1s9j Citations

Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition.

Abstract

MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray structures of human MEK1 and MEK2, each determined as a ternary complex with MgATP and an inhibitor to a resolution of 2.4 A and 3.2 A, respectively. The structures reveal that MEK1 and MEK2 each have a unique inhibitor-binding pocket adjacent to the MgATP-binding site. The presence of the potent inhibitor induces several conformational changes in the unphosphorylated MEK1 and MEK2 enzymes that lock them into a closed but catalytically inactive species. Thus, the structures reported here reveal a novel, noncompetitive mechanism for protein kinase inhibition.

Reviews - 1s9j mentioned but not cited (11)

  1. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? Zhao Z, Wu H, Wang L, Liu Y, Knapp S, Liu Q, Gray NS. ACS Chem Biol 9 1230-1241 (2014)
  2. Ten things you should know about protein kinases: IUPHAR Review 14. Fabbro D, Cowan-Jacob SW, Moebitz H. Br J Pharmacol 172 2675-2700 (2015)
  3. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  4. MEK1/2 Inhibitors: Molecular Activity and Resistance Mechanisms. Wu PK, Park JI. Semin Oncol 42 849-862 (2015)
  5. Unique MAP Kinase binding sites. Akella R, Moon TM, Goldsmith EJ. Biochim Biophys Acta 1784 48-55 (2008)
  6. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Pavese JM, Krishna SN, Bergan RC. Am J Clin Nutr 100 Suppl 1 431S-6S (2014)
  7. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. Front Chem 7 873 (2019)
  8. Targeting the MAPK Pathway in RAS Mutant Cancers. Hymowitz SG, Malek S. Cold Spring Harb Perspect Med 8 a031492 (2018)
  9. Impact of the Protein Data Bank on antineoplastic approvals. Westbrook JD, Soskind R, Hudson BP, Burley SK. Drug Discov Today 25 837-850 (2020)
  10. A structural perspective on targeting the RTK/Ras/MAP kinase pathway in cancer. Heppner DE, Eck MJ. Protein Sci 30 1535-1553 (2021)
  11. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. Li L, Meyer C, Zhou ZW, Elmezayen A, Westover K. J Mol Biol 434 167626 (2022)

Articles - 1s9j mentioned but not cited (38)

  1. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK, Bowden GT, Bode AM, Lee HJ, Dong Z. Cancer Res 68 946-955 (2008)
  2. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Chaikuad A, Tacconi EM, Zimmer J, Liang Y, Gray NS, Tarsounas M, Knapp S. Nat Chem Biol 10 853-860 (2014)
  3. Light-activated kinases enable temporal dissection of signaling networks in living cells. Gautier A, Deiters A, Chin JW. J Am Chem Soc 133 2124-2127 (2011)
  4. Measuring and interpreting the selectivity of protein kinase inhibitors. Smyth LA, Collins I. J Chem Biol 2 131-151 (2009)
  5. Optical control of cell signaling by single-chain photoswitchable kinases. Zhou XX, Zhou XX, Fan LZ, Li P, Shen K, Lin MZ. Science 355 836-842 (2017)
  6. MEK4 function, genistein treatment, and invasion of human prostate cancer cells. Xu L, Ding Y, Catalona WJ, Yang XJ, Anderson WF, Jovanovic B, Wellman K, Killmer J, Huang X, Scheidt KA, Montgomery RB, Bergan RC. J Natl Cancer Inst 101 1141-1155 (2009)
  7. Discovery of a potential allosteric ligand binding site in CDK2. Betzi S, Alam R, Martin M, Lubbers DJ, Han H, Jakkaraj SR, Georg GI, Schönbrunn E. ACS Chem Biol 6 492-501 (2011)
  8. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Kang NJ, Lee KW, Kim BH, Bode AM, Lee HJ, Heo YS, Boardman L, Limburg P, Lee HJ, Dong Z. Carcinogenesis 32 921-928 (2011)
  9. Genetic Code Expansion in Zebrafish Embryos and Its Application to Optical Control of Cell Signaling. Liu J, Hemphill J, Samanta S, Tsang M, Deiters A. J Am Chem Soc 139 9100-9103 (2017)
  10. Using multiple microenvironments to find similar ligand-binding sites: application to kinase inhibitor binding. Liu T, Altman RB. PLoS Comput Biol 7 e1002326 (2011)
  11. Delphinidin attenuates neoplastic transformation in JB6 Cl41 mouse epidermal cells by blocking Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling. Kang NJ, Lee KW, Kwon JY, Hwang MK, Rogozin EA, Heo YS, Bode AM, Lee HJ, Dong Z. Cancer Prev Res (Phila) 1 522-531 (2008)
  12. Insights into the binding mode of MEK type-III inhibitors. A step towards discovering and designing allosteric kinase inhibitors across the human kinome. Zhao Z, Xie L, Bourne PE. PLoS One 12 e0179936 (2017)
  13. The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. Min X, Akella R, He H, Humphreys JM, Tsutakawa SE, Lee SJ, Tainer JA, Cobb MH, Goldsmith EJ. Structure 17 96-104 (2009)
  14. Licochalcone A, a polyphenol present in licorice, suppresses UV-induced COX-2 expression by targeting PI3K, MEK1, and B-Raf. Song NR, Kim JE, Park JS, Kim JR, Kang H, Lee E, Kang YG, Son JE, Seo SG, Heo YS, Lee KW. Int J Mol Sci 16 4453-4470 (2015)
  15. Reprogramming the genetic code. Chin JW. EMBO J 30 2312-2324 (2011)
  16. Prediction of molecular targets of cancer preventing flavonoid compounds using computational methods. Chen H, Yao K, Nadas J, Bode AM, Malakhova M, Oi N, Li H, Lubet RA, Dong Z. PLoS One 7 e38261 (2012)
  17. The resveratrol analogue 3,5,3',4',5'-pentahydroxy-trans-stilbene inhibits cell transformation via MEK. Lee KW, Kang NJ, Rogozin EA, Oh SM, Heo YS, Pugliese A, Bode AM, Lee HJ, Dong Z. Int J Cancer 123 2487-2496 (2008)
  18. Substituted 3-benzylcoumarins as allosteric MEK1 inhibitors: design, synthesis and biological evaluation as antiviral agents. Wang C, Zhang H, Xu F, Niu Y, Wu Y, Wang X, Peng Y, Sun J, Liang L, Xu P. Molecules 18 6057-6091 (2013)
  19. Mitogen-activated protein/extracellular signal-regulated kinase kinase 1act/tubulin interaction is an important determinant of mitotic stability in cultured HT1080 human fibrosarcoma cells. Cao JN, Shafee N, Vickery L, Kaluz S, Ru N, Stanbridge EJ. Cancer Res 70 6004-6014 (2010)
  20. How impaired efficacy happened between Gancao and Yuanhua: Compounds, targets and pathways. Yu JG, Guo J, Zhu KY, Tao W, Chen Y, Liu P, Hua Y, Tang Y, Duan JA. Sci Rep 7 3828 (2017)
  21. Computational prediction and analysis of breast cancer targets for 6-methyl-1, 3, 8-trichlorodibenzofuran. Chitrala KN, Yeguvapalli S. PLoS One 9 e109185 (2014)
  22. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site. Chen H, Tucker J, Wang X, Gavine PR, Phillips C, Augustin MA, Schreiner P, Steinbacher S, Preston M, Ogg D. Acta Crystallogr D Struct Biol 72 682-693 (2016)
  23. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors. Suebsuwong C, Pinkas DM, Ray SS, Bufton JC, Dai B, Bullock AN, Degterev A, Cuny GD. Bioorg Med Chem Lett 28 577-583 (2018)
  24. Design, Synthesis and Biological Activity Evaluation of S-Substituted 1H-5-Mercapto-1,2,4-Triazole Derivatives as Antiproliferative Agents in Colorectal Cancer. Mioc M, Avram S, Bercean V, Kurunczi L, Ghiulai RM, Oprean C, Coricovac DE, Dehelean C, Mioc A, Balan-Porcarasu M, Tatu C, Soica C. Front Chem 6 373 (2018)
  25. A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H2O2 and Is the Target of a Small Molecule. Sjölander JJ, Tarczykowska A, Picazo C, Cossio I, Redwan IN, Gao C, Solano C, Toledano MB, Grøtli M, Molin M, Sunnerhagen P. Mol Cell Biol 40 e00346-19 (2020)
  26. CInQ-03, a novel allosteric MEK inhibitor, suppresses cancer growth in vitro and in vivo. Kim DJ, Lee MH, Reddy K, Li Y, Lim DY, Xie H, Lee SY, Yeom YI, Bode AM, Dong Z. Carcinogenesis 34 1134-1143 (2013)
  27. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. ACS Omega 5 2114-2122 (2020)
  28. Exploring the Natural Compounds in Flavonoids for Their Potential Inhibition of Cancer Therapeutic Target MEK1 Using Computational Methods. AlZahrani WM, AlGhamdi SA, Zughaibi TA, Rehan M. Pharmaceuticals (Basel) 15 195 (2022)
  29. Structure-Guided Design and Initial Studies of a Bifunctional MEK/PI3K Inhibitor (ST-168). Van Dort ME, Galbán S, Nino CA, Hong H, Apfelbaum AA, Luker GD, Thurber GM, Atangcho L, Besirli CG, Ross BD. ACS Med Chem Lett 8 808-813 (2017)
