1sgo

Solution NMR

NMR Structure of the human C14orf129 gene product, HSPC210. Northeast Structural Genomics target HR969.

Released:
Source organism: Homo sapiens
Entry authors: Ramelot TA, Cort JR, Xiao R, Shih L-Y, Ma L-C, Acton TB, Montelione GT, Kennedy MA, Northeast Structural Genomics Consortium (NESG)

Function and Biology Details

Reactions catalysed:
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate
ATP + L-arginine = ADP + N(omega)-phospho-L-arginine
dUTP + H(2)O = dUMP + diphosphate
1-(5-phospho-beta-D-ribosyl)-5-((5-phospho-beta-D-ribosylamino)methylideneamino)imidazole-4-carboxamide = 5-((5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino)-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide
2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol = 2-C-methyl-D-erythritol 2,4-cyclodiphosphate + CMP
ATP + a protein = ADP + a phosphoprotein
D-glycero-beta-D-manno-heptose 1-phosphate + ATP = ADP-D-glycero-beta-D-manno-heptose + diphosphate
N-(5-phospho-D-ribosyl)-anthranilate + diphosphate = anthranilate + 5-phospho-alpha-D-ribose 1-diphosphate
IMP + H(2)O = 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
UDP-N-acetyl-alpha-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-hex-4-ulose + H(2)O
Quercetin + O(2) = 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoate + CO + H(+)
(S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate = fumarate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
Release of N-terminal proline from a peptide.
Release of an N-terminal amino acid, Xaa-|-Yaa-, in which Xaa is preferably Leu, but may be other amino acids including Pro although not Arg or Lys, and Yaa may be Pro. Amino acid amides and methyl esters are also readily hydrolyzed, but rates on arylamides are exceedingly low.
(1a) (2R,3S)-3-isopropylmalate = 2-isopropylmaleate + H(2)O
6-phospho-D-gluconate + NADP(+) = D-ribulose 5-phosphate + CO(2) + NADPH
Cleavage of peptide bonds with very broad specificity.
ATP-dependent cleavage of peptide bonds with broad specificity.
Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
2 6,7-dimethyl-8-(1-D-ribityl)lumazine = riboflavin + 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine
Diphosphate + H(2)O = 2 phosphate
4 Fe(2+) + 4 H(+) + O(2) = 4 Fe(3+) + 2 H(2)O
(1a) (2R,3S)-3-isopropylmalate + NAD(+) = (2S)-2-isopropyl-3-oxosuccinate + NADH
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid
ATP + H(2)O + 4 H(+)(Side 1) = ADP + phosphate + 4 H(+)(Side 2)
A long-chain aldehyde + O(2) + 2 NADPH = an alkane + formate + H(2)O + 2 NADP(+)
L-asparagine + H(2)O = L-aspartate + NH(3)
Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] = 3-oxoacyl-[acyl-carrier-protein] + CO(2) + [acyl-carrier-protein]
S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine + [E2 ubiquitin-conjugating enzyme]-L-cysteine = [E1 ubiquitin-activating enzyme]-L-cysteine + S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine
(1a) S-ubiquitinyl-[E1 ubiquitin-activating enzyme]-L-cysteine + [(E3-independent) E2 ubiquitin-conjugating enzyme]-L-cysteine = [E1 ubiquitin-activating enzyme]-L-cysteine + S-monoubiquitinyl-[(E3-independent) ubiquitin-conjugating enzyme]-L-cysteine
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N(6)-ubiquitinyl-[acceptor protein]-L-lysine
(1a) S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [HECT-type E3 ubiquitin transferase]-L-cysteine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + S-ubiquitinyl-[HECT-type E3 ubiquitin transferase]-L-cysteine
4-phosphonooxy-L-threonine + 2-oxoglutarate = (3R)-3-hydroxy-2-oxo-4-phosphonooxybutanoate + L-glutamate
Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)- glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
CoA-(4'-phosphopantetheine) + apo-[acyl-carrier-protein] = adenosine 3',5'-bisphosphate + holo-[acyl-carrier-protein]
Hydrolysis of (1->4)-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins
