1s2a Citations

Crystal structures of prostaglandin D(2) 11-ketoreductase (AKR1C3) in complex with the nonsteroidal anti-inflammatory drugs flufenamic acid and indomethacin.

Cancer Res 64 1802-10 (2004)
Related entries: 1s1p, 1s1r, 1s2c

Cited: 80 times
EuropePMC logo PMID: 14996743

Abstract

It is becoming increasingly well established that nonsteroidal anti-inflammatory drugs (NSAID) protect against tumors of the gastrointestinal tract and that they may also protect against a variety of other tumors. These activities have been widely attributed to the inhibition of cylooxygenases (COX) and, in particular, COX-2. However, several observations have indicated that other targets may be involved. Besides targeting COX, certain NSAID also inhibit enzymes belonging to the aldo-keto reductase (AKR) family, including AKR1C3. We have demonstrated previously that overexpression of AKR1C3 acts to suppress cell differentiation and promote proliferation in myeloid cells. However, this enzyme has a broad tissue distribution and therefore represents a novel candidate for the target of the COX-independent antineoplastic actions of NSAID. Here we report on the X-ray crystal structures of AKR1C3 complexed with the NSAID indomethacin (1.8 A resolution) or flufenamic acid (1.7 A resolution). One molecule of indomethacin is bound in the active site, whereas flufenamic acid binds to both the active site and the beta-hairpin loop, at the opposite end of the central beta-barrel. Two other crystal structures (1.20 and 2.1 A resolution) show acetate bound in the active site occupying the proposed oxyanion hole. The data underline AKR1C3 as a COX-independent target for NSAID and will provide a structural basis for the future development of new cancer therapies with reduced COX-dependent side effects.

Reviews - 1s2a mentioned but not cited (4)

  1. AKR1C3 as a target in castrate resistant prostate cancer. Adeniji AO, Chen M, Penning TM. J Steroid Biochem Mol Biol 137 136-149 (2013)
  2. Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. Byrns MC, Jin Y, Penning TM. J Steroid Biochem Mol Biol 125 95-104 (2011)
  3. Aldo-Keto Reductase (AKR) 1C3 inhibitors: a patent review. Penning TM. Expert Opin Ther Pat 27 1329-1340 (2017)
  4. Intracrinology-revisited and prostate cancer. Penning TM, Detlefsen AJ. J Steroid Biochem Mol Biol 196 105499 (2020)

Articles - 1s2a mentioned but not cited (10)

  1. An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies. Byrns MC, Steckelbroeck S, Penning TM. Biochem Pharmacol 75 484-493 (2008)
  2. Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (Type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. Liedtke AJ, Adeniji AO, Chen M, Byrns MC, Jin Y, Christianson DW, Marnett LJ, Penning TM. J Med Chem 56 2429-2446 (2013)
  3. Type 5 17beta-hydroxysteroid dehydrogenase/prostaglandin F synthase (AKR1C3): role in breast cancer and inhibition by non-steroidal anti-inflammatory drug analogs. Byrns MC, Penning TM. Chem Biol Interact 178 221-227 (2009)
  4. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3. Flanagan JU, Yosaatmadja Y, Teague RM, Chai MZ, Turnbull AP, Squire CJ. PLoS One 7 e43965 (2012)
  5. Online structure-based screening of purchasable approved drugs and natural compounds: retrospective examples of drug repositioning on cancer targets. Lagarde N, Rey J, Gyulkhandanyan A, Tufféry P, Miteva MA, Villoutreix BO. Oncotarget 9 32346-32361 (2018)
  6. Selective inhibitors of aldo-keto reductases AKR1C1 and AKR1C3 discovered by virtual screening of a fragment library. Brožič P, Turk S, Adeniji AO, Konc J, Janežič D, Penning TM, Lanišnik Rižner T, Gobec S. J Med Chem 55 7417-7424 (2012)
  7. Bioisosteres of Indomethacin as Inhibitors of Aldo-Keto Reductase 1C3. Lolli ML, Carnovale IM, Pippione AC, Wahlgren WY, Bonanni D, Marini E, Zonari D, Gallicchio M, Boscaro V, Goyal P, Friemann R, Rolando B, Bagnati R, Adinolfi S, Oliaro-Bosso S, Boschi D. ACS Med Chem Lett 10 437-443 (2019)
  8. Bruton's Tyrosine Kinase Inhibitors Ibrutinib and Acalabrutinib Counteract Anthracycline Resistance in Cancer Cells Expressing AKR1C3. Morell A, Čermáková L, Novotná E, Laštovičková L, Haddad M, Haddad A, Portillo R, Wsól V. Cancers (Basel) 12 E3731 (2020)
  9. N-Benzoyl anthranilic acid derivatives as selective inhibitors of aldo-keto reductase AKR1C3. Sinreih M, Sosič I, Beranič N, Turk S, Adeniji AO, Penning TM, Rižner TL, Gobec S. Bioorg Med Chem Lett 22 5948-5951 (2012)
  10. Olaparib Synergizes the Anticancer Activity of Daunorubicin via Interaction with AKR1C3. Tavares TS, Hofman J, Lekešová A, Želazková J, Wsól V. Cancers (Basel) 12 E3127 (2020)