  30. RSK1 vs. RSK2 Inhibitory Activity of the Marine β-Carboline Alkaloid Manzamine A: A Biochemical, Cervical Cancer Protein Expression, and Computational Study. Mayer AMS, Hall ML, Lach J, Clifford J, Chandrasena K, Canton C, Kontoyianni M, Choo YM, Karan D, Hamann MT. Mar Drugs 19 506 (2021)
  31. The cardiac glycoside ZINC253504760 induces parthanatos-type cell death and G2/M arrest via downregulation of MEK1/2 phosphorylation in leukemia cells. Zhou M, Boulos JC, Klauck SM, Efferth T. Cell Biol Toxicol 39 2971-2997 (2023)
  32. An integrative approach to develop computational pipeline for drug-target interaction network analysis. Bansal A, Srivastava PA, Singh TR. Sci Rep 8 10238 (2018)
  33. Crocetin Exerts Its Anti-inflammatory Property in LPS-Induced RAW264.7 Cells Potentially via Modulation on the Crosstalk between MEK1/JNK/NF-κB/iNOS Pathway and Nrf2/HO-1 Pathway. Wen YL, He Z, Hou DX, Qin S. Oxid Med Cell Longev 2021 6631929 (2021)
  34. KUALA: a machine learning-driven framework for kinase inhibitors repositioning. De Simone G, Sardina DS, Gulotta MR, Perricone U. Sci Rep 12 17877 (2022)
  35. A Small Molecule Targeting Human MEK1/2 Enhances ERK and p38 Phosphorylation under Oxidative Stress or with Phenothiazines. Otręba M, Sjölander JJ, Grøtli M, Sunnerhagen P. Life (Basel) 11 297 (2021)
  36. Study of Xuanhuang Pill in protecting against alcohol liver disease using ultra-performance liquid chromatography/time-of-flight mass spectrometry and network pharmacology. Cui X, Du M, Wei K, Dai C, Yang RYH, Zhou B, Luo Z, Yang X, Yu Y, Lin W, Wu Y, Liu Y. Front Endocrinol (Lausanne) 14 1175985 (2023)
  37. Proteomics and network pharmacology of Ganshu Nuodan capsules in the prevention of alcoholic liver disease. Yang X, Wang L, Cui X, Zhang J, Liang Y, Luo Z, Zhou B, Jiang Z, Yang RYH, Wu Y, Wei K, Du M, Qin S, Dai C, Zhao G. Front Endocrinol (Lausanne) 14 1229777 (2023)
  38. Utilizing Estra-1,3,5,16-Tetraene Scaffold: Design and Synthesis of Nitric Oxide Donors as Chemotherapeutic Resistance Combating Agents in Liver Cancer. Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Alanazi MM, Halaweish F, Elshaier YAMM. Molecules 28 2754 (2023)


Reviews citing this publication (94)

  1. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Roberts PJ, Der CJ. Oncogene 26 3291-3310 (2007)
  2. Targeting cancer with small molecule kinase inhibitors. Zhang J, Yang PL, Gray NS. Nat Rev Cancer 9 28-39 (2009)
  3. The MEK/ERK cascade: from signaling specificity to diverse functions. Shaul YD, Seger R. Biochim Biophys Acta 1773 1213-1226 (2007)
  4. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA. Oncotarget 2 135-164 (2011)
  5. Features of selective kinase inhibitors. Knight ZA, Shokat KM. Chem Biol 12 621-637 (2005)
  6. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Caunt CJ, Sale MJ, Smith PD, Cook SJ. Nat Rev Cancer 15 577-592 (2015)
  7. Targeting the ERK signaling pathway in cancer therapy. Kohno M, Pouyssegur J. Ann Med 38 200-211 (2006)
  8. Protein promiscuity and its implications for biotechnology. Nobeli I, Favia AD, Thornton JM. Nat Biotechnol 27 157-167 (2009)
  9. The clinical development of MEK inhibitors. Zhao Y, Adjei AA. Nat Rev Clin Oncol 11 385-400 (2014)
  10. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. Hum Mutat 29 992-1006 (2008)
  11. Molecular targets of phytochemicals for cancer prevention. Lee KW, Bode AM, Dong Z. Nat Rev Cancer 11 211-218 (2011)
  12. New approaches to molecular cancer therapeutics. Collins I, Workman P. Nat Chem Biol 2 689-700 (2006)
  13. Targeting Alterations in the RAF-MEK Pathway. Yaeger R, Corcoran RB. Cancer Discov 9 329-341 (2019)
  14. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Force T, Kolaja KL. Nat Rev Drug Discov 10 111-126 (2011)
  15. Designer proteins: applications of genetic code expansion in cell biology. Davis L, Chin JW. Nat Rev Mol Cell Biol 13 168-182 (2012)
  16. Mechanisms of drug inhibition of signalling molecules. Sebolt-Leopold JS, English JM. Nature 441 457-462 (2006)
  17. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Dar AC, Shokat KM. Annu Rev Biochem 80 769-795 (2011)
  18. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Bäsecke J, Stivala F, Donia M, Fagone P, Nicoletti F, Libra M, Ruvolo P, Ruvolo V, Evangelisti C, Martelli AM, McCubrey JA. Leukemia 25 1080-1094 (2011)
  19. Probing the probes: fitness factors for small molecule tools. Workman P, Collins I. Chem Biol 17 561-577 (2010)
  20. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. Yuan J, Dong X, Yap J, Hu J. J Hematol Oncol 13 113 (2020)
  21. The MAPK pathway in melanoma. Fecher LA, Amaravadi RK, Flaherty KT. Curr Opin Oncol 20 183-189 (2008)
  22. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. Frémin C, Meloche S. J Hematol Oncol 3 8 (2010)
  23. Toward a molecular classification of melanoma. Fecher LA, Cummings SD, Keefe MJ, Alani RM. J Clin Oncol 25 1606-1620 (2007)
  24. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Buscà R, Pouysségur J, Lenormand P. Front Cell Dev Biol 4 53 (2016)
  25. Protein kinase inhibitors: contributions from structure to clinical compounds. Johnson LN. Q Rev Biophys 42 1-40 (2009)
  26. The structural basis of allosteric regulation in proteins. Laskowski RA, Gerick F, Thornton JM. FEBS Lett 583 1692-1698 (2009)
  27. Targeting protein kinases in central nervous system disorders. Chico LK, Van Eldik LJ, Watterson DM. Nat Rev Drug Discov 8 892-909 (2009)
  28. Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Cheng H, Force T. Circ Res 106 21-34 (2010)
  29. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Pratilas CA, Solit DB. Clin Cancer Res 16 3329-3334 (2010)
  30. Role of mitogen-activated protein kinase kinase 4 in cancer. Whitmarsh AJ, Davis RJ. Oncogene 26 3172-3184 (2007)
  31. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, Malaponte G, Nicoletti F, Libra M, Bäsecke J, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Cocco L, Martelli AM. J Cell Physiol 226 2762-2781 (2011)
  32. Clinical experience of MEK inhibitors in cancer therapy. Wang D, Boerner SA, Winkler JD, LoRusso PM. Biochim Biophys Acta 1773 1248-1255 (2007)
  33. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Cancers (Basel) 12 E1959 (2020)
  34. Emerging Computational Methods for the Rational Discovery of Allosteric Drugs. Wagner JR, Lee CT, Durrant JD, Malmstrom RD, Feher VA, Amaro RE. Chem Rev 116 6370-6390 (2016)
  35. KRAS and BRAF: drug targets and predictive biomarkers. Vakiani E, Solit DB. J Pathol 223 219-229 (2011)
  36. Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics. Gillings AS, Balmanno K, Wiggins CM, Johnson M, Cook SJ. FEBS J 276 6050-6062 (2009)
  37. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Hou DX, Kumamoto T. Antioxid Redox Signal 13 691-719 (2010)
  38. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. F1000Res 7 82 (2018)
  39. Targeting Pyk2 for therapeutic intervention. Lipinski CA, Loftus JC. Expert Opin Ther Targets 14 95-108 (2010)
  40. Harnessing allostery: a novel approach to drug discovery. Lu S, Li S, Zhang J. Med Res Rev 34 1242-1285 (2014)
  41. Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Little AS, Smith PD, Cook SJ. Oncogene 32 1207-1215 (2013)
  42. New protein kinase CK2 inhibitors: jumping out of the catalytic box. Prudent R, Cochet C. Chem Biol 16 112-120 (2009)
  43. Networks for the allosteric control of protein kinases. Shi Z, Resing KA, Ahn NG. Curr Opin Struct Biol 16 686-692 (2006)
  44. The MEK/ERK Network as a Therapeutic Target in Human Cancer. Barbosa R, Acevedo LA, Marmorstein R. Mol Cancer Res 19 361-374 (2021)
  45. Prospects for pharmacological targeting of pseudokinases. Kung JE, Jura N. Nat Rev Drug Discov 18 501-526 (2019)
  46. Cardiotoxicity of the new cancer therapeutics--mechanisms of, and approaches to, the problem. Force T, Kerkelä R. Drug Discov Today 13 778-784 (2008)