Nitric oxide + H(2)O + ferricytochrome c = nitrite + ferrocytochrome c + 2 H(+)
dCTP + 2 H(2)O = dUMP + diphosphate + NH(3)
NH(3) + 2 H(2)O + 6 ferricytochrome c = nitrite + 6 ferrocytochrome c + 7 H(+)
Endopeptidase with a preference for cleavage when the P1 position is occupied by Glu-|- and the P1' position is occupied by Gly-|-
Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
N-acetyl-O-acetylneuraminate + H(2)O = N-acetylneuraminate + acetate
5-methyltetrahydrofolate + L-homocysteine = tetrahydrofolate + L-methionine
An acyl-[acyl-carrier protein] + NAD(+) = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADH
Hydrolyzes glutaminyl bonds, and activity is further restricted by preferences for the amino acids in P6 - P1' that vary with the species of potyvirus, e.g. Glu-Xaa-Xaa-Tyr-Xaa-Gln-|-(Ser or Gly) for the enzyme from tobacco etch virus. The natural substrate is the viral polyprotein, but other proteins and oligopeptides containing the appropriate consensus sequence are also cleaved.
NTP + H(2)O = NDP + phosphate
Succinate semialdehyde + NADP(+) + H(2)O = succinate + NADPH
ATP + L-glutamate + NH(3) = ADP + phosphate + L-glutamine
N-(5-phospho-beta-D-ribosyl)anthranilate = 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate
5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole = 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate
Chorismate = prephenate
10-formyltetrahydrofolate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide = tetrahydrofolate + 5-formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
(1a) ATP + [DNA ligase]-L-lysine = [DNA ligase]-N(6)-(5'-adenylyl)-L-lysine + diphosphate
5,10-methylenetetrahydrofolate + dUMP + NADPH = dTMP + tetrahydrofolate + NADP(+)
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
A beta-lactam + H(2)O = a substituted beta-amino acid
2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = cis,cis-butadiene-1,2,4-tricarboxylate
Transfers a segment of a (1->4)-alpha-D-glucan to a new position in an acceptor, which may be glucose or a (1->4)-alpha-D-glucan
Phosphoenolpyruvate + 3-phosphoshikimate = phosphate + 5-O-(1-carboxyvinyl)-3-phosphoshikimate
RX + glutathione = HX + R-S-glutathione
5,10-methylenetetrahydrofolate + dUMP = dihydrofolate + dTMP
D-glucarate = 5-dehydro-4-deoxy-D-glucarate + H(2)O
L-arginine + H(2)O = L-ornithine + urea
ATP = 3',5'-cyclic AMP + diphosphate
(1a) 2 cob(II)alamin + 2 [corrinoid adenosyltransferase] = 2 [corrinoid adenosyltransferase]-cob(II)alamin
Hydrolysis of proteins to small peptides in the presence of ATP and magnesium. Alpha-Casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are hydrolyzed (such as succinyl-Leu-Tyr-|-NHMec; and Leu-Tyr-Leu-|-Tyr-Trp, in which cleavage of the -Tyr-|-Leu- and -Tyr-|-Trp bonds also occurs).
Autocatalytic release of the core protein from the N-terminus of the togavirus structural polyprotein by hydrolysis of a -Trp-|-Ser- bond.
Selective hydrolysis of -Xaa-Xaa-|-Yaa- bonds in which each of the Xaa can be either Arg or Lys and Yaa can be either Ser or Ala.
ATP + pantetheine 4'-phosphate = diphosphate + 3'-dephospho-CoA
5'-(N(7)-methylguanosine 5'-triphospho)-[mRNA] + H(2)O = N(7)-methylguanosine 5'-diphosphate + 5'-phospho-[mRNA]
A (Z)-hexadec-9-enoyl-[acyl-carrier protein] + a malonyl-[acyl-carrier protein] = a (Z)-3-oxooctadec-11-enoyl-[acyl-carrier protein] + CO(2) + an [acyl-carrier protein]
NAD(+) + glycine + sulfide = nicotinamide + ADP-5-ethyl-4-methylthiazole-2-carboxylate + 3 H(2)O
Hydrolyzes a Gly-|-Gly bond at its own C-terminus, commonly in the sequence -Tyr-Xaa-Val-Gly-|-Gly, in the processing of the potyviral polyprotein.
Autocatalytically cleaves itself from the polyprotein of the foot-and-mouth disease virus by hydrolysis of a Lys-|-Gly bond, but then cleaves host cell initiation factor eIF-4G at bonds -Gly-|-Arg- and -Lys-|-Arg-.
L-lysine + 2-oxoglutarate = (S)-2-amino-6-oxohexanoate + L-glutamate