Reviews citing this publication (10)

  1. Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Oppermann U. Annu Rev Pharmacol Toxicol 47 293-322 (2007)
  2. Structure and function of human 17beta-hydroxysteroid dehydrogenases. Lukacik P, Kavanagh KL, Oppermann U. Mol Cell Endocrinol 248 61-71 (2006)
  3. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Matsunaga T, Shintani S, Hara A. Drug Metab Pharmacokinet 21 1-18 (2006)
  4. Androgen biosynthesis in castration-resistant prostate cancer. Penning TM. Endocr Relat Cancer 21 T67-78 (2014)
  5. Molecular basis for nonspecificity of nonsteroidal anti-inflammatory drugs (NSAIDs). Dwivedi AK, Gurjar V, Kumar S, Singh N. Drug Discov Today 20 863-873 (2015)
  6. The role of adrenal derived androgens in castration resistant prostate cancer. Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. J Steroid Biochem Mol Biol 197 105506 (2020)
  7. Structural basis of the multispecificity demonstrated by 17beta-hydroxysteroid dehydrogenase types 1 and 5. Lin SX, Shi R, Qiu W, Azzi A, Zhu DW, Dabbagh HA, Zhou M. Mol Cell Endocrinol 248 38-46 (2006)
  8. Recruitment of thioredoxin-like domains into prostaglandin synthases. Daiyasu H, Watanabe K, Toh H. Biochem Biophys Res Commun 369 281-286 (2008)
  9. The enzymology of the human prostanoid pathway. Biringer RG. Mol Biol Rep 47 4569-4586 (2020)
  10. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions. Ayuso P, García-Martín E, Agúndez JAG. Antioxidants (Basel) 10 294 (2021)

Articles citing this publication (56)

