesterase 9. Liu S, Mansour MN, Dillman KS, Perez JR, Danley DE, Aeed PA, Simons SP, Lemotte PK, Menniti FS. Proc Natl Acad Sci U S A 105 13309-13314 (2008)
  8. Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors. Wang H, Yan Z, Geng J, Kunz S, Seebeck T, Ke H. Mol Microbiol 66 1029-1038 (2007)
  9. Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite. Seebeck T, Sterk GJ, Ke H. Future Med Chem 3 1289-1306 (2011)
  10. Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. Ovadia H, Haim Y, Nov O, Almog O, Kovsan J, Bashan N, Benhar M, Rudich A. J Biol Chem 286 30433-30443 (2011)
  11. The consequences of scoring docked ligand conformations using free energy correlations. Spyrakis F, Amadasi A, Fornabaio M, Abraham DJ, Mozzarelli A, Kellogg GE, Cozzini P. Eur J Med Chem 42 921-933 (2007)
  12. Preferential inhibition of human phosphodiesterase 4 by ibudilast. Huang Z, Liu S, Zhang L, Salem M, Greig GM, Chan CC, Natsumeda Y, Noguchi K. Life Sci 78 2663-2668 (2006)
  13. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity. Zoraghi R, Corbin JD, Francis SH. J Biol Chem 281 5553-5558 (2006)
  14. Kinetic properties of Ca2+/calmodulin-dependent phosphodiesterase isoforms dictate intracellular cAMP dynamics in response to elevation of cytosolic Ca2+. Goraya TA, Masada N, Ciruela A, Willoughby D, Clynes MA, Cooper DM. Cell Signal 20 359-374 (2008)
  15. Phosphodiesterase inhibitors. Part 3: Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity. Ochiai K, Takita S, Eiraku T, Kojima A, Iwase K, Kishi T, Fukuchi K, Yasue T, Adams DR, Allcock RW, Jiang Z, Kohno Y. Bioorg Med Chem 20 1644-1658 (2012)
  16. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives. Kontogiorgis C, Nicolotti O, Mangiatordi GF, Tognolini M, Karalaki F, Giorgio C, Patsilinakos A, Carotti A, Hadjipavlou-Litina D, Barocelli E. J Enzyme Inhib Med Chem 30 925-933 (2015)
  17. Phosphodiesterase inhibitors. Part 1: Synthesis and structure-activity relationships of pyrazolopyridine-pyridazinone PDE inhibitors developed from ibudilast. Allcock RW, Blakli H, Jiang Z, Johnston KA, Morgan KM, Rosair GM, Iwase K, Kohno Y, Adams DR. Bioorg Med Chem Lett 21 3307-3312 (2011)
  18. Phosphodiesterase inhibitors. Part 5: hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration. Ochiai K, Takita S, Kojima A, Eiraku T, Iwase K, Kishi T, Ohinata A, Yageta Y, Yasue T, Adams DR, Kohno Y. Bioorg Med Chem Lett 23 375-381 (2013)
  19. L-454,560, a potent and selective PDE4 inhibitor with in vivo efficacy in animal models of asthma and cognition. Huang Z, Dias R, Jones T, Liu S, Styhler A, Claveau D, Otu F, Ng K, Laliberte F, Zhang L, Goetghebeur P, Abraham WM, Macdonald D, Dubé D, Gallant M, Lacombe P, Girard Y, Young RN, Turner MJ, Nicholson DW, Mancini JA. Biochem Pharmacol 73 1971-1981 (2007)
  20. The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target. Kunz S, Balmer V, Sterk GJ, Pollastri MP, Leurs R, Müller N, Hemphill A, Spycher C. PLoS Negl Trop Dis 11 e0005891 (2017)
  21. Design, synthesis and biological evaluation of 6-(benzyloxy)-4-methylquinolin-2(1H)-one derivatives as PDE3 inhibitors. Nikpour M, Sadeghian H, Saberi MR, Nick RS, Seyedi SM, Hosseini A, Parsaee H, Bozorg AT. Bioorg Med Chem 18 855-862 (2010)