Cutin + H(2)O = cutin monomers
2 H(2)O(2) = O(2) + 2 H(2)O
ATP + (R)-pantoate + beta-alanine = AMP + diphosphate + (R)-pantothenate
Peptidylproline (omega=180) = peptidylproline (omega=0)
Choline = trimethylamine + acetaldehyde
5-methyltetrahydrofolate + NAD(P)(+) = 5,10-methylenetetrahydrofolate + NAD(P)H
(1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1(10),2-dien-4-oate + H(2)O = 3-((3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl)propanoate + (2Z,4Z)-2-hydroxyhexa-2,4-dienoate
Endohydrolysis of (1->4)-beta-D-glucosidic linkages in cellulose, lichenin and cereal beta-D-glucans
(S)-3-hydroxyacyl-CoA + NAD(+) = 3-oxoacyl-CoA + NADH
(1a) NADP(+) = 2'-phospho-cyclic ADP-ribose + nicotinamide
L-aspartate 4-semialdehyde + phosphate + NADP(+) = L-4-aspartyl phosphate + NADPH
N-carbamoylputrescine + H(2)O = putrescine + CO(2) + NH(3)
(R)-pantoate + NADP(+) = 2-dehydropantoate + NADPH
Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1)
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1)
DNA (containing 4-O-methylthymine) + protein L-cysteine = DNA (without 4-O-methylthymine) + protein S-methyl-L-cysteine
Reduced plastocyanin + oxidized ferredoxin + light = oxidized plastocyanin + reduced ferredoxin
Acetyl-CoA + H(2)O + oxaloacetate = citrate + CoA
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate
Acetyl-CoA + a 2-deoxystreptamine antibiotic = CoA + N(3)-acetyl-2-deoxystreptamine antibiotic
(S)-lactate + NAD(+) = pyruvate + NADH
L-glutamate + H(2)O + NAD(+) = 2-oxoglutarate + NH(3) + NADH
L-glutamate + H(2)O + NADP(+) = 2-oxoglutarate + NH(3) + NADPH
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine
ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate
ATP + L-glutamate + tRNA(Glu) = AMP + diphosphate + L-glutamyl-tRNA(Glu)
4-(2-carboxyphenyl)-4-oxobutanoyl-CoA = 1,4-dihydroxy-2-naphthoyl-CoA + H(2)O
NAD(+) + diphthamide-[translation elongation factor 2] = nicotinamide + N-(ADP-D-ribosyl)diphthamide-[translation elongation factor 2]
ATP + pyridoxal = ADP + pyridoxal 5'-phosphate
N(2)-acetyl-L-ornithine + L-glutamate = L-ornithine + N-acetyl-L-glutamate
Selective cleavage of Tyr-|-Gly bond in picornavirus polyprotein.
Acetyl-CoA + L-serine = CoA + O-acetyl-L-serine
(1a) NAD(+) = cyclic ADP-ribose + nicotinamide
AMP + H(2)O = D-ribose 5-phosphate + adenine
ATP + H(2)O + a folded polypeptide = ADP + phosphate + an unfolded polypeptide
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH(2) + O(2) = 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H(2)O
Hydrolysis of terminal non-reducing beta-D-galactose residues in beta-D-galactosides
Hydroxymethylbilane = uroporphyrinogen III + H(2)O
ATP + H(2)O = ADP + phosphate
5,6,7,8-tetrahydrofolate + NADP(+) = 7,8-dihydrofolate + NADPH
Desacetylmycothiol + acetyl-CoA = CoA + mycothiol
2,6-dioxo-6-phenylhexa-3-enoate + H(2)O = benzoate + 2-oxopent-4-enoate
2 superoxide + 2 H(+) = O(2) + H(2)O(2)
The C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken by a beta-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate
NADH + ubiquinone + 5 H(+)(Side 1) = NAD(+) + ubiquinol + 4 H(+)(Side 2)
Biochemical function:
Cellular component:

Structure analysis Details

Assembly composition:
monomeric (preferred)
Entry contents:
1 distinct polypeptide molecule
Macromolecule:
GSK3B-interacting protein Chain: A
Molecule details ›
Chain: A
Length: 139 amino acids
Theoretical weight: 15.66 KDa
Source organism: Homo sapiens
Expression system: Escherichia coli
UniProt:
  • Canonical: Q9P0R6 (Residues: 1-139; Coverage: 100%)
Gene names: C14orf129, GSKIP, HSPC210
Sequence domains: GSKIP domain
Structure domains: Hypothetical protein (hspc210)

Ligands and Environments

No bound ligands
No modified residues

Experiments and Validation Details

Entry percentile scores
Refinement method: SIMULATED ANNEALING, TORSION ANGLE DYNAMICS
Chemical shifts: BMR6052  
Expression system: Escherichia coli