  47. αC helix displacement as a general approach for allosteric modulation of protein kinases. Palmieri L, Rastelli G. Drug Discov Today 18 407-414 (2013)
  48. A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets. Uitdehaag JC, Verkaar F, Alwan H, de Man J, Buijsman RC, Zaman GJ. Br J Pharmacol 166 858-876 (2012)
  49. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies. Tortora G, Bianco R, Daniele G, Ciardiello F, McCubrey JA, Ricciardi MR, Ciuffreda L, Cognetti F, Tafuri A, Milella M. Drug Resist Updat 10 81-100 (2007)
  50. Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now? A short survey. Mariaule G, Belmont P. Molecules 19 14366-14382 (2014)
  51. Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Cheng H, Force T. Prog Cardiovasc Dis 53 114-120 (2010)
  52. Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Millet A, Martin AR, Ronco C, Ronco C, Rocchi S, Benhida R. Med Res Rev 37 98-148 (2017)
  53. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. Haan C, Behrmann I, Haan S. J Cell Mol Med 14 504-527 (2010)
  54. Emerging MEK inhibitors. McCubrey JA, Steelman LS, Abrams SL, Chappell WH, Russo S, Ove R, Milella M, Tafuri A, Lunghi P, Bonati A, Stivala F, Nicoletti F, Libra M, Martelli AM, Montalto G, Cervello M. Expert Opin Emerg Drugs 15 203-223 (2010)
  55. MEK inhibitors under development for treatment of non-small-cell lung cancer. Kim C, Giaccone G. Expert Opin Investig Drugs 27 17-30 (2018)
  56. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol 27 315-328 (2009)
  57. Partner exchange: protein-protein interactions in the Raf pathway. Wimmer R, Baccarini M. Trends Biochem Sci 35 660-668 (2010)
  58. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  59. Recent progress on MAP kinase pathway inhibitors. Uehling DE, Harris PA. Bioorg Med Chem Lett 25 4047-4056 (2015)
  60. The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Eck MJ, Manley PW. Curr Opin Cell Biol 21 288-295 (2009)
  61. Inhibitory-κB Kinase (IKK) α and Nuclear Factor-κB (NFκB)-Inducing Kinase (NIK) as Anti-Cancer Drug Targets. Paul A, Edwards J, Pepper C, Mackay S. Cells 7 E176 (2018)
  62. Linking the kinome and phosphorylome--a comprehensive review of approaches to find kinase targets. Sopko R, Andrews BJ. Mol Biosyst 4 920-933 (2008)
  63. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Chen M, Peters A, Huang T, Nan X. Mini Rev Med Chem 16 391-403 (2016)
  64. Signaling pathway and molecular-targeted therapy for hepatocellular carcinoma. Kudo M. Dig Dis 29 289-302 (2011)
  65. Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma. Kudo M. World J Gastroenterol 18 6005-6017 (2012)
  66. Current status of molecularly targeted therapy for hepatocellular carcinoma: clinical practice. Kudo M. Int J Clin Oncol 15 242-255 (2010)
  67. ATP-noncompetitive CDK inhibitors for cancer therapy: an overview. Abate AA, Pentimalli F, Esposito L, Giordano A. Expert Opin Investig Drugs 22 895-906 (2013)
  68. Targeted therapies in cancer. Ciavarella S, Milano A, Dammacco F, Silvestris F. BioDrugs 24 77-88 (2010)
  69. Novel mitogen-activated protein kinase kinase inhibitors. Chapman MS, Miner JN. Expert Opin Investig Drugs 20 209-220 (2011)
  70. A review of kinases implicated in pancreatic cancer. Giroux V, Dagorn JC, Iovanna JL. Pancreatology 9 738-754 (2009)
  71. Heart Failure With Targeted Cancer Therapies: Mechanisms and Cardioprotection. Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Circ Res 128 1576-1593 (2021)
  72. The biology and clinical development of MEK inhibitors for cancer. Luke JJ, Ott PA, Shapiro GI. Drugs 74 2111-2128 (2014)
  73. ETS-targeted therapy: can it substitute for MEK inhibitors? Tetsu O, McCormick F. Clin Transl Med 6 16 (2017)
  74. Composition and applications of focus libraries to phenotypic assays. Wassermann AM, Camargo LM, Auld DS. Front Pharmacol 5 164 (2014)
  75. Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer. Sale MJ, Cook SJ. Biochem Soc Trans 42 776-783 (2014)
  76. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. Arter C, Trask L, Ward S, Yeoh S, Bayliss R. J Biol Chem 298 102247 (2022)
  77. BRAF and MEK inhibition for the treatment of advanced BRAF mutant melanoma. Richman J, Martin-Liberal J, Diem S, Larkin J. Expert Opin Pharmacother 16 1285-1297 (2015)
  78. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Int J Mol Sci 21 E3818 (2020)
  79. Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors. Duffy A, Kummar S. Target Oncol 4 267-273 (2009)
  80. MAP kinase modules: the excursion model and the steps that count. Piala AT, Humphreys JM, Goldsmith EJ. Biophys J 107 2006-2015 (2014)
  81. Clinical Pharmacokinetics and Pharmacodynamics of Selumetinib. Campagne O, Yeo KK, Fangusaro J, Stewart CF. Clin Pharmacokinet 60 283-303 (2021)
  82. Allosteric modulators of MEK1: drug design and discovery. Shang J, Lu S, Jiang Y, Zhang J. Chem Biol Drug Des 88 485-497 (2016)
  83. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases. Chan TO, Pascal JM, Armen RS, Rodeck U. Cell Cycle 11 475-478 (2012)
  84. RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Herrero A, Crespo P. Genes (Basel) 12 1556 (2021)
  85. Kinase packing defects as drug targets. Crespo A, Fernández A. Drug Discov Today 12 917-923 (2007)
  86. FAK inhibitors as promising anticancer targets: present and future directions. Mustafa M, Abd El-Hafeez AA, Abdelhafeez DA, Abdelhamid D, Mostafa YA, Ghosh P, Hayallah AM, A Abuo-Rahma GE. Future Med Chem 13 1559-1590 (2021)
  87. Multiple café au lait spots in familial patients with MAP2K2 mutation. Takenouchi T, Shimizu A, Torii C, Kosaki R, Takahashi T, Saya H, Kosaki K. Am J Med Genet A 164A 392-396 (2014)
  88. Potential future therapies for psoriasis. Papp KA. Semin Cutan Med Surg 24 58-63 (2005)
  89. Signaling pathways as therapeutic targets in biliary tract cancer. Yang J, Farren MR, Ahn D, Bekaii-Saab T, Lesinski GB. Expert Opin Ther Targets 21 485-498 (2017)
  90. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Ozdemir ES, Koester AM, Nan X. Genes (Basel) 13 219 (2022)
  91. Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Tatli O, Dinler Doganay G. Molecules 26 7561 (2021)
  92. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Katzengruber L, Sander P, Laufer S. Int J Mol Sci 24 7495 (2023)
  93. Targeting the mitogen-activated protein kinase pathway in low-grade serous carcinoma of the ovary. McLachlan J, Gore M, Banerjee S. Pharmacogenomics 17 1353-1363 (2016)
  94. Recent applications of computational methods to allosteric drug discovery. Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Front Mol Biosci 9 1070328 (2022)

Articles citing this publication (204)

  1. A quantitative analysis of kinase inhibitor selectivity. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP. Nat Biotechnol 26 127-132 (2008)
  2. Comprehensive analysis of kinase inhibitor selectivity. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. Nat Biotechnol 29 1046-1051 (2011)
  3. BRAF mutation predicts sensitivity to MEK inhibition. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N. Nature 439 358-362 (2006)
  4. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE, You MJ, DePinho RA, McMahon M, Bosenberg M. Nat Genet 41 544-552 (2009)
  5. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, Hatton C, Chopra R, Oberholzer PA, Karpova MB, MacConaill LE, Zhang J, Gray NS, Sellers WR, Dummer R, Garraway LA. Proc Natl Acad Sci U S A 106 20411-20416 (2009)
  6. The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tõnisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B. Science 358 eaan4368 (2017)
  7. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY, Hanson L, DeLuca P, Bruzek L, Piens J, Asbury P, Van Becelaere K, Herrera R, Sebolt-Leopold J, Meyer MB. J Clin Oncol 23 5281-5293 (2005)
  8. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. Sci Signal 3 ra84 (2010)