  1. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B, Matsumoto AM, Simon NI, Wang H, Chen S, Balk SP. Cancer Res 71 6503-6513 (2011)
  2. Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto reductase isoforms: potential antineoplastic agents that work independently of cyclooxygenase isozymes. Bauman DR, Rudnick SI, Szewczuk LM, Jin Y, Gopishetty S, Penning TM. Mol Pharmacol 67 60-68 (2005)
  3. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J Mol Biol 372 817-845 (2007)
  4. Aldo-keto reductase (AKR) 1C3: role in prostate disease and the development of specific inhibitors. Penning TM, Steckelbroeck S, Bauman DR, Miller MW, Jin Y, Peehl DM, Fung KM, Lin HK. Mol Cell Endocrinol 248 182-191 (2006)
  5. Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. Simpson PJ, Tantitadapitak C, Reed AM, Mather OC, Bunce CM, White SA, Ride JP. J Mol Biol 392 465-480 (2009)
  6. Inhibition of AKR1C3 Activation Overcomes Resistance to Abiraterone in Advanced Prostate Cancer. Liu C, Armstrong CM, Lou W, Lombard A, Evans CP, Gao AC. Mol Cancer Ther 16 35-44 (2017)
  7. Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2). Yamada T, Komoto J, Watanabe K, Ohmiya Y, Takusagawa F. J Mol Biol 348 1163-1176 (2005)
  8. Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships. Adeniji AO, Twenter BM, Byrns MC, Jin Y, Chen M, Winkler JD, Penning TM. J Med Chem 55 2311-2323 (2012)
  9. Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia. Khanim FL, Hayden RE, Birtwistle J, Lodi A, Tiziani S, Davies NJ, Ride JP, Viant MR, Gunther UL, Mountford JC, Schrewe H, Green RM, Murray JA, Drayson MT, Bunce CM. PLoS One 4 e8147 (2009)
  10. Biological role of aldo-keto reductases in retinoic Acid biosynthesis and signaling. Ruiz FX, Porté S, Parés X, Farrés J. Front Pharmacol 3 58 (2012)
  11. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning. Wu Z, Cheng F, Li J, Li W, Liu G, Tang Y. Brief Bioinform 18 333-347 (2017)
  12. Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers. Veliça P, Davies NJ, Rocha PP, Schrewe H, Ride JP, Bunce CM. Mol Cancer 8 121 (2009)
  13. The Recognition of Identical Ligands by Unrelated Proteins. Barelier S, Sterling T, O'Meara MJ, Shoichet BK. ACS Chem Biol 10 2772-2784 (2015)
  14. Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Adeniji AO, Twenter BM, Byrns MC, Jin Y, Winkler JD, Penning TM. Bioorg Med Chem Lett 21 1464-1468 (2011)
  15. Inverse Molecular Docking as a Novel Approach to Study Anticarcinogenic and Anti-Neuroinflammatory Effects of Curcumin. Furlan V, Konc J, Bren U. Molecules 23 E3351 (2018)
  16. Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1). Chen M, Drury JE, Penning TM. Steroids 76 484-490 (2011)
  17. Human cytosolic hydroxysteroid dehydrogenases of the aldo-ketoreductase superfamily catalyze reduction of conjugated steroids: implications for phase I and phase II steroid hormone metabolism. Jin Y, Duan L, Lee SH, Kloosterboer HJ, Blair IA, Penning TM. J Biol Chem 284 10013-10022 (2009)
  18. Structural basis for catalytic and inhibitory mechanisms of human prostaglandin reductase PTGR2. Wu YH, Ko TP, Guo RT, Hu SM, Chuang LM, Wang AH. Structure 16 1714-1723 (2008)
  19. A Role for the PPARgamma in Cancer Therapy. Campbell MJ, Carlberg C, Koeffler HP. PPAR Res 2008 314974 (2008)
  20. Hypoxia triggers major metabolic changes in AML cells without altering indomethacin-induced TCA cycle deregulation. Lodi A, Tiziani S, Khanim FL, Drayson MT, Günther UL, Bunce CM, Viant MR. ACS Chem Biol 6 169-175 (2011)
  21. Nonsteroidal anti-inflammatory drugs and their analogues as inhibitors of aldo-keto reductase AKR1C3: new lead compounds for the development of anticancer agents. Gobec S, Brozic P, Rizner TL. Bioorg Med Chem Lett 15 5170-5175 (2005)
  22. Cinnamic acids as new inhibitors of 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3). Brozic P, Golob B, Gomboc N, Rizner TL, Gobec S. Mol Cell Endocrinol 248 233-235 (2006)
  23. Discovery of (R)-2-(6-Methoxynaphthalen-2-yl)butanoic Acid as a Potent and Selective Aldo-keto Reductase 1C3 Inhibitor. Adeniji A, Uddin MJ, Zang T, Tamae D, Wangtrakuldee P, Marnett LJ, Penning TM. J Med Chem 59 7431-7444 (2016)