  22. Phosphodiesterase inhibitors. Part 4: design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones. Ochiai K, Takita S, Kojima A, Eiraku T, Ando N, Iwase K, Kishi T, Ohinata A, Yageta Y, Yasue T, Adams DR, Kohno Y. Bioorg Med Chem Lett 22 5833-5838 (2012)
  23. Determinants for phosphodiesterase 6 inhibition by its gamma-subunit. Zhang Z, Artemyev NO. Biochemistry 49 3862-3867 (2010)
  24. Structure of PDE3A-SLFN12 complex and structure-based design for a potent apoptosis inducer of tumor cells. Chen J, Liu N, Huang Y, Wang Y, Sun Y, Wu Q, Li D, Gao S, Wang HW, Huang N, Qi X, Wang X. Nat Commun 12 6204 (2021)
  25. Synthesis, docking studies, pharmacological activity and toxicity of a novel pyrazole derivative (LQFM 021)--possible effects on phosphodiesterase. Ramos Martins D, Pazini F, de Medeiros Alves V, Santana de Moura S, Morais Lião L, Torquato Quezado de Magalhães M, Campos Valadares M, Horta Andrade C, Menegatti R, Lavorenti Rocha M. Chem Pharm Bull (Tokyo) 61 524-531 (2013)
  26. Enantiomer discrimination illustrated by the high resolution crystal structures of type 4 phosphodiesterase. Huai Q, Sun Y, Wang H, Macdonald D, Aspiotis R, Robinson H, Huang Z, Ke H. J Med Chem 49 1867-1873 (2006)
  27. Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. Wu X, Schnitzler GR, Gao GF, Diamond B, Baker AR, Kaplan B, Williamson K, Westlake L, Lorrey S, Lewis TA, Garvie CW, Lange M, Hayat S, Seidel H, Doench J, Cherniack AD, Kopitz C, Meyerson M, Greulich H. J Biol Chem 295 3431-3446 (2020)
  28. Design, synthesis and pharmacological evaluation of 6-hydroxy-4-methylquinolin-2(1H)-one derivatives as inotropic agents. Sadeghian H, Seyedi SM, Saberi MR, Nick RS, Hosseini A, Bakavoli M, Mansouri SM, Parsaee H. J Enzyme Inhib Med Chem 24 918-929 (2009)
  29. Synthesis, in vitro antiplatelet activity and molecular modelling studies of 10-substituted 2-(1-piperazinyl)pyrimido[1,2-a]benzimidazol-4(10H)-ones. Di Braccio M, Grossi G, Signorello MG, Leoncini G, Cichero E, Fossa P, Alfei S, Damonte G. Eur J Med Chem 62 564-578 (2013)
  30. Charting the interactome of PDE3A in human cells using an IBMX based chemical proteomics approach. Corradini E, Klaasse G, Leurs U, Heck AJ, Martin NI, Scholten A. Mol Biosyst 11 2786-2797 (2015)
  31. Surface Binding Energy Landscapes Affect Phosphodiesterase Isoform-Specific Inhibitor Selectivity. Liu Q, Herrmann A, Huang Q. Comput Struct Biotechnol J 17 101-109 (2019)
  32. Modulating the cyclic guanosine monophosphate substrate selectivity of the phosphodiesterase 3 inhibitors by pyridine, pyrido[2,3-d]pyrimidine derivatives and their effects upon the growth of HT-29 cancer cell line. Abadi AH, Hany MS, Elsharif SA, Eissa AA, Gary BD, Tinsley HN, Piazza GA. Chem Pharm Bull (Tokyo) 61 405-410 (2013)
  33. An update view on the substrate recognition mechanism of phosphodiesterases: a computational study of PDE10 and PDE4 bound with cyclic nucleotides. Lau JK, Cheng YK. Biopolymers 97 910-922 (2012)
  34. Anagrelide: A Clinically Effective cAMP Phosphodiesterase 3A Inhibitor with Molecular Glue Properties. Meanwell NA. ACS Med Chem Lett 14 350-361 (2023)
  35. Discovery of Potent, Selective Triazolothiadiazole-Containing c-Met Inhibitors. Tang Q, Aronov AM, Deininger DD, Giroux S, Lauffer DJ, Li P, Liang J, McGinty K, Ronkin S, Swett R, Waal N, Boucher D, Ford PJ, Moody CS. ACS Med Chem Lett 12 955-960 (2021)