  9. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniëls V, Lewis P, Jain S, Ding J, Syed A, Thomas KJ, Baekelandt V, Cookson MR. J Biol Chem 283 16906-16914 (2008)
  10. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Fedorov O, Marsden B, Pogacic V, Rellos P, Müller S, Bullock AN, Schwaller J, Sundström M, Knapp S. Proc Natl Acad Sci U S A 104 20523-20528 (2007)
  11. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Adrián FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, Zhang G, Hur W, Ding S, Manley P, Mestan J, Fabbro D, Gray NS. Nat Chem Biol 2 95-102 (2006)
  12. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, Heald R, Hewitt JF, Zak M, Peck A, Orr C, Merchant M, Hoeflich KP, Chan J, Luoh SM, Anderson DJ, Ludlam MJ, Wiesmann C, Ultsch M, Friedman LS, Malek S, Belvin M. Nature 501 232-236 (2013)
  13. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Lito P, Saborowski A, Yue J, Solomon M, Joseph E, Gadal S, Saborowski M, Kastenhuber E, Fellmann C, Ohara K, Morikami K, Miura T, Lukacs C, Ishii N, Lowe S, Rosen N. Cancer Cell 25 697-710 (2014)
  14. Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Huang Y, Noble NA, Zhang J, Xu C, Border WA. Kidney Int 72 45-52 (2007)
  15. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM, Barford D. Nature 472 366-369 (2011)
  16. Genetic predictors of MEK dependence in non-small cell lung cancer. Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M, Taylor BS, Pao W, Toyooka S, Ladanyi M, Gazdar A, Rosen N, Solit DB. Cancer Res 68 9375-9383 (2008)
  17. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S, Leopold WR, Przybranowski SA, Sebolt-Leopold J, Van Becelaere K, Doherty AM, Kennedy RM, Marston D, Howard WA, Smith Y, Warmus JS, Tecle H. Bioorg Med Chem Lett 18 6501-6504 (2008)
  18. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GP, Brandhuber BJ. PLoS One 5 e12913 (2010)
  19. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. Yamamoto M, Standley DM, Takashima S, Saiga H, Okuyama M, Kayama H, Kubo E, Ito H, Takaura M, Matsuda T, Soldati-Favre D, Takeda K. J Exp Med 206 2747-2760 (2009)
  20. The (un)targeted cancer kinome. Fedorov O, Müller S, Knapp S. Nat Chem Biol 6 166-169 (2010)
  21. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, Winge DR, Thiele DJ. Mol Cell Biol 32 1284-1295 (2012)
  22. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, Ding L, Mardis ER, Wilson RK, Solit D, Levine R, Michel K, Thomas RK, Rusch VW, Ladanyi M, Pao W. Cancer Res 68 5524-5528 (2008)
  23. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Xing F, Persaud Y, Pratilas CA, Taylor BS, Janakiraman M, She QB, Gallardo H, Liu C, Merghoub T, Hefter B, Dolgalev I, Viale A, Heguy A, De Stanchina E, Cobrinik D, Bollag G, Wolchok J, Houghton A, Solit DB. Oncogene 31 446-457 (2012)
  24. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Haling JR, Sudhamsu J, Yen I, Sideris S, Sandoval W, Phung W, Bravo BJ, Giannetti AM, Peck A, Masselot A, Morales T, Smith D, Brandhuber BJ, Hymowitz SG, Malek S. Cancer Cell 26 402-413 (2014)
  25. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. EMBO J 27 704-714 (2008)
  26. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR. Science 333 342-345 (2011)
  27. A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O, Baccarini M. Nat Struct Mol Biol 16 294-303 (2009)
  28. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E, Gao MY, Hua S, Chen C, Kim S, Michellys PY, Lesley SA, Harris JL, Spraggon G. Biochem J 430 425-437 (2010)
  29. Bidirectional signals transduced by TOPK-ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Zhu F, Zykova TA, Kang BS, Wang Z, Ebeling MC, Abe Y, Ma WY, Bode AM, Dong Z. Gastroenterology 133 219-231 (2007)
  30. Tunable signal processing in synthetic MAP kinase cascades. O'Shaughnessy EC, Palani S, Collins JJ, Sarkar CA. Cell 144 119-131 (2011)
  31. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Old WM, Shabb JB, Houel S, Wang H, Couts KL, Yen CY, Litman ES, Croy CH, Meyer-Arendt K, Miranda JG, Brown RA, Witze ES, Schweppe RE, Resing KA, Ahn NG. Mol Cell 34 115-131 (2009)
  32. Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Takekawa M, Tatebayashi K, Saito H. Mol Cell 18 295-306 (2005)
  33. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ. Pharmacol Rev 66 918-947 (2014)
  34. Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Ishii N, Harada N, Joseph EW, Ohara K, Miura T, Sakamoto H, Matsuda Y, Tomii Y, Tachibana-Kondo Y, Iikura H, Aoki T, Shimma N, Arisawa M, Sowa Y, Poulikakos PI, Rosen N, Aoki Y, Sakai T. Cancer Res 73 4050-4060 (2013)
  35. Genomic complexity and AKT dependence in serous ovarian cancer. Hanrahan AJ, Schultz N, Westfal ML, Sakr RA, Giri DD, Scarperi S, Janakiraman M, Olvera N, Stevens EV, She QB, Aghajanian C, King TA, Stanchina Ed, Spriggs DR, Heguy A, Taylor BS, Sander C, Rosen N, Levine DA, Solit DB. Cancer Discov 2 56-67 (2012)
  36. c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. Bellon SF, Kaplan-Lefko P, Yang Y, Zhang Y, Moriguchi J, Rex K, Johnson CW, Rose PE, Long AM, O'Connor AB, Gu Y, Coxon A, Kim TS, Tasker A, Burgess TL, Dussault I. J Biol Chem 283 2675-2683 (2008)
  37. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, Dunbrack RL, Levy RM. J Med Chem 58 466-479 (2015)
  38. Molecular and clinical characterization of cardio-facio-cutaneous (CFC) syndrome: overlapping clinical manifestations with Costello syndrome. Narumi Y, Aoki Y, Niihori T, Neri G, Cavé H, Verloes A, Nava C, Kavamura MI, Okamoto N, Kurosawa K, Hennekam RC, Wilson LC, Gillessen-Kaesbach G, Wieczorek D, Lapunzina P, Ohashi H, Makita Y, Kondo I, Tsuchiya S, Ito E, Sameshima K, Kato K, Kure S, Matsubara Y. Am J Med Genet A 143A 799-807 (2007)
  39. Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors. Anastasaki C, Estep AL, Marais R, Rauen KA, Patton EE. Hum Mol Genet 18 2543-2554 (2009)
  40. MEK1 activation by PAK: a novel mechanism. Park ER, Eblen ST, Catling AD. Cell Signal 19 1488-1496 (2007)
  41. Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. Han S, Mistry A, Chang JS, Cunningham D, Griffor M, Bonnette PC, Wang H, Chrunyk BA, Aspnes GE, Walker DP, Brosius AD, Buckbinder L. J Biol Chem 284 13193-13201 (2009)
  42. Structural basis for the action of the drug trametinib at KSR-bound MEK. Khan ZM, Real AM, Marsiglia WM, Chow A, Duffy ME, Yerabolu JR, Scopton AP, Dar AC. Nature 588 509-514 (2020)
  43. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. Uitdehaag JC, de Roos JA, van Doornmalen AM, Prinsen MB, de Man J, Tanizawa Y, Kawase Y, Yoshino K, Buijsman RC, Zaman GJ. PLoS One 9 e92146 (2014)
  44. "RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. Cseh B, Doma E, Baccarini M. FEBS Lett 588 2398-2406 (2014)
  45. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Zhang MH, Man HT, Zhao XD, Dong N, Ma SL. Biomed Rep 2 41-52 (2014)
  46. Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity. Chan TO, Zhang J, Rodeck U, Pascal JM, Armen RS, Spring M, Dumitru CD, Myers V, Li X, Cheung JY, Feldman AM. Proc Natl Acad Sci U S A 108 E1120-7 (2011)
  47. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. Frembgen-Kesner T, Elcock AH. J Mol Biol 359 202-214 (2006)
  48. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation. Gao M, Skolnick J. Proc Natl Acad Sci U S A 109 3784-3789 (2012)
  49. Novel Carboxamide-Based Allosteric MEK Inhibitors: Discovery and Optimization Efforts toward XL518 (GDC-0973). Rice KD, Aay N, Anand NK, Blazey CM, Bowles OJ, Bussenius J, Costanzo S, Curtis JK, Defina SC, Dubenko L, Engst S, Joshi AA, Kennedy AR, Kim AI, Koltun ES, Lougheed JC, Manalo JC, Martini JF, Nuss JM, Peto CJ, Tsang TH, Yu P, Johnston S. ACS Med Chem Lett 3 416-421 (2012)
  50. Diminished WNT -> β-catenin -> c-MYC signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors. Juan J, Muraguchi T, Iezza G, Sears RC, McMahon M. Genes Dev 28 561-575 (2014)