  24. Anthranilic acid analogs as diamagnetic CEST MRI contrast agents that feature an intramolecular-bond shifted hydrogen. Song X, Yang X, Ray Banerjee S, Pomper MG, McMahon MT. Contrast Media Mol Imaging 10 74-80 (2015)
  25. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Cousido-Siah A, Ruiz FX, Mitschler A, Porté S, de Lera ÁR, Martín MJ, Manzanaro S, de la Fuente JA, Terwesten F, Betz M, Klebe G, Farrés J, Parés X, Podjarny A. Acta Crystallogr D Biol Crystallogr 70 889-903 (2014)
  26. In vitro metabolism and identification of human enzymes involved in the metabolism of methylnaltrexone. Tong Z, Chandrasekaran A, Li H, Rotshteyn Y, Erve JC, Demaio W, Talaat R, Hultin T, Scatina J. Drug Metab Dispos 38 801-807 (2010)
  27. Comparison of crystal structures of human type 3 3alpha-hydroxysteroid dehydrogenase reveals an "induced-fit" mechanism and a conserved basic motif involved in the binding of androgen. Couture JF, de Jésus-Tran KP, Roy AM, Cantin L, Côté PL, Legrand P, Luu-The V, Labrie F, Breton R. Protein Sci 14 1485-1497 (2005)
  28. Crystal structure of anti-configuration of indomethacin and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase complex reveals the structural basis of broad spectrum indomethacin efficacy. Hori T, Ishijima J, Yokomizo T, Ago H, Shimizu T, Miyano M. J Biochem 140 457-466 (2006)
  29. Selective AKR1C3 inhibitors do not recapitulate the anti-leukaemic activities of the pan-AKR1C inhibitor medroxyprogesterone acetate. Khanim F, Davies N, Veliça P, Hayden R, Ride J, Pararasa C, Chong MG, Gunther U, Veerapen N, Winn P, Farmer R, Trivier E, Rigoreau L, Drayson M, Bunce C. Br J Cancer 110 1506-1516 (2014)
  30. Structural determinants of arylacetic acid nonsteroidal anti-inflammatory drugs necessary for binding and activation of the prostaglandin D2 receptor CRTH2. Hata AN, Lybrand TP, Marnett LJ, Breyer RM. Mol Pharmacol 67 640-647 (2005)
  31. Synthesis and structure-activity relationships for 1-(4-(piperidin-1-ylsulfonyl)phenyl)pyrrolidin-2-ones as novel non-carboxylate inhibitors of the aldo-keto reductase enzyme AKR1C3. Heinrich DM, Flanagan JU, Jamieson SM, Silva S, Rigoreau LJ, Trivier E, Raynham T, Turnbull AP, Denny WA. Eur J Med Chem 62 738-744 (2013)
  32. Ion channel inhibitors block caspase activation by mechanisms other than restoring intracellular potassium concentration. Benítez-Rangel E, García L, Namorado MC, Reyes JL, Guerrero-Hernández A. Cell Death Dis 2 e113 (2011)
  33. Morpholylureas are a new class of potent and selective inhibitors of the type 5 17-β-hydroxysteroid dehydrogenase (AKR1C3). Flanagan JU, Atwell GJ, Heinrich DM, Brooke DG, Silva S, Rigoreau LJ, Trivier E, Turnbull AP, Raynham T, Jamieson SM, Denny WA. Bioorg Med Chem 22 967-977 (2014)
  34. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics. Gogoi B, Gogoi D, Silla Y, Kakoti BB, Bhau BS. Mol Biosyst 13 406-416 (2017)
  35. Evaluation of solvent accessibility epitopes for different dehydrogenase inhibitors. Ludwig C, Michiels PJ, Lodi A, Ride J, Bunce C, Günther UL. ChemMedChem 3 1371-1376 (2008)
  36. Synthesis of non-prenyl analogues of baccharin as selective and potent inhibitors for aldo-keto reductase 1C3. Endo S, Hu D, Matsunaga T, Otsuji Y, El-Kabbani O, Kandeel M, Ikari A, Hara A, Kitade Y, Toyooka N. Bioorg Med Chem 22 5220-5233 (2014)
  37. 2,3-Diarylpropenoic acids as selective non-steroidal inhibitors of type-5 17β-hydroxysteroid dehydrogenase (AKR1C3). Gazvoda M, Beranič N, Turk S, Burja B, Kočevar M, Rižner TL, Gobec S, Polanc S. Eur J Med Chem 62 89-97 (2013)
  38. Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells. Doig CL, Battaglia S, Khanim FL, Bunce CM, Campbell MJ. J Steroid Biochem Mol Biol 155 47-55 (2016)
  39. Metabolism of the synthetic progestogen norethynodrel by human ketosteroid reductases of the aldo-keto reductase superfamily. Jin Y, Duan L, Chen M, Penning TM, Kloosterboer HJ. J Steroid Biochem Mol Biol 129 139-144 (2012)