  51. Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Kubota Y, O'Grady P, Saito H, Takekawa M. Nat Cell Biol 13 282-291 (2011)
  52. Competing docking interactions can bring about bistability in the MAPK cascade. Legewie S, Schoeberl B, Blüthgen N, Herzel H. Biophys J 93 2279-2288 (2007)
  53. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. Dixit A, Verkhivker GM. PLoS Comput Biol 7 e1002179 (2011)
  54. Insights into the structural basis of the GADD45beta-mediated inactivation of the JNK kinase, MKK7/JNKK2. Papa S, Monti SM, Vitale RM, Bubici C, Jayawardena S, Alvarez K, De Smaele E, Dathan N, Pedone C, Ruvo M, Franzoso G. J Biol Chem 282 19029-19041 (2007)
  55. MEK1 binds directly to betaarrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. Meng D, Lynch MJ, Huston E, Beyermann M, Eichhorst J, Adams DR, Klussmann E, Houslay MD, Baillie GS. J Biol Chem 284 11425-11435 (2009)
  56. Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes. Sicard A, Semblat JP, Doerig C, Hamelin R, Moniatte M, Dorin-Semblat D, Spicer JA, Srivastava A, Retzlaff S, Heussler V, Waters AP, Doerig C. Cell Microbiol 13 836-845 (2011)
  57. The Salmonella kinase SteC targets the MAP kinase MEK to regulate the host actin cytoskeleton. Odendall C, Rolhion N, Förster A, Poh J, Lamont DJ, Liu M, Freemont PS, Catling AD, Holden DW. Cell Host Microbe 12 657-668 (2012)
  58. Detection of secondary binding sites in proteins using fragment screening. Ludlow RF, Verdonk ML, Saini HK, Tickle IJ, Jhoti H. Proc Natl Acad Sci U S A 112 15910-15915 (2015)
  59. Computer-aided drug design: the next 20 years. Van Drie JH. J Comput Aided Mol Des 21 591-601 (2007)
  60. Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Yeh I, Lang UE, Durieux E, Tee MK, Jorapur A, Shain AH, Haddad V, Pissaloux D, Chen X, Cerroni L, Judson RL, LeBoit PE, McCalmont TH, Bastian BC, de la Fouchardière A. Nat Commun 8 644 (2017)
  61. Allosteric interactions between the myristate- and ATP-site of the Abl kinase. Iacob RE, Zhang J, Gray NS, Engen JR. PLoS One 6 e15929 (2011)
  62. Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer. Boasberg PD, Redfern CH, Daniels GA, Bodkin D, Garrett CR, Ricart AD. Cancer Chemother Pharmacol 68 547-552 (2011)
  63. A novel approach to the discovery of small-molecule ligands of CDK2. Martin MP, Alam R, Betzi S, Ingles DJ, Zhu JY, Schönbrunn E. Chembiochem 13 2128-2136 (2012)
  64. Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Cowan-Jacob SW, Jahnke W, Knapp S. Future Med Chem 6 541-561 (2014)
  65. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Jacobs MD, Caron PR, Hare BJ. Proteins 70 1451-1460 (2008)
  66. Crystal structure of domain-swapped STE20 OSR1 kinase domain. Lee SJ, Cobb MH, Goldsmith EJ. Protein Sci 18 304-313 (2009)
  67. Fluorine-protein interactions and ¹⁹F NMR isotropic chemical shifts: An empirical correlation with implications for drug design. Dalvit C, Vulpetti A. ChemMedChem 6 104-114 (2011)
  68. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Rambal AA, Panaguiton ZL, Kramer L, Grant S, Harada H. Leukemia 23 1744-1754 (2009)
  69. MEK1/2 inhibition elicits regression of autochthonous lung tumors induced by KRASG12D or BRAFV600E. Trejo CL, Juan J, Vicent S, Sweet-Cordero A, McMahon M. Cancer Res 72 3048-3059 (2012)
  70. Involvement of c-Met/hepatocyte growth factor pathway in cholangiocarcinoma cell invasion and its therapeutic inhibition with small interfering RNA specific for c-Met. Leelawat K, Leelawat S, Tepaksorn P, Rattanasinganchan P, Leungchaweng A, Tohtong R, Sobhon P. J Surg Res 136 78-84 (2006)
  71. MEK inhibitors as a chemotherapeutic intervention in multiple myeloma. Chang-Yew Leow C, Gerondakis S, Spencer A. Blood Cancer J 3 e105 (2013)
  72. Real-time genomic profiling of histiocytoses identifies early-kinase domain BRAF alterations while improving treatment outcomes. Lee LH, Gasilina A, Roychoudhury J, Clark J, McCormack FX, Pressey J, Grimley MS, Lorsbach R, Ali S, Bailey M, Stephens P, Ross JS, Miller VA, Nassar NN, Kumar AR. JCI Insight 2 e89473 (2017)
  73. Identification of coumarin derivatives as a novel class of allosteric MEK1 inhibitors. Han S, Zhou V, Pan S, Liu Y, Hornsby M, McMullan D, Klock HE, Haugen J, Lesley SA, Gray N, Caldwell J, Gu XJ. Bioorg Med Chem Lett 15 5467-5473 (2005)
  74. 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography is a sensitive method for imaging the response of BRAF-dependent tumors to MEK inhibition. Solit DB, Santos E, Pratilas CA, Lobo J, Moroz M, Cai S, Blasberg R, Sebolt-Leopold J, Larson S, Rosen N. Cancer Res 67 11463-11469 (2007)
  75. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. Woodfield SE, Zhang L, Scorsone KA, Liu Y, Zage PE. BMC Cancer 16 172 (2016)
  76. MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Pei XY, Dai Y, Tenorio S, Lu J, Harada H, Dent P, Grant S. Blood 110 2092-2101 (2007)
  77. Equol, a metabolite of the soybean isoflavone daidzein, inhibits neoplastic cell transformation by targeting the MEK/ERK/p90RSK/activator protein-1 pathway. Kang NJ, Lee KW, Rogozin EA, Cho YY, Heo YS, Bode AM, Lee HJ, Dong Z. J Biol Chem 282 32856-32866 (2007)
  78. Evolution of CASK into a Mg2+-sensitive kinase. Mukherjee K, Sharma M, Jahn R, Wahl MC, Südhof TC. Sci Signal 3 ra33 (2010)
  79. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1427-1449 (2008)
  80. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Nat Chem Biol 8 366-374 (2012)
  81. Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis. Yuan J, Ng WH, Tian Z, Yap J, Baccarini M, Chen Z, Hu J. Sci Signal 11 eaar6795 (2018)
  82. Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia. Lin HP, Chang JY, Lin SR, Lee MH, Huang SS, Hsu LJ, Chang NS. Genes Cancer 2 550-562 (2011)
  83. Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo. Grewal S, Molina DM, Bardwell L. Cell Signal 18 123-134 (2006)
  84. Mutationally activated PIK3CA(H1047R) cooperates with BRAF(V600E) to promote lung cancer progression. Trejo CL, Green S, Marsh V, Collisson EA, Iezza G, Phillips WA, McMahon M. Cancer Res 73 6448-6461 (2013)
  85. Cyanidin suppresses ultraviolet B-induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1. Kim JE, Kwon JY, Seo SK, Son JE, Jung SK, Min SY, Hwang MK, Heo YS, Lee KW, Lee HJ. Biochem Pharmacol 79 1473-1482 (2010)
  86. A noncompetitive inhibitor for Mycobacterium tuberculosis's class IIa fructose 1,6-bisphosphate aldolase. Capodagli GC, Sedhom WG, Jackson M, Ahrendt KA, Pegan SD. Biochemistry 53 202-213 (2014)
  87. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. Kesavan R, Potunuru UR, Nastasijević B, T A, Joksić G, Dixit M. PLoS One 8 e61393 (2013)
  88. Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Shaul YD, Gibor G, Plotnikov A, Seger R. Genes Dev 23 1779-1790 (2009)
  89. Identification and characterization of a novel chemotype MEK inhibitor able to alter the phosphorylation state of MEK1/2. Yoshida T, Kakegawa J, Yamaguchi T, Hantani Y, Okajima N, Sakai T, Watanabe Y, Nakamura M. Oncotarget 3 1533-1545 (2012)
  90. Targeting oncogenic BRAF in human cancer. Pratilas CA, Xing F, Solit DB. Curr Top Microbiol Immunol 355 83-98 (2012)
  91. A novel mitogen-activated protein kinase docking site in the N terminus of MEK5alpha organizes the components of the extracellular signal-regulated kinase 5 signaling pathway. Seyfried J, Wang X, Kharebava G, Tournier C. Mol Cell Biol 25 9820-9828 (2005)
  92. Allosteric Communication Networks in Proteins Revealed through Pocket Crosstalk Analysis. La Sala G, Decherchi S, De Vivo M, Rocchia W. ACS Cent Sci 3 949-960 (2017)
  93. Resistance to Selumetinib (AZD6244) in colorectal cancer cell lines is mediated by p70S6K and RPS6 activation. Grasso S, Tristante E, Saceda M, Carbonell P, Mayor-López L, Carballo-Santana M, Carrasco-García E, Rocamora-Reverte L, García-Morales P, Carballo F, Ferragut JA, Martínez-Lacaci I. Neoplasia 16 845-860 (2014)
  94. Structure of the OSR1 kinase, a hypertension drug target. Villa F, Deak M, Alessi DR, van Aalten DM. Proteins 73 1082-1087 (2008)
  95. Dual inhibition of allosteric mitogen-activated protein kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) oncogenic targets with a bifunctional inhibitor. Van Dort ME, Galbán S, Wang H, Sebolt-Leopold J, Whitehead C, Hong H, Rehemtulla A, Ross BD. Bioorg Med Chem 23 1386-1394 (2015)
  96. Mechanistic and structural understanding of uncompetitive inhibitors of caspase-6. Heise CE, Murray J, Augustyn KE, Bravo B, Chugha P, Cohen F, Giannetti AM, Gibbons P, Hannoush RN, Hearn BR, Jaishankar P, Ly CQ, Shah K, Stanger K, Steffek M, Tang Y, Zhao X, Lewcock JW, Renslo AR, Flygare J, Arkin MR. PLoS One 7 e50864 (2012)
  97. Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Shrestha A, Hamilton G, O'Neill E, Knapp S, Elkins JM. Protein Expr Purif 81 136-143 (2012)
  98. Non-ATP competitive protein kinase inhibitors as anti-tumor therapeutics. Kirkland LO, McInnes C. Biochem Pharmacol 77 1561-1571 (2009)
  99. Structural requirements for Yersinia YopJ inhibition of MAP kinase pathways. Hao YH, Wang Y, Burdette D, Mukherjee S, Keitany G, Goldsmith E, Orth K. PLoS One 3 e1375 (2008)
  100. 2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase). Warmus JS, Flamme C, Zhang LY, Barrett S, Bridges A, Chen H, Gowan R, Kaufman M, Sebolt-Leopold J, Leopold W, Merriman R, Ohren J, Pavlovsky A, Przybranowski S, Tecle H, Valik H, Whitehead C, Zhang E. Bioorg Med Chem Lett 18 6171-6174 (2008)
  101. Comment Cancer drugs to treat birth defects. Wilkie AO. Nat Genet 39 1057-1059 (2007)
  102. Beyond the MEK-pocket: can current MEK kinase inhibitors be utilized to synthesize novel type III NCKIs? Does the MEK-pocket exist in kinases other than MEK? Tecle H, Shao J, Li Y, Kothe M, Kazmirski S, Penzotti J, Ding YH, Ohren J, Moshinsky D, Coli R, Jhawar N, Bora E, Jacques-O'Hagan S, Wu J. Bioorg Med Chem Lett 19 226-229 (2009)
  103. Inhibition of MAP2K and GSK3 signaling promotes bovine blastocyst development and epiblast-associated expression of pluripotency factors. Harris D, Huang B, Oback B. Biol Reprod 88 74 (2013)
  104. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases. Liu H, Liu K, Huang Z, Park CM, Thimmegowda NR, Jang JH, Ryoo IJ, He L, Kim SO, Oi N, Lee KW, Soung NK, Bode AM, Yang Y, Zhou X, Erikson RL, Ahn JS, Hwang J, Kim KE, Dong Z, Kim BY. J Biol Chem 288 25924-25937 (2013)
  105. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Proc Natl Acad Sci U S A 114 E2096-E2105 (2017)
  106. trans-Resveratrol inhibits H2O2-induced adenocarcinoma gastric cells proliferation via inactivation of MEK1/2-ERK1/2-c-Jun signalling axis. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Biochem Pharmacol 77 337-347 (2009)
  107. Adiponectin attenuates kidney injury and fibrosis in deoxycorticosterone acetate-salt and angiotensin II-induced CKD mice. Tian M, Tang L, Wu Y, Beddhu S, Huang Y. Am J Physiol Renal Physiol 315 F558-F571 (2018)
  108. QIKS--Quantitative identification of kinase substrates. Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich OA, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber LA. Proteomics 10 2015-2025 (2010)
  109. Differential outcome of MEK1/2 inhibitor-platinum combinations in platinum-sensitive and -resistant ovarian carcinoma cells. Cossa G, Lanzi C, Cassinelli G, Carenini N, Arrighetti N, Gatti L, Corna E, Zunino F, Zaffaroni N, Perego P. Cancer Lett 347 212-224 (2014)
  110. Structures of human MST3 kinase in complex with adenine, ADP and Mn2+. Ko TP, Jeng WY, Liu CI, Lai MD, Wu CL, Chang WJ, Shr HL, Lu TJ, Wang AH. Acta Crystallogr D Biol Crystallogr 66 145-154 (2010)
  111. Letter The use of virtual screening and differential scanning fluorimetry for the rapid identification of fragments active against MEK1. Amaning K, Lowinski M, Vallee F, Steier V, Marcireau C, Ugolini A, Delorme C, Foucalt F, McCort G, Derimay N, Andouche C, Vougier S, Llopart S, Halland N, Rak A. Bioorg Med Chem Lett 23 3620-3626 (2013)
  112. Delineation of Polypharmacology across the Human Structural Kinome Using a Functional Site Interaction Fingerprint Approach. Zhao Z, Xie L, Xie L, Bourne PE. J Med Chem 59 4326-4341 (2016)
  113. Discovery and characterization of novel allosteric FAK inhibitors. Iwatani M, Iwata H, Okabe A, Skene RJ, Tomita N, Hayashi Y, Aramaki Y, Hosfield DJ, Hori A, Baba A, Miki H. Eur J Med Chem 61 49-60 (2013)
  114. Manipulation of mitogen-activated protein kinase kinase signaling in the Arabidopsis stomatal lineage reveals motifs that contribute to protein localization and signaling specificity. Lampard GR, Wengier DL, Bergmann DC. Plant Cell 26 3358-3371 (2014)
  115. Specificity of Phosphorylation Responses to Mitogen Activated Protein (MAP) Kinase Pathway Inhibitors in Melanoma Cells. Basken J, Stuart SA, Kavran AJ, Lee T, Ebmeier CC, Old WM, Ahn NG. Mol Cell Proteomics 17 550-564 (2018)
  116. MEK nuclear localization promotes YAP stability via sequestering β-TrCP in KRAS mutant cancer cells. Xu H, Zhou S, Xia H, Yu H, Tang Q, Bi F. Cell Death Differ 26 2400-2415 (2019)
  117. Structure based design of novel 6,5 heterobicyclic mitogen-activated protein kinase kinase (MEK) inhibitors leading to the discovery of imidazo[1,5-a] pyrazine G-479. Robarge KD, Lee W, Eigenbrot C, Ultsch M, Wiesmann C, Heald R, Price S, Hewitt J, Jackson P, Savy P, Burton B, Choo EF, Pang J, Boggs J, Yang A, Yang X, Baumgardner M. Bioorg Med Chem Lett 24 4714-4723 (2014)
  118. A Structure is Worth a Thousand Words: New Insights for RAS and RAF Regulation. Simanshu DK, Morrison DK. Cancer Discov 12 899-912 (2022)
  119. Engineering human MEK-1 for structural studies: A case study of combinatorial domain hunting. Meier C, Brookings DC, Ceska TA, Doyle C, Gong H, McMillan D, Saville GP, Mushtaq A, Knight D, Reich S, Pearl LH, Powell KA, Savva R, Allen RA. J Struct Biol 177 329-334 (2012)
  120. PRIMA-1Met suppresses colorectal cancer independent of p53 by targeting MEK. Lu T, Zou Y, Xu G, Potter JA, Taylor GL, Duan Q, Yang Q, Xiong H, Qiu H, Ye D, Zhang P, Yu S, Yuan X, Zhu F, Wang Y, Xiong H. Oncotarget 7 83017-83030 (2016)
  121. Selumetinib for the treatment of cancer. Ciombor KK, Bekaii-Saab T. Expert Opin Investig Drugs 24 111-123 (2015)
  122. Alteration of Akt activity increases chemotherapeutic drug and hormonal resistance in breast cancer yet confers an achilles heel by sensitization to targeted therapy. McCubrey JA, Sokolosky ML, Lehmann BD, Taylor JR, Navolanic PM, Chappell WH, Abrams SL, Stadelman KM, Wong EW, Misaghian N, Horn S, Bäsecke J, Libra M, Stivala F, Ligresti G, Tafuri A, Milella M, Zarzycki M, Dzugaj A, Chiarini F, Evangelisti C, Martelli AM, Terrian DM, Franklin RA, Steelman LS. Adv Enzyme Regul 48 113-135 (2008)
  123. Constitutive MEK1 activation rescues anthrax lethal toxin-induced vascular effects in vivo. Bolcome RE, Chan J. Infect Immun 78 5043-5053 (2010)
  124. Identification of a RAI1-associated disease network through integration of exome sequencing, transcriptomics, and 3D genomics. Loviglio MN, Beck CR, White JJ, Leleu M, Harel T, Guex N, Niknejad A, Bi W, Chen ES, Crespo I, Yan J, Charng WL, Gu S, Fang P, Coban-Akdemir Z, Shaw CA, Jhangiani SN, Muzny DM, Gibbs RA, Rougemont J, Xenarios I, Lupski JR, Reymond A. Genome Med 8 105 (2016)
  125. Silymarin and its active component silibinin act as novel therapeutic alternatives for salivary gland cancer by targeting the ERK1/2-Bim signaling cascade. Choi ES, Oh S, Jang B, Yu HJ, Shin JA, Cho NP, Yang IH, Won DH, Kwon HJ, Hong SD, Cho SD. Cell Oncol (Dordr) 40 235-246 (2017)
  126. Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors. Jahnke W, Blommers MJ, Fernández C, Zwingelstein C, Amstutz R. Chembiochem 6 1607-1610 (2005)
  127. Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling. Little AS, Balmanno K, Sale MJ, Smith PD, Cook SJ. Biochem Soc Trans 40 73-78 (2012)