  40. Evaluation of A-ring fused pyridine d-modified androstane derivatives for antiproliferative and aldo-keto reductase 1C3 inhibitory activity. Savić MP, Ajduković JJ, Plavša JJ, Bekić SS, Ćelić AS, Klisurić OR, Jakimov DS, Petri ET, Djurendić EA. Medchemcomm 9 969-981 (2018)
  41. The triphenyltin(VI) complexes of NSAIDs and derivatives. Synthesis, crystal structure and antiproliferative activity. Potent anticancer agents. Dokorou V, Primikiri A, Kovala-Demertzi D. J Inorg Biochem 105 195-201 (2011)
  42. Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. Hara A, Endo S, Matsunaga T, Soda M, Yashiro K, El-Kabbani O. J Biochem 162 371-379 (2017)
  43. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Med Chem Res 26 3038-3045 (2017)
  44. Prophylaxis of posterior capsule opacification through autophagy activation with indomethacin-eluting intraocular lens. Zhang X, Wang J, Xu J, Xu W, Zhang Y, Luo C, Ni S, Han H, Shentu X, Ye J, Ji J, Yao K. Bioact Mater 23 539-550 (2023)
  45. Structure of AKR1C3 with 3-phenoxybenzoic acid bound. Jackson VJ, Yosaatmadja Y, Flanagan JU, Squire CJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 409-413 (2012)
  46. Structures of complexes of type 5 17β-hydroxysteroid dehydrogenase with structurally diverse inhibitors: insights into the conformational changes upon inhibitor binding. Amano Y, Yamaguchi T, Niimi T, Sakashita H. Acta Crystallogr D Biol Crystallogr 71 918-927 (2015)
  47. Analysis of the molecular structure and vibrational spectra of the indole based analgesic drug indomethacin. Badawi HM, Förner W. Spectrochim Acta A Mol Biomol Spectrosc 123 447-454 (2014)
  48. Instability of C154Y variant of aldo-keto reductase 1C3. Endo S, Takada S, Honda RP, Müller K, Weishaupt JH, Andersen PM, Ludolph AC, Kamatari YO, Matsunaga T, Kuwata K, El-Kabbani O, Ikari A. Chem Biol Interact 276 194-202 (2017)
  49. The conformational stability, solvation and the assignments of the experimental infrared, Raman, (1)H and (13)C NMR spectra of the local anesthetic drug lidocaine. Badawi HM, Förner W, Ali SA. Spectrochim Acta A Mol Biomol Spectrosc 142 382-391 (2015)
  50. Interrogation of the Structure-Activity Relationship of a Lipophilic Nitroaromatic Prodrug Series Designed for Cancer Gene Therapy Applications. Ashoorzadeh A, Mowday AM, Guise CP, Silva S, Bull MR, Abbattista MR, Copp JN, Williams EM, Ackerley DF, Patterson AV, Smaill JB. Pharmaceuticals (Basel) 15 185 (2022)
  51. Crystallization and preliminary X-ray diffraction analysis of mouse 3(17)alpha-hydroxysteroid dehydrogenase. El-Kabbani O, Ishikura S, Wagner A, Schulze-Briese C, Hara A. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 688-690 (2005)
  52. Crystallization and preliminary X-ray diffraction analysis of mouse prostaglandin F2α synthase, AKR1B3. Takashima Y, Hatanaka S, Mizohata E, Nagata N, Fukunishi Y, Matsumura H, Urade Y, Inoue T. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1630-1632 (2011)
  53. Exploration of [2 + 2 + 2] cyclotrimerisation methodology to prepare tetrahydroisoquinoline-based compounds with potential aldo-keto reductase 1C3 target affinity. Santos ARN, Sheldrake HM, Ibrahim AIM, Danta CC, Bonanni D, Daga M, Oliaro-Bosso S, Boschi D, Lolli ML, Pors K. Medchemcomm 10 1476-1480 (2019)
  54. Influence of Indomethacin on Steroid Metabolism: Endocrine Disruption and Confounding Effects in Urinary Steroid Profiling of Anti-Doping Analyses. Stoll A, Iannone M, De Gregorio G, Molaioni F, de la Torre X, Botrè F, Parr MK. Metabolites 10 E463 (2020)
  55. Role of Human Aldo-Keto Reductases and Nuclear Factor Erythroid 2-Related Factor 2 in the Metabolic Activation of 1-Nitropyrene via Nitroreduction in Human Lung Cells. Su AL, Penning TM. Chem Res Toxicol 36 270-280 (2023)
  56. X-ray structure of human aldo-keto reductase 1C3 in complex with a bile acid fused tetrazole inhibitor: experimental validation, molecular docking and structural analysis. Marinović MA, Bekić SS, Kugler M, Brynda J, Škerlová J, Škorić DĐ, Řezáčová P, Petri ET, Ćelić AS. RSC Med Chem 14 341-355 (2023)