  128. A Phase I Study of the Safety, Pharmacokinetics, and Pharmacodynamics of Combination Therapy with Refametinib plus Sorafenib in Patients with Advanced Cancer. Adjei AA, Richards DA, El-Khoueiry A, Braiteh F, Becerra CH, Stephenson JJ, Hezel AF, Sherman M, Garbo L, Leffingwell DP, Iverson C, Miner JN, Shen Z, Yeh LT, Gunawan S, Wilson DM, Manhard KJ, Rajagopalan P, Krissel H, Clendeninn NJ. Clin Cancer Res 22 2368-2376 (2016)
  129. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Gonzalez-Del Pino GL, Li K, Park E, Schmoker AM, Ha BH, Eck MJ. Proc Natl Acad Sci U S A 118 e2107207118 (2021)
  130. Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Huang T, Hosseinibarkooie S, Borne AL, Granade ME, Brulet JW, Harris TE, Ferris HA, Hsu KL. Chem Sci 12 3295-3307 (2021)
  131. MEK1/2 inhibition rescues neurodegeneration by TFEB-mediated activation of autophagic lysosomal function in a model of Alzheimer's Disease. Chun YS, Kim MY, Lee SY, Kim MJ, Hong TJ, Jeon JK, Ganbat D, Kim HT, Kim SS, Kam TI, Han S. Mol Psychiatry 27 4770-4780 (2022)
  132. Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways. García-Echeverría C. Purinergic Signal 5 117-125 (2009)
  133. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Alton GR, Lunney EA. Expert Opin Drug Discov 3 595-605 (2008)
  134. Dimerization in protein kinase signaling. Pelech S. J Biol 5 12 (2006)
  135. Fully activated MEK1 exhibits compromised affinity for binding of allosteric inhibitors U0126 and PD0325901. Sheth PR, Liu Y, Hesson T, Zhao J, Vilenchik L, Liu YH, Mayhood TW, Le HV. Biochemistry 50 7964-7976 (2011)
  136. Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. Gysin S, Paquette J, McMahon M. Mol Cancer Res 10 1607-1619 (2012)
  137. Exploring Selectivity of Multikinase Inhibitors across the Human Kinome. Miljković F, Bajorath J. ACS Omega 3 1147-1153 (2018)
  138. Identification of isothiazole-4-carboxamidines derivatives as a novel class of allosteric MEK1 inhibitors. El Abdellaoui H, Varaprasad CV, Barawkar D, Chakravarty S, Maderna A, Tam R, Chen H, Allan M, Wu JZ, Appleby T, Yan S, Zhang W, Lang S, Yao N, Hamatake R, Hong Z. Bioorg Med Chem Lett 16 5561-5566 (2006)
  139. MALDI-TOF mass-spectrometry-based versatile method for the characterization of protein kinases. Kondo N, Nishimura S. Chemistry 15 1413-1421 (2009)
  140. Synthesis and biological evaluation of RGD-conjugated MEK1/2 kinase inhibitors for integrin-targeted cancer therapy. Li X, Hou J, Wang C, Liu X, He H, Xu P, Yang Z, Chen Z, Wu Y, Zhang L. Molecules 18 13957-13978 (2013)
  141. Computational modelling reveals feedback redundancy within the epidermal growth factor receptor/extracellular-signal regulated kinase signalling pathway. Orton RJ, Sturm OE, Gormand A, Wolch W, Gilbert DR. IET Syst Biol 2 173-183 (2008)
  142. Discovery of Bifunctional Oncogenic Target Inhibitors against Allosteric Mitogen-Activated Protein Kinase (MEK1) and Phosphatidylinositol 3-Kinase (PI3K). Van Dort ME, Hong H, Wang H, Nino CA, Lombardi RL, Blanks AE, Galbán S, Ross BD. J Med Chem 59 2512-2522 (2016)
  143. Identification and characterization of a small-molecule inhibitor of death-associated protein kinase 1. Wilbek TS, Skovgaard T, Sorrell FJ, Knapp S, Berthelsen J, Strømgaard K. Chembiochem 16 59-63 (2015)
  144. Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Han S, Czerwinski RM, Caspers NL, Limburg DC, Ding W, Wang H, Ohren JF, Rajamohan F, McLellan TJ, Unwalla R, Choi C, Parikh MD, Seth N, Edmonds J, Phillips C, Shakya S, Li X, Spaulding V, Hughes S, Cook A, Robinson C, Mathias JP, Navratilova I, Medley QG, Anderson DR, Kurumbail RG, Aulabaugh A. Biochem J 460 211-222 (2014)
  145. Detection of allosteric kinase inhibitors by displacement of active site probes. Lebakken CS, Reichling LJ, Ellefson JM, Riddle SM. J Biomol Screen 17 813-821 (2012)
  146. Expression and purification of phosphorylated and non-phosphorylated human MEK1. Smith CK, Carr D, Mayhood TW, Jin W, Gray K, Windsor WT. Protein Expr Purif 52 446-456 (2007)
  147. Improved yields for baculovirus-mediated expression of human His(6)-PDK1 and His(6)-PKBbeta/Akt2 and characterization of phospho-specific isoforms for design of inhibitors that stabilize inactive conformations. Gao X, Yo P, Harris TK. Protein Expr Purif 43 44-56 (2005)
  148. Novel Nitric Oxide Donors of Phenylsulfonylfuroxan and 3-Benzyl Coumarin Derivatives as Potent Antitumor Agents. Guo Y, Wang Y, Li H, Wang K, Wan Q, Li J, Zhou Y, Chen Y. ACS Med Chem Lett 9 502-506 (2018)
  149. Synthesis of piperazine-based thiazolidinones as VEGFR2 tyrosine kinase inhibitors inducing apoptosis. El-Miligy MM, Abd El Razik HA, Abu-Serie MM. Future Med Chem 9 1709-1729 (2017)
  150. Targeting ERK1/2-bim signaling cascades by BH3-mimetic ABT-737 as an alternative therapeutic strategy for oral cancer. Shin JA, Kim LH, Lee SJ, Jeong JH, Jung JY, Lee HN, Hong IS, Cho SD. Oncotarget 6 35667-35683 (2015)
  151. The newly identified MEK1 tyrosine phosphorylation target MACC1 is druggable by approved MEK1 inhibitors to restrict colorectal cancer metastasis. Kobelt D, Perez-Hernandez D, Fleuter C, Dahlmann M, Zincke F, Smith J, Migotti R, Popp O, Burock S, Walther W, Dittmar G, Mertins P, Stein U. Oncogene 40 5286-5301 (2021)
  152. Inactivation of rho GTPases by statins attenuates anthrax lethal toxin activity. deCathelineau AM, Bokoch GM. Infect Immun 77 348-359 (2009)
  153. Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Al-Ali H, Ragan TJ, Gao X, Harris TK. Bioconjug Chem 18 1294-1302 (2007)
  154. Recurrent Somatic MAP2K1 Mutations in Papillary Thyroid Cancer and Colorectal Cancer. Bu R, Siraj AK, Masoodi T, Parvathareddy SK, Iqbal K, Al-Rasheed M, Haqawi W, Diaz M, Victoria IG, Aldughaither SM, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Front Oncol 11 670423 (2021)
  155. The MEK2-binding tumor suppressor hDlg is recruited by E-cadherin to the midbody ring. Gaudet S, Langlois MJ, Lue RA, Rivard N, Viel A. BMC Cell Biol 12 55 (2011)
  156. Comparison of Composer and ORCHESTRAR. Dolan MA, Keil M, Baker DS. Proteins 72 1243-1258 (2008)
  157. Computational Study on the Effect of Inactivating/Activating Mutations on the Inhibition of MEK1 by Trametinib. Zhu J, Li C, Yang H, Guo X, Huang T, Han W. Int J Mol Sci 21 E2167 (2020)
  158. Fused thiophene derivatives as MEK inhibitors. Laing VE, Brookings DC, Carbery RJ, Simorte JG, Hutchings MC, Langham BJ, Lowe MA, Allen RA, Fetterman JR, Turner J, Meier C, Kennedy J, Merriman M. Bioorg Med Chem Lett 22 472-475 (2012)
  159. Kinase inhibitors: an allosteric add-on. Foda ZH, Seeliger MA. Nat Chem Biol 10 796-797 (2014)
  160. Structural and biochemical insights into the activation mechanisms of germinal center kinase OSR1. Li C, Feng M, Shi Z, Hao Q, Song X, Wang W, Zhao Y, Jiao S, Zhou Z. J Biol Chem 289 35969-35978 (2014)
  161. The autoinhibited state of MKK4: Phosphorylation, putative dimerization and R134W mutant studied by molecular dynamics simulations. Shevchenko E, Poso A, Pantsar T. Comput Struct Biotechnol J 18 2687-2698 (2020)
  162. The mechanism of activation of MEK1 by B-Raf and KSR1. Maloney RC, Zhang M, Liu Y, Jang H, Nussinov R. Cell Mol Life Sci 79 281 (2022)
  163. A full-length 3D structure for MAPK/ERK kinase 2 (MEK2). Liang H, Liu T, Chen F, Liu Z, Liu S. Sci China Life Sci 54 336-341 (2011)
  164. A phase I/Ib study of trametinib (GSK1120212) alone and in combination with gemcitabine in Japanese patients with advanced solid tumors. Kasuga A, Nakagawa K, Nagashima F, Shimizu T, Naruge D, Nishina S, Kitamura H, Kurata T, Takasu A, Fujisaka Y, Okamoto W, Nishimura Y, Mukaiyama A, Matsushita H, Furuse J. Invest New Drugs 33 1058-1067 (2015)
  165. Cell-based apoptosis assays in oncology drug discovery. Drewe J, Cai SX. Expert Opin Drug Discov 5 583-596 (2010)
  166. Evolutionary chemical binding similarity approach integrated with 3D-QSAR method for effective virtual screening. Durai P, Ko YJ, Pan CH, Park K. BMC Bioinformatics 21 309 (2020)
  167. Expression Signatures of Cisplatin- and Trametinib-Treated Early-Stage Medaka Melanomas. Klotz B, Kneitz S, Lu Y, Boswell W, Postlethwait J, Warren W, Walter RB, Schartl M. G3 (Bethesda) 9 2267-2276 (2019)
  168. Synthesis, quantitative structure-activity relationship and biological evaluation of 1,3,4-oxadiazole derivatives possessing diphenylamine moiety as potential anticancer agents. Abdel Rahman DE. Chem Pharm Bull (Tokyo) 61 151-159 (2013)
  169. Yeast two-hybrid junk sequences contain selected linear motifs. Liu Y, Woods NT, Kim D, Sweet M, Monteiro AN, Karchin R. Nucleic Acids Res 39 e128 (2011)
  170. 3D-QSAR and molecular docking studies on substituted isothiazole analogs as inhibitors against MEK-1 kinase. Reddy BM, Tanneeru K, Meetei PA, Guruprasad L. Chem Biol Drug Des 79 84-91 (2012)
  171. Allosteric Kinase Inhibitors Reshape MEK1 Kinase Activity Conformations in Cells and In Silico. Fleischmann J, Feichtner A, DeFalco L, Kugler V, Schwaighofer S, Huber RG, Stefan E. Biomolecules 11 518 (2021)
  172. Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes. Poston RG, Murphy L, Rejepova A, Ghaninejad-Esfahani M, Segales J, Mulligan K, Saha RN. J Biol Chem 295 6120-6137 (2020)
  173. Development of a time-resolved fluorescence resonance energy transfer assay for cyclin-dependent kinase 4 and identification of its ATP-noncompetitive inhibitors. Lo MC, Ngo R, Dai K, Li C, Liang L, Lee J, Emkey R, Eksterowicz J, Ventura M, Young SW, Xiao SH. Anal Biochem 421 368-377 (2012)
  174. Examining Ligand-Based Stabilization of Proteins in Cells with MEK1 Kinase Inhibitors. Auld DS, Davis CA, Jimenez M, Knight S, Orme JP. Assay Drug Dev Technol 13 266-276 (2015)
  175. Molecular mechanisms underlying cellular effects of human MEK1 mutations. Marmion RA, Yang L, Goyal Y, Jindal GA, Wetzel JL, Singh M, Schüpbach T, Shvartsman SY. Mol Biol Cell 32 974-983 (2021)
  176. Regulation of Plasmodium falciparum Pfnek3 relies on phosphorylation at its activation loop and at threonine 82. Low H, Chua CS, Sim TS. Cell Mol Life Sci 66 3081-3090 (2009)
  177. Towards the development of chromone-based MEK1/2 modulators. Redwan IN, Dyrager C, Solano C, Fernández de Trocóniz G, Voisin L, Bliman D, Meloche S, Grøtli M. Eur J Med Chem 85 127-138 (2014)
  178. Tyrosine kinase 4 is involved in the reproduction of the platyhelminth parasite Schistosoma japonicum. Ding H, Liu F, Zhu L, Wu F, Liu Q, He S, Shao W, Du Y, Ren C, Shen J, Liu M. Parasit Vectors 10 498 (2017)
  179. Architecture of the MKK6-p38α complex defines the basis of MAPK specificity and activation. Juyoux P, Galdadas I, Gobbo D, von Velsen J, Pelosse M, Tully M, Vadas O, Gervasio FL, Pellegrini E, Bowler MW. Science 381 1217-1225 (2023)
  180. Azelnidipine inhibits esophageal squamous cell carcinoma proliferation in vivo and in vitro by targeting MEK1/2. Zhao L, Zhang Y, Li A, Lu X, Li M, Yuan Q, Yang N, Zhao X, Li X, Jiang Y, Liu K. Mol Ther Oncolytics 27 61-72 (2022)
  181. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2. Wang P, Jia X, Lu B, Huang H, Liu J, Liu X, Wu Q, Hu Y, Li P, Wei H, Liu T, Zhao D, Zhang L, Tian X, Jiang Y, Qiao Y, Nie W, Ma X, Bai R, Peng C, Dong Z, Liu K. Signal Transduct Target Ther 8 96 (2023)
  182. Investigating a Library of Flavonoids as Potential Inhibitors of a Cancer Therapeutic Target MEK2 Using in Silico Methods. AlZahrani WM, AlGhamdi SA, Sohrab SS, Rehan M. Int J Mol Sci 24 4446 (2023)
  183. Structure-based design and synthesis of bicyclic fused-pyridines as MEK inhibitors. Lu H, Tu W, Fei H, Xu G, Hu Q, Zhang L, Lin B, Yuan J, Yin J, Gong A, Wan M, Wang D, Zhu X, Feng J, Wang Q, Sun P. Bioorg Med Chem Lett 24 2555-2559 (2014)
  184. Analysis of the ERK Pathway Cysteinome for Targeted Covalent Inhibition of RAF and MEK Kinases. Romany A, Liu R, Zhan S, Clayton J, Shen J. J Chem Inf Model 63 2483-2494 (2023)
  185. How Do Modulators Affect the Orthosteric and Allosteric Binding Pockets? Chen CJ, Jiang C, Yuan J, Chen M, Cuyler J, Xie XQ, Feng Z. ACS Chem Neurosci 13 959-977 (2022)
  186. Novel method to identify group-specific non-catalytic pockets of human kinome for drug design. Wang H, Guan Z, Qiu J, Jia Y, Zeng C, Zhao Y. RSC Adv 10 2004-2015 (2020)
  187. Novel zebrafish model reveals a critical role for MAPK in lymphangiogenesis. Fevurly RD, Hasso S, Fye A, Fishman SJ, Chan J. J Pediatr Surg 47 177-182 (2012)
  188. Structure of mitogen-activated protein kinase kinase 1 in the DFG-out conformation. Nakae S, Kitamura M, Fujiwara D, Sawa M, Shirai T, Fujii I, Tada T. Acta Crystallogr F Struct Biol Commun 77 459-464 (2021)
  189. 5-Carboxyfluorescein tagged N-phenylanthranilamide as a tracer reagent for fluorescence polarization: a robust method to screen MAPK pathway allosteric inhibitors. Rezvani ZN, Mayer RJ, Chan WC. Chem Commun (Camb) 46 2043-2045 (2010)
  190. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses. Mobilio D, Walker G, Brooijmans N, Nilakantan R, Denny RA, Dejoannis J, Feyfant E, Kowticwar RK, Mankala J, Palli S, Punyamantula S, Tatipally M, John RK, Humblet C. Chem Biol Drug Des 76 142-153 (2010)
  191. Alternative assay formats to identify diverse inhibitors of protein kinases. Singh P, Ward WH. Expert Opin Drug Discov 3 819-831 (2008)
  192. Caspase 3-specific cleavage of MEK1 suppresses ERK signaling and sensitizes cells to stress-induced apoptosis. Moriizumi H, Kubota Y, Tsuchiya T, Naka R, Takekawa M. FEBS Open Bio 13 684-700 (2023)
  193. Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors. Liang J, Wang M, Li X, He X, Cao C, Meng F. Molecules 22 E1020 (2017)
  194. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Guo G, Dong J. Bioengineered 13 11072-11081 (2022)
  195. Druggable exosites of the human kino-pocketome. Nicola G, Kufareva I, Ilatovskiy AV, Abagyan R. J Comput Aided Mol Des 34 219-230 (2020)
  196. Experimental strategies to improve drug-target identification in mass spectrometry-based thermal stability assays. Phaneuf CG, Aizikov K, Grinfeld D, Kreutzmann A, Mourad D, Lange O, Dai D, Zhang B, Belenky A, Makarov AA, Ivanov AR. Commun Chem 6 64 (2023)
  197. How many kinases are druggable? A review of our current understanding. Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. Biochem J 480 1331-1363 (2023)
  198. New small-molecule inhibitors of mitogen-activated protein kinase kinase. Spicer JA. Expert Opin Drug Discov 3 801-817 (2008)
  199. Predicting Anticancer Drug Resistance Mediated by Mutations. Lin YF, Liu JJ, Chang YJ, Yu CS, Yi W, Lane HY, Lu CH. Pharmaceuticals (Basel) 15 136 (2022)
  200. Crystal structure of the phosphorylated Arabidopsis MKK5 reveals activation mechanism of MAPK kinases. Pei CJ, He QX, Luo Z, Yao H, Wang ZX, Wu JW. Acta Biochim Biophys Sin (Shanghai) 54 1159-1170 (2022)
  201. Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome. Bedoya-Cardona JE, Rubio-Carrasquilla M, Ramírez-Velásquez IM, Valdés-Tresanco MS, Moreno E. Molecules 28 692 (2023)
  202. Lung Fibroblasts Take up Breast Cancer Cell-derived Extracellular Vesicles Partially Through MEK2-dependent Macropinocytosis. Wan Y, Zhao Y, Cao M, Wang J, Tran SV, Song Z, Hsueh BW, Wang SE. Cancer Res Commun 4 170-181 (2024)
  203. Modular Assembly of Allosteric MEK Inhibitor Structural Elements Unravels Potency and Feedback-Modulation Handles. Hartung IV, Pühler F, Neuhaus R, Scholz A, Siemeister G, Geisler J, Hillig RC, von Ahsen O, Hitchcock M. ChemMedChem 10 2004-2013 (2015)
  204. Pancreatic cancer acquires resistance to MAPK pathway inhibition by clonal expansion and adaptive DNA hypermethylation. Godfrey LK, Forster J, Liffers ST, Schröder C, Köster J, Henschel L, Ludwig KU, Lähnemann D, Trajkovic-Arsic M, Behrens D, Scarpa A, Lawlor RT, Witzke KE, Sitek B, Johnsen SA, Rahmann S, Horsthemke B, Zeschnigk M, Siveke JT. Clin Epigenetics 16 13 (